Pathophysiology of Perinatal Hypoxic-ischemic Brain Damage

  • Robert C. Vannucci
  • Fred Plum


Impaired learning, cerebral palsy, and other forms of limited or abnormal neurological development blight the lives of an estimated 10% of children in Western society. Although the mechanisms for a substantial percentage of these abnormalities in development are at least partly explained by alreadyknown anatomical or chemical disorders, the causes for many of the cases remain elusive (Fig. 1). Among the known causes of mental and physical retardation, perinatal anoxic-ischemic injury ranks high, and we review here the present understanding and some of the known problems of this important cause of human disability.


Oxygen Consumption Cerebral Blood Flow Cerebral Palsy Fetal Brain Brain Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. H. Kirschbaum, J. C. DeHaven, N. Shapiro, and N. S. Assali, Oxyhemoglobin dissociation characteristic of human and sheep maternal and fetal blood, Am. J. Obstet. Gynecol. 96:741–757 (1966).Google Scholar
  2. 2.
    L. S. James, I. M. Weisbrot, C. E. Prince, D. A. Holaday, and V. Apgar, The acid-base status of human infants in relation to birth asphyxia and onset of respiration, J. Pediatr. 52:379–394 (1958).CrossRefGoogle Scholar
  3. 3.
    I. M. Weisbrot, L. S. James, C. E. Prince, D. A. Holaday, and V. Apgar, Acid-base homeostasis of the newborn infant during the first 24 hours of life, J. Pediatr. 52:395–406 (1958).CrossRefGoogle Scholar
  4. 4.
    F. F. Schachter and V. Apgar, Perinatal asphyxia and psychologic signs of brain damage in childhood, Pediatrics 24:1016–1025 (1959).Google Scholar
  5. 5.
    K. Adamsons and R. E. Myers, Perinatal asphyxia: causes, detection and neurologic sequelae, Pediatr. Clin. North Am. 20:465–480 (1973).Google Scholar
  6. 6.
    A. E. Seeds, Adverse effects on the fetus of acute events in labor, Pediatr. Clin. North Am. 17:811–834 (1970).Google Scholar
  7. 7.
    L. S. James, in “Resuscitation of the Newborn Infant” (H. Abramson, ed.) pp. 134–146, C. V. Mosby, St. Louis (1973).Google Scholar
  8. 8.
    L. H. Butterfield, Regionalization for respiratory care, Pediatr. Clin. North Am. 20:499–505 (1973).Google Scholar
  9. 9.
    W. A. Silverman, “Dunham’s Premature Infants,” P. E. Hoeber-Harper, New York (1961).Google Scholar
  10. 10.
    K. R. Niswander and M. Gordon, “The Women and Their Pregnancies,” W. B. Saunders, Philadelphia (1972).Google Scholar
  11. 11.
    D. Cavanagh and M. R. Talisman, “Prematurity and the Obstetrician,” Meredith, New York (1969).Google Scholar
  12. 12.
    S. H. Clifford, “AMA National Conference on Infant Mortality,” San Francisco (1966) pp. 39–43, AMA, Chicago (1967).Google Scholar
  13. 13.
    S. H. Clifford, High-risk pregnancy-prevention of prematurity the sine qua non for reduction in mental retardation and other neurologic disorders, N. Engl. J. Med. 271:243–249 (1964).CrossRefGoogle Scholar
  14. 14.
    R. A. Reis, “AMA National Conference on Infant Mortality,” San Francisco, Calif. (1966) pp. 1–4, AMA, Chicago (1967).Google Scholar
  15. 15.
    S. Shapiro, E. Schlesinger, and R. Nesbitt, “Infant, Perinatal, Maternal and Childhood Mortality in the United States,” Harvard University Press, Cambridge, Mass. (1968).Google Scholar
  16. 16.
    S. G. Babson and R. C. Benson, “Management of High-Risk Pregnancy and Intensive Care of the Neonate,” C. V. Mosby, St. Louis (1971).Google Scholar
  17. 17.
    A. Kjessler, Perinatal mortality, Acta Obstet. Gynecol. Scand. 34[Suppl. 1, 1–199] (1955).CrossRefGoogle Scholar
  18. 18.
    C. B. Courville, Birth and brain damage: traumatic versus anoxic damage in the fetal brain, Bull. Los Ang. Neurol. Soc. 28:209–222 (1963).Google Scholar
  19. 19.
    D. G. Clyne, Traumatic versus anoxic damage to the fetal brain, Dev. Med. Child Neurol. 6:455–457 (1964).CrossRefGoogle Scholar
  20. 20.
    C.M. Drillien, A longitudinal study of the growth and development of prematurely and maturely born children. Part VII: Mental development 2–5 years, Arch. Dis. Child. 36:233–240 (1961).CrossRefGoogle Scholar
  21. 21.
    L. C. Eaves, J. C. Nutall, H. Klonoff, and H. G. Dunn, Developmental and psychologic test scores in children of low birth weight, Pediatrics 45:9–19 (1970).Google Scholar
  22. 22.
    H. Knoblock, R. Ridner, P. Harper, and B. Pasaminick, Neuropsychiatric sequelae of prematurity: A longitudinal study, J. Am. Med. Assoc. 161:581–585 (1956).CrossRefGoogle Scholar
  23. 23.
    A. Rossier, The future of the premature infant, Dev. Med. Child Neurol. 4:483–487 (1962).CrossRefGoogle Scholar
  24. 24.
    M. Dunn, S. Z. Levine, and E. V. New, A long-term follow-up of small premature infants, Pediatrics 33:945–955 (1964).Google Scholar
  25. 25.
    L. O. Lubchenco, F. A. Homer, L. H. Reed, I. E. Nix, D. Metcalf, R. Cohig, H. C. Elliott, and M. Bourg, Sequelae of premature birth, Am. J. Dis. Child. 106:101–115 (1963).Google Scholar
  26. 26.
    A. D. McDonald, Cerebral palsy in children of very low birth weight, Arch. Dis. Child. 38:579–588 (1963).CrossRefGoogle Scholar
  27. 27.
    M. I. Griffiths and N. M. Barrett, Cerebral palsy in birmingham, Dev. Med. Child Neurol. 9:33–46 (1967).CrossRefGoogle Scholar
  28. 28.
    J. A. Churchill, The relationship of Little’s disease to premature birth, Am. J. Dis. Child. 96:32–39 (1958).Google Scholar
  29. 29.
    A. M. Lilienfeld and B. Pasamanick, The association of maternal and fetal factors with the development of cerebral palsy and epilepsy, Am. J. Obstet. Gynecol. 70:93–101 (1955).Google Scholar
  30. 30.
    B. Pasamanick and A. M. Lilienfeld, Association of maternal and fetal factors with development of mental deficiency, J. Am. Med. Assoc. 159:155–160 (1955).CrossRefGoogle Scholar
  31. 31.
    P. Plum, Aetiology of athetosis with special reference to neonatal asphyxia, idiopathic icterus and ABO-incompatibility, Arch. Dis. Child. 40:376–384 (1965).CrossRefGoogle Scholar
  32. 32.
    E. Christensen and J. Melchior, “Cerebral Palsy — A Clinical and Neuro pathological Study,” Clinics Develop. Med. #25, The Spastics Soc, London (1967).Google Scholar
  33. 33.
    R. A. Darke, Late effects of severe asphyxia neonatorum, J. Pediat. 24:148–158 (1944).CrossRefGoogle Scholar
  34. 34.
    C. Buck, R. Gregg, K. Stavraky, K. Subrahmanian, and J. Brown, The effect of single prenatal and natal complications upon the development of children of mature birthweight, Pediatrics 43:942–955 (1969).Google Scholar
  35. 35.
    G. L. Usdin and M. L. Weil, Effect of apnea neonatorum on intellectual development, Pediatrics 9:387–394 (1952).Google Scholar
  36. 36.
    H. B. W. Benaron, M. Brown, B. E. Tucker, V. Wentz, and G. K. Yacorzynski, The remote effects of prolonged labor with forceps delivery, precipitate labor with spontaneous delivery, and natural labor with spontaneous delivery of the child, Am. J. Obstet. Gynecol. 66:551–566 (1953).Google Scholar
  37. 37.
    H. M. Keith, M. A. Norval, and A. B. Hunt, Neurological lesions in relation to sequelae of birth injury, Neurology 3:139–147 (1953).CrossRefGoogle Scholar
  38. 38.
    H. M. Keith and R. P. Gage, Neurologic lesions in relation to asphyxia of the newborn and factors of pregnancy: Long term follow-up, Pediatrics 26:616–622 (1960).Google Scholar
  39. 39.
    J. S. Drage, C. Kennedy, and R. K. Schwartz, The Apgar score as an index of neonatal mortality. A report from the collaborative study of cerebral palsy, Obstet. Gynecol. 24:222–230 (1964).Google Scholar
  40. 40.
    J. S. Drage and H. Berendes, Apgar scores and outcome of the newborn, Pediatr. Clin. N. Am. 13:637–643 (1966).Google Scholar
  41. 41.
    K. R. Niswander, E. A. Friedman, D. B. Hoover, H. Pietrowski, and M. C. Westphal, Fetal morbidity following potentially anoxigenic obstetric conditions, Am. J. Obstet. Gynecol. 95:838–845 (1966).Google Scholar
  42. 42.
    A. Leviton and F. H. Gilles, Morphologic correlates of age at death of infants with perinatal telencephic leukoencephalopathy, Am. J. Pathol. 65:303–309 (1971).Google Scholar
  43. 43.
    A. Leviton and F. H. Gilles, Are hypertrophic astrocytes a sufficient criterion of perinatal telecephalic leukoencephalopathy?, J. Neurol. Neurosurg. Psychiatry 36:383–388 (1973).CrossRefGoogle Scholar
  44. 44.
    S. H. Clifford, The effects of asphyxia on the newborn infant, J. Pediatr. 18:567–578 (1941).CrossRefGoogle Scholar
  45. 45.
    A. R. Macgregor, The pathology of stillborn and neonatal death, Br. Med. Bull. 4:174–178 (1946).Google Scholar
  46. 46.
    O. Gröntoft, Intracranial hemorrhage and blood brain barrier problems in the newborn, Acta Pathol. Microbiol. Scand. 1954 [Suppl. C, 5-109].Google Scholar
  47. 47.
    J. J. Ross and R. M. Dimmettee, Subependymal cerebral hemorrhage in infancy, Am. J. Dis. Child. 110:531–542 (1965).Google Scholar
  48. 48.
    A. Towbin, Cerebral intraventricular hemorrhage and subependymal matrix infarction in the fetus and premature newborn, Am. J. Pathol. 52:121–139 (1968).Google Scholar
  49. 49.
    W. S. Craig, Intracranial hemorrhage in the newborn, Arch. Dis. Child. 13:89–124 (1938).CrossRefGoogle Scholar
  50. 50.
    A. Towbin, Cerebral hypoxic damage in fetus and newborn, Arch. Neurol. 20:35–43 (1969).CrossRefGoogle Scholar
  51. 51.
    C. E. Benda, The late effects of cerebral birth injuries, Medicine (Baltimore) 24:71–109 (1945).CrossRefGoogle Scholar
  52. 52.
    N. Malamud, in “Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schade and W. H. McMenemy, eds.) pp. 211–225, F. A. Davis, Philadelphia (1963).Google Scholar
  53. 53.
    C. B. Courville, in “Birth and Brain Damage” (M. F. Courville, ed.) Pasadena (1971).Google Scholar
  54. 54.
    N. Malamoud, H. H. Itabashi, J. Caster, and H. B. Messinger, An etiologic and diagnostic study of cerebral palsy, J. Pediatr. 65:270–293 (1964).CrossRefGoogle Scholar
  55. 55.
    A. Towbin, Central nervous system damage in the human fetus and newborn infant, Am. J. Dis. Child. 119:529–542 (1970).Google Scholar
  56. 56.
    P. Schwartz, Birth injuries of the newborn, Arch. Pediatr. 73:429–450 (1956).Google Scholar
  57. 57.
    B. Q. Banker and J. C. Larroche, Periventricular leukomalacia of infancy, Arch. Neurol. 7:386–410 (1962).CrossRefGoogle Scholar
  58. 58.
    J. DeReuck, A. S. Chattha, and E. P. Richardson, Pathogenesis and evolution of periventricular leukomalacia in infancy, Arch. Neurol. 27:229–236 (1972).CrossRefGoogle Scholar
  59. 59.
    J. DeReuck, The human periventricular arterial blood supply and the anatomy of cerebral infarctions, Eur. Neurol. 5:321–334 (1971).CrossRefGoogle Scholar
  60. 60.
    L. Jilek, J. Fischer, L. Krulick, and S. Trojan, in “Developmental Neurobiology” (W. Himwich, ed.) pp. 331–369, Charles C Thomas, Springfield, Ill. (1970).Google Scholar
  61. 61.
    S. P. Hichs, M. C. Cavanaugh, and E. D. O’Brien, Effects of anoxia on the developing cerebral cortex in the rat, Am. J. Pathol. 40:615–628 (1962).Google Scholar
  62. 62.
    W. F. Windle, Brain damage at birth: Functional and structural modifications with time, J. Am. Med. Assoc. 206:1967–1972 (1968).CrossRefGoogle Scholar
  63. 63.
    J. B. Ranck and W. F. Windle, Brain damage in the monkey, Macaca Mulatta, by asphyxia neonatorum, Exp. Neurol. 1:130–154 (1959).CrossRefGoogle Scholar
  64. 64.
    M. D. Faro and W. F. Windle, Transneuronal degeneration in brains of monkeys asphyxiated at birth, Exp. Neurol. 24:38–53 (1969).CrossRefGoogle Scholar
  65. 65.
    H. N. Jacobson and W. F. Windle, Responses of foetal and newborn monkeys to asphyxia, J. Physiol. (Lond.) 153:447–456 (1960).Google Scholar
  66. 66.
    R. E. Myers, R. Beard, and K. Adamsons, Brain swelling in the newborn rhesus monkey following prolonged partial asphyxia, Neurology 19:1012–1018 (1969).CrossRefGoogle Scholar
  67. 67.
    M. E. Selzer, R. E. Myers, and S. B. Holstein, Prolonged partial asphyxia: Effects of fetal brain water and electrolytes, Neurology 22:732–737 (1972).CrossRefGoogle Scholar
  68. 68.
    R. E. Myers, Two patterns of perinatal brain damage and their conditions of occurrence, Am. J. Obstet. Gynecol. 112:246–276 (1972).Google Scholar
  69. 69.
    D. H. Padget, The development of the cranial arteries in the human embryo, Carneg. Inst. Washington, 82:207–215 (1948).Google Scholar
  70. 70.
    H. A. Kaplan and D. H. Ford, “The Brain Vascular System,” Elsevier New York (1966).Google Scholar
  71. 71.
    R. Vanden Bergh and H. Vanden Eichen, Anatomy and embryology of cerebral circulation, Prog. Brain Res. 30:1–25 (1968).CrossRefGoogle Scholar
  72. 72.
    D. H. Padget, The cranial venous system in man in reference to the development, adult configuration and relation to arteries, Am. J. Anat. 98:307–355 (1965).CrossRefGoogle Scholar
  73. 73.
    G. L. Streeter, The development of the venous sinuses of the dura matter in the human embryo, Am. J. Anat. 18:145–178 (1915).CrossRefGoogle Scholar
  74. 74.
    M. J. Purves, “The Physiology of the Cerebral Circulation,” Cambridge University Press, Cambridge, England (1972).Google Scholar
  75. 75.
    S. A. Hegedus and R. T. Shackelford, A comparative-anatomical study of the craniocervical venous system in mammals with special reference to the dog, Am. J. Anat. 116:375–386 (1965).CrossRefGoogle Scholar
  76. 76.
    L. S. James and K. Adamsons, Respiratory physiology of the fetus and newborn infant, N. Engl. J. Med. 271:1352–1360 (1964).CrossRefGoogle Scholar
  77. 77.
    G. Meschia, J. R. Cotter, C. S. Breathnach, and D. H. Barron, The hemoglobin, oxygen, carbon dioxide and hydrogen ion concentrations in the umbilical bloods of sheep and goats as sampled via indwelling plastic catheters, Q. J. Exp. Physiol. Cogn. Med. Sci. 50:185–195 (1965).Google Scholar
  78. 78.
    N. S. Assali, T. H. Kirschbaum, and P. V. Dilts, Effects of hyperbaric oxygen on uteroplacental and fetal circulation, Circ. Res. 22:573–588 (1968).Google Scholar
  79. 79.
    R. E. Behrman, M. H. Lees, E. N. Peterson, C. W. Delannoy, and A. E. Seeds, Fetal circulation in the primate in intrauterine distress, Am. J. Obstet. Gynecol. 108:956–969 (1970).Google Scholar
  80. 80.
    W. F. Windle, “Physiology of the Fetus,” Charles C Thomas, Springfield, Ill. (1971).Google Scholar
  81. 81.
    A. M. Rudolph and M. A. Heymann, The fetal circulation, Annu. Rev. Med. 19:195–206 (1958).CrossRefGoogle Scholar
  82. 82.
    A. M. Rudolph and M. A. Heymann, The circulation of the fetus in utero, Circ. Res. 21:163–184 (1967).Google Scholar
  83. 83.
    A. E. Barclay, J. Barcroft, D. H. Barron, and K. J. Franklin, A radiographie demonstration of the circulation through the heart in the adult and in the fetus and the identification of the ductus arteriosus, Br. J. Radiol. 12:505–517 (1939).CrossRefGoogle Scholar
  84. 84.
    S. Kaplan and N. S. Assali, in “Pathophysiology of Gestation III: Fetal and Neonatal Disorders” (N. S. Assali and C. R. Brinkman, eds.) pp. 1–77, Academic Press, New York (1972).Google Scholar
  85. 85.
    D. R. Dunnihoo and E. J. Quilligan, Carotid blood flow Distribution in the in utero sheep fetus, Am. J. Obstet. Gynecol. 116:648–656 (1973).Google Scholar
  86. 86.
    M. J. Purves and I. M. James, Observations on the control of cerebral blood flow in the sheep fetus and newborn lamb, Circ. Res. 25:651–667 (1969).Google Scholar
  87. 87.
    W. Lucas, T. Kirschbaum, and N. S. Assali, Cephalic circulation and oxygen consumption before and after birth, Am. J. Physiol. 210:287–292 (1966).Google Scholar
  88. 88.
    N. S. Assali, J. A. Mossirs, and R. Beck, Cardiovascular hemodynamics in the fetal lamb before and after lung expansion, Am. J. Physiol. 208:122–129 (1965).Google Scholar
  89. 89.
    R. E. Behrman and M. H. Lees, Organ blood flows of the fetal, newborn and adult rhesus monkey, Biol. Neonatorum 18:330–340 (1971).CrossRefGoogle Scholar
  90. 90.
    C. Kennedy, G. E. Grave, J. W. Jehle, and L. Sokoloff, Changes in blood flow in the component structures of the dog brain during postnatal maturation. J. Neurochem. 19:2423–2433 (1972).CrossRefGoogle Scholar
  91. 91.
    J. M. Garfunkel, H. W. Baird, and J. Ziegler, The relationship of oxygen consumption to cerebral functional activity, J. Pediatr. 44:64–72 (1954).CrossRefGoogle Scholar
  92. 92.
    C. Kennedy and L. Sokoloff, An adaptation of the nitrous oxide method to the study of the cerebral circulation in children, normal values for cerebral blood flow and cerebral metabolic rate, J. Clin. Invest. 36:1130–1137 (1957).CrossRefGoogle Scholar
  93. 93.
    L. I. Mann, Developmental aspects and the effect of carbon dioxide tension on fetal cephalic blood flow, Exp. Neurol. 26:136–147 (1970).CrossRefGoogle Scholar
  94. 94.
    B. K. Siesjö and F. Plum, in “Biology of Brain Dysfunction” (G. E. Gaull, ed.) Vol. 1, pp. 319–372, Plenum Press, New York (1973).CrossRefGoogle Scholar
  95. 95.
    M. McIlwain and H. S. Bachelard, “Biochemistry and the Central Nervous System,” Williams & Wilkins, Baltimore (1971).Google Scholar
  96. 96.
    N. D. Goldberg, J. V. Passonneau, and O. H. Lowry, Effects of changes in brain metabolism on the levels of citric acid intermediates, J. Biol. Chem. 241:3997–4003 (1966).Google Scholar
  97. 97.
    O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W. Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18–30 (1964).Google Scholar
  98. 98.
    H. S. Bachelard, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 4, pp. 1–11, Plenum Press, New York (1970).Google Scholar
  99. 99.
    A. Chesler and H. E. Himwich, Comparative studies of the rates of oxidation and glycolysis in the cerebral cortex and brain stem of the rat, Am. J. Physiol. 141:513–517 (1944).Google Scholar
  100. 100.
    A. Chesler and H. E. Himwich, Glycolysis in the parts of the central nervous system of cats and dogs during growth, Am. J. Physiol. 142:544–549 (1944).Google Scholar
  101. 101.
    T. E. Duffy, S. J. Kohle, and R. C. Vannucci, Carbohydrate and energy metabolism in perinatal rat brain: relation to survival in anoxia, J. Neurochem. 24:271–276 (1975).CrossRefGoogle Scholar
  102. 102.
    D. F. Swaab and K. Boer, The presence of biologically labile compounds during ischemia and their relationship to the EEG in rat cerebral cortex and hypothalamus, J. Neurochem. 19:2843–2853 (1972).CrossRefGoogle Scholar
  103. 103.
    J. H. Thurston and D. B. McDougal, Effect of ischemia on metabolism of the brain of the newborn mouse, Am. J. Physiol. 216:348–352 (1969).Google Scholar
  104. 104.
    G. M. Lehrer, M. B. Bornstein, C. Weiss, and D. J. Silides, Enzymatic maturation of mouse cerebral neocortex in vitro and in situ, Exp. Neurol. 26:595–606 (1970).CrossRefGoogle Scholar
  105. 105.
    J. E. Wilson, The relationship between glycolytic and mitochondrial enzymes in the developing rat brain, J. Neurochem. 19:223–227 (1972).CrossRefGoogle Scholar
  106. 106.
    O. H. Lowry and J. V. Passonneau, The relationships between substrates and enzymes of glycolysis in brain, J. Biol. Chem. 239:31–41 (1964).Google Scholar
  107. 107.
    R. E. Kuhlman and O. H. Lowry, Quantitative histochemical changes during development of the rat cerebral cortex, J. Neurochem. 1:173–180 (1956).CrossRefGoogle Scholar
  108. 108.
    R. V. Coxon in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 3, pp. 37–52, Plenum Press, New York (1970).Google Scholar
  109. 109.
    O. H. Lowry, D. W. Schulz, and J. V. Passonneau, The kinetics of glycogen phosphorylases from brain and muscle, J. Biol. Chem. 242:271–280 (1967).Google Scholar
  110. 110.
    S. R. Nelson, D. W. Schulz, J. V. Passonneau, and O. H. Lowry, Control of glycogen levels in brain, J. Neurochem. 15:1271–1279 (1968).CrossRefGoogle Scholar
  111. 111.
    A. Chesler and H. E. Himwich, The glycogen content of various parts of the central nervous system of dogs and cats at different ages, Arch. Biochem. Biophys. 2:175–181 (1943).Google Scholar
  112. 112.
    W. Isselhard, J. H. Fischer, H. Kapune, and W. Stock, Metabolic patterns of several tissues of rabbits and guinea pigs during postnatal development, Biol. Neonatorum 22:201–222 (1973).CrossRefGoogle Scholar
  113. 113.
    T. E. Duffy and R. C. Vannucci, Perinatal brain metabolism: effects of anoxia and ischemia, Cerebral Vascular Diseases, Tenth Princeton Conference, Jan 9–11 (1974) (in press).Google Scholar
  114. 114.
    R. C. Vannucci and T. E. Duffy, The influences of birth on carbohydrate and energy metabolism in rat brain, Am. J. Physiol. 226: 933–940 (1974).Google Scholar
  115. 115.
    H. J. Shelley, Glycogen reserves and their changes at birth and in anoxia, Br. Med. J. 17:137–143 (1961).Google Scholar
  116. 116.
    K. Snell and D. G. Walker, Glucose metabolism in the newborn rat, Biochem. J. 132:739–752 (1973).Google Scholar
  117. 117.
    D. Yeung and I. T. Olvier, Induction of phosphopyruvate carboxylase in neonatal rat liver by adenosine 3′, 5′-cyclic monophosphate, Biochemistry 73:3231–3239 (1968).CrossRefGoogle Scholar
  118. 118.
    M. H. Cake, D. Yeung, and I. T. Oliver, The control of postnatal hypoglycemia, suggestions based on experimental observations in neonatal rats, Biol. Neonatorum 18:183–192 (1971).CrossRefGoogle Scholar
  119. 119.
    B. Shapiro and E. Wertheimer, Phosphorolysis and synthesis of glycogen in animal tissues, Biochem. J. 37:397–403 (1943).Google Scholar
  120. 120.
    N. Shimizu and M. Okada, Histochemical distribution of Phosphorylase in rodent brain from newborn to adults, J. Histochem. Cytochem. 5:459–471 (1957).CrossRefGoogle Scholar
  121. 121.
    W. Sacks, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 1, pp. 301–324, Plenun Press, New York (1969).Google Scholar
  122. 122.
    R. Balazs in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 3, pp. 1–36, Plenum Press, New York (1970).Google Scholar
  123. 123.
    J. J. O’Neill and T. E. Duffy, Alternate metabolic pathways in newborn brain, Life Sci. 5:1849–1857 (1966).CrossRefGoogle Scholar
  124. 124.
    C. B. Klee and L. Sokoloff, Changed in D (-)-β-hydroxybutyric acid-dehydrogenase activity during brain maturation in the rat, J. Biol. Chem. 242:3880–3883 (1967).Google Scholar
  125. 125.
    M. A. Page, H. A. Krebs, and D. H. Williamson, Activities of enzymes of ketone-body utilization in brain and other tissues of suckling rats, Biochem. J. 121:49–53 (1971).Google Scholar
  126. 126.
    O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill, Brain metabolism during fasting, J. Clin. Invest. 46:1589–1593 (1967).CrossRefGoogle Scholar
  127. 127.
    B. Persson, G. Settergren, and G. Dahlquist, Cerebral arteriovenous difference of acetoacetate and d-β-hydroxybutyrate in children, Acta Paediatr. Scand. 61:273–278 (1972).CrossRefGoogle Scholar
  128. 128.
    R. A. Hawkins, D. H. Williamson, and H. A. Krebs, Ketone-body utilization by adult and suckling rat brain in vivo, Biochem J. 122:13–18 (1971).Google Scholar
  129. 129.
    J. J. Spitzer and J. T. Weng, Removal and utilization of ketone bodies by the brain of newborn puppies, J. Neurochem. 19:2169–2173 (1972).CrossRefGoogle Scholar
  130. 130.
    L. I. Mann, Fetal brain metabolism and function, Clin. Obstet. Gynecol.13(3):638–651 (1970).CrossRefGoogle Scholar
  131. 131.
    M. M. Cohen and S. Lim, Acid soluble phosphates in the developing rabbit brain, J. Neurochem. 9:345–352 (1962).CrossRefGoogle Scholar
  132. 132.
    P. Mandel and S. Edel-Harth, Free nucleotides in the rat brain during post-natal development, J. Neurochem. 13:591–595 (1966).CrossRefGoogle Scholar
  133. 133.
    P. H. Mäenpää and N. C. R. Räihä, Effects of anoxia on energy-rich phosphates, glycogen, lactate and pyruvate in the brain, heart and liver of the developing rat, Ann. Med. Exp. Biol. Fenn. 16:306–317 (1968).Google Scholar
  134. 134.
    H. E. Himwich, Z. Baker, and J. F. Fazekas, The respiratory metabolism of infant brain, Am. J. Physiol. 125:601–606 (1939).Google Scholar
  135. 135.
    H. E. Himwich and J. F. Fazekas, Comparative studies of the metabolism of brain of infant and adult dog, Am. J. Physiol. 132:454–458 (1941).Google Scholar
  136. 136.
    D. B. Tyler and A. van Harreveld, The respiration of the developing brain, Am. J. Physiol. 136:600–603 (1942).Google Scholar
  137. 137.
    W. A. Himwich, H. B. W. Benaron, B. E. Tucker, C. Babuna, and M. Stripe, Metabolic studies on perinatal human brain, J. Appl. Physiol. 14:873–877 (1959).Google Scholar
  138. 138.
    K. F. Swaiman, J. M. Milstein, and M. M. Cohen, Interrelationships of glucose and glutamic acid metabolism in developing rabbit brain, J. Neurochem. 10:635–639 (1963).CrossRefGoogle Scholar
  139. 139.
    P. Greengard and H. McIlwain, in “Biochemistry of the Developing Nervous System” (H. Waelsch, ed.) pp. 251–260, Academic Press, New York (1955).Google Scholar
  140. 140.
    H. E. Himwich, “Brain Metabolism and Cerebral Disorders,” Williams & Wilkins, Baltimore (1951).Google Scholar
  141. 141.
    S. S. Kety and C. F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values, J. Clin. Invest. 27:476–483 (1948).CrossRefGoogle Scholar
  142. 142.
    R. L. Wechsler, R. D. Dripps, and S. S. Kety, Blood flow and oxygen consumption of the human brain during anesthesia produced by thiopental, Anesthesiology 12:308–312 (1951).CrossRefGoogle Scholar
  143. 143.
    I. Kjellmer, K. Karlaaon, T. Olsson, and K. G. Rosen, Cerebral reactions during intrauterine asphyxia in the sheep. I. Circulation and oxygen consumption in the fetal brain, Pediatr. Res. 8:50–57 (1974).CrossRefGoogle Scholar
  144. 144.
    N. S. Gregson and P. L. Williams, A comparative study of brain and liver mitochondria from newborn and adult rats. J. Neurochem. 16:617–626 (1969).CrossRefGoogle Scholar
  145. 145.
    D. R. Dahl and F. E. Samson, Metabolism of rat brain mitochondria during postnatal development, Am. J. Physiol. 196:470–472 (1959).Google Scholar
  146. 146.
    F. E. Samson, W. M. Balfour, and R. J. Jacobs, Mitochondrial changes in developing rat brain, Am. J. Physiol. 199:693–696 (1960).Google Scholar
  147. 147.
    M. R. V. Murthy and D. A. Rappoport, Biochemistry of the developing rat brain. II. Neonatal mitochondrial oxidations, Biochim. Biophys. Acta 74:51–59 (1963).CrossRefGoogle Scholar
  148. 148.
    J. M. Milstein, J. G. White, and K. F. Swaiman, Oxidative phosphorylation in mitochondria of developing rat brain, J. Neurochem. 15:411–415 (1968).CrossRefGoogle Scholar
  149. 149.
    D. Holtzman and C. L. Moore, Oxidative phosphorylation in immature rat brain mitochondria, Biol. Neonatorum 22:230–242 (1973).CrossRefGoogle Scholar
  150. 150.
    C. L. Moore and P. M. Strasberg, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 3, pp. 53–85, Plenum Press, New York (1970).Google Scholar
  151. 151.
    A. Davison and J. Dobbing, in “Applied Neurochemistry” (A. Davison and J. Dobbing, eds.) pp. 253–286, Blackwell, Oxford, England (1968).Google Scholar
  152. 152.
    A. Gjedde, J. Caronna, B. Hindfelt, and F. Plum, Whole brain blood flow and oxygen metabolism in the rat, Am. J. Physiol. (in press).Google Scholar
  153. 153.
    S. W. Britton and R. F. Kline, Age, sex, carbohydrate, adrenal cortex and other factors in anoxia, Am. J. Physiol. 145:190–202 (1945-1946).Google Scholar
  154. 154.
    G. S. Dawes, J. C. Mott, and H. J. Shelley, The importance of cardiac glycogen for the maintenance of life in foetal lambs and newborn animals during anoxia, J. Physiol. (Lond.) 146:516–538(1959).Google Scholar
  155. 155.
    G. S. Dawes, H. N. Jacobson, J. C. Mott, and H. J. Shelley, Some observations on foetal and newborn rhesus monkeys, J. Physiol. (Lond.) 152:271–298 (1960).Google Scholar
  156. 156.
    A. Stafford and J. A. C. Weatherall, The survival of young rats in nitrogen, J. Physiol. (Lond.) 153:457–472 (1960).Google Scholar
  157. 157.
    R. C. Avery and J. M. Johlin, Relative suceptibility of adult and young mice to asphyxiation, Proc. Soc. Exp. Biol. Med. 29:1184–1186 (1932).Google Scholar
  158. 158.
    J. F. Fazekas, A. D. Alexander, and H. E. Himwich, Tolerance of the newborn to anoxia, Am. J. Physiol. 134:281–298 (1960).Google Scholar
  159. 159.
    H. G. Glass, F. F. Synder, and E. Webster, The rate of decline in resistance to anoxia of rabbits, dogs, and guinea pigs from the onset of viability to adult life, Am. J. Physiol. 140:609–615 (1941).Google Scholar
  160. 160.
    W. A. Selle and T. A. Witten, Survival of the respiratory (gasping) mechanism in young animals subjected to anoxia, Proc. Soc. Exp. Biol. Med. 47:495–497 (1941).Google Scholar
  161. 161.
    R. K. Thorns and W. A. Hiestand, Relation to survival time of respiratory gasping mechanism of the isolated mouse head to age, Proc. Soc. Exp. Biol. Med. 64:1–3 (1947).Google Scholar
  162. 162.
    E. V. Enzmann and G. Pincus, The extinction of reflexes in spinal mice of different ages as an indicator of the decline of anaerobiosis, J. Gen. Physiol. 18:163–169 (1934).CrossRefGoogle Scholar
  163. 163.
    H. Kabat, The greater resistance of very young animals to arrest of the brain circulation, Am. J. Physiol. 130:588–599 (1941).Google Scholar
  164. 164.
    L. I. Mann, Effects of hypoxia on umbilical circulation and fetal metabolism, Am. J. Physiol. 218:1453–1458 (1970).Google Scholar
  165. 165.
    J. J. Scibetta, H. E. Fox, L. Chik, and M. G. Rosen, On correlating the fetal heart and brain in the sheep, Am. J. Obstet. Gynecol. 115:946–952 (1973).Google Scholar
  166. 166.
    H. G. Swann, J. J. Christian, and C. Hamilton, The process of anoxic death in newborn puppies, Surg. Gynecol. Obstet. 99:5–8 (1954).Google Scholar
  167. 167.
    A. W. Brann, R. E. Myers, and R. DiGiacoma, The effects of halothane-induced maternal hypotension on the fetus, Med. Primat. Proc, Sec. Conf. Exp. Med. Surg. Primat., pp. 637-643, New York (1970).Google Scholar
  168. 168.
    G. S. Dawes, J. C. Mott, H. J. Shelley, and A. Stafford, The prolongation of survival time in asphyxiated immature foetal lambs, J. Physiol. (Lond.) 168:43–64 (1963).Google Scholar
  169. 169.
    J. Jilak and S. Trojan, Development of the resistance to general stagnant anoxia (ischemia) in dogs, Physiol. Bohemoslov. 15:62–66 (1966).Google Scholar
  170. 170.
    F. E. Samson and N. A. Dahl, Cerebral energy requirement of neonatal rats, Am. J. Physiol. 188:277–280 (1957).Google Scholar
  171. 171.
    C.A. Villee, D. D. Hagerman, N. Holmberg, J. Lind, and D. B. Villee, The effects of anoxia on the metabolism of human fetal tissues, Pediatrics 22:953–970 (1958).Google Scholar
  172. 172.
    M. Reivich, A. W. Brann, H. Shapiro, J. Rawson, and N. Sano, Reactivity of the cerebral vessels to CO2 in the newborn rhesus monkey, Panminerva. Med. 53:169 (1972).Google Scholar
  173. 173.
    J. Folbergrova, V. MacMillan, and B. K. Siesjo, The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain, J. Neurochem. 19:2507–2517 (1972).CrossRefGoogle Scholar
  174. 174.
    V. MacMillan and B. K. Siesjo, The effect of hypercapnia upon the energy metabolism of the brain during arterial hypoxemia, Scand. J. Clin. Lab. Invest. 30:237–244 (1972).CrossRefGoogle Scholar
  175. 175.
    K. Kogure, R. Busto, P. Scheinberg, and O. M. Reinmuth, Effects of moderate hypercapnia on cerebral energy metabolism, Neurology 23:409 (1973).CrossRefGoogle Scholar
  176. 176.
    B. J. Wilhjelm, Protective action of carbon dioxide against anoxia with and without anesthesia, Acta Pharmacol. Toxicol. 24:355–362 (1966).CrossRefGoogle Scholar
  177. 177.
    R. C. Vannucci and T. E. Duffy, Cerebral oxidative and energy metabolism of fetal and neonatal rats during anoxia and recovery. Am. J. Physiol. (in press).Google Scholar
  178. 178.
    A. E. Kaasik, L. Nilsson, and B. K. Siesjo, The effect of asphyxia upon the lactate, pyruvate and biocarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of physphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78:433–447 (1970).CrossRefGoogle Scholar
  179. 179.
    R. S. Comline and M. Silver, The composition of foetal and maternal blood during parturition in the ewe, J. Physiol. (Lond.) 222:233–256 (1972).Google Scholar
  180. 180.
    H. E. Himwich, A. O. Bernstein, H. Herrlich, A. Chesler, and J. F. Fazekas, Mechanisms for the maintenance of life in the newborn during anoxia, Am. J. Physiol. 135:387–391 (1942).Google Scholar
  181. 181.
    J. C. Mott, The ability of young mammals to withstand total oxygen lack, Br. Med. Bull. 17:144–148 (1961).Google Scholar
  182. 182.
    C. I. Mayman and M. L. Tijerina, in “Brain Hypoxia” (J. B. Brierly and B. S. Meldrum, eds.) pp. 242–250, Lippincott, Philadelphia (1971).Google Scholar
  183. 183.
    “The Threshold and Mechanisms of Anoxic-Ischemic Brain Injury,” (Symposium) (F. Plum, ed.), Arch. Neurol. 29:359-419 (1973).Google Scholar
  184. 184.
    G. S. Dawes, E. Hibbard, and W. F. Windle, The effect of alkali and glucose infusion on permanent brain damage in rhesus monkeys asphyxiated at birth, J. Pediatr. 65:801–806 (1964).CrossRefGoogle Scholar
  185. 185.
    K. Adamsons, R. Behrman, G. S. Dawes, L. S. James, and C. Koford, Resuscitation by positive pressure ventilation and tris-hydroxymethylaminomethane of rhesus monkeys asphyxiated at birth, J. Pediatr. 65:807–881 (1964).CrossRefGoogle Scholar
  186. 186.
    R. E. Moore, Oxygen consumption and body temperature in newborn kittens subjected to hypoxia and reoxygenation, J. Physiol. (Lond.) 149:500–518 (1959).Google Scholar
  187. 187.
    C. M. Blatteis, Hypoxia and the metabolic response to cold in newborn rabbits, J. Physiol. (Lond.) 172:358–368 (1964).Google Scholar
  188. 188.
    R. Zakhary, J. A. Miller, Jr., and F. S. Miller, Hypothermia, asphyxia and brain carbohydrates in newborn puppies, Biol. Neonatorum 11:36–49 (1967).CrossRefGoogle Scholar
  189. 189.
    D. Richter, in “Biochemistry of Developing Nervous System” (H. Waelsch, ed.) pp. 225–250, Academic Press, New York (1955).Google Scholar
  190. 190.
    P. M. Heidger, F. S. Miller, and J. A. Miller, Cerebral and cardiac enzymatic activity and tolerance to asphyxia during maturation in the rabbit, J. Physiol. (Lond.) 206:25–40 (1970).Google Scholar
  191. 191.
    D. B. McDougal, Jr., J. Holowach, M. C. Howe, E. M. Jones, and C. A. Thomas, The effects of anoxia upon energy sources and selected metabolic intermediates in the brains of fish, frog and turtle, J. Neurochem. 15:577–588 (1968).CrossRefGoogle Scholar
  192. 192.
    A. G. M. Campbell, J. E. Milligan, and N. S. Talner, The effect of pretreatment with pentobarbital, meperidine, or hyperbaric oxygen on the response to anoxia and resuscitation in newborn rabbits, J. Pediatr. 72:518–527 (1968).CrossRefGoogle Scholar
  193. 193.
    F. Cockburn, S. S. Daniel, G. S. Dawes, L. S. James, R. E. Myers, W. Niemann, H. Rodriquez de Curet, and B. B. Ross, The effect of pentobarbital anesthesia on resuscitation and brain damage in fetal rhesus monkeys asphyxiated on delivery, J. Pediatr. 75:281–291 (1969).CrossRefGoogle Scholar
  194. 194.
    R. C. Goodlin and D. Lloyd, Use of drugs to protect against fetal asphyxia, Am. J. Obstet. Gynecol. 107:227–231 (1970).Google Scholar
  195. 195.
    I. Arnfred and O. Secher, Anoxia and barbiturates: Tolerance to anoxia in mice influenced by barbiturates, Arch. Int. Pharmacodyn. Ther. 89:67–74 (1962).Google Scholar
  196. 196.
    B. J. Wilhjelm and E. Jacobsen, The protective action of different barbituric acid derivatives against anoxia in mice, Acta Pharmacol. Toxicol. 28:203–208 (1970).CrossRefGoogle Scholar
  197. 197.
    P. D. Gatfield, O. H. Lowry, D. W. Schulz, and J. V. Passonneau, Regional energy reserves in mouse brain and changes with ischaemia and anesthesia, J. Neurochem. 13:185–195 (1966).CrossRefGoogle Scholar
  198. 198.
    E. A. Brunner, J. V. Passonneau, and C. Motstad, The effect of volatile anaesthetics on levels of metabolites and on metabolic rate in brain, J. Neurochem. 18:2301–2316 (1971).CrossRefGoogle Scholar
  199. 199.
    W. E. Stone, The effects of anaesthetics and of convulsants on the lactic acid content of the brain, Biochem. J. 32:1908–1918 (1938).Google Scholar
  200. 200.
    C. I. Mayman, P. D. Gatfield, and B. McL. Breckenridge, The glucose content of brain in anaesthesia, J. Neurochem. 11:483–487 (1964).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Robert C. Vannucci
    • 1
  • Fred Plum
    • 1
  1. 1.Department of NeurologyNew York Hospital-Cornell Medical CenterNew YorkUSA

Personalised recommendations