The Action of Thyroid Hormones and Their Influence on Brain Development and Function

  • Louis Sokoloff
  • Charles Kennedy


The actions of hormones are generally restricted to a limited number of specific target tissues. The thyroid hormones differ from most in the wide diversity of tissues and organs in which they exert their effects. Indeed, in mammals it appears that only the tissues of the reticuloendothelial system, the testis, and the mature brain are immune to their actions,(1) and even in these tissues, as clearly evidenced in brain,(2) it is likely that the hormones are active during some period in the life of the organism. The diversity of the thyroid hormones’ target tissues is matched by the multiplicity of their biochemical effects. Hardly an area of metabolism remains unaffected by their actions. The diffuseness of their biochemical effects could reflect different and multiple mechanisms of actions. It seems more parsimonious, however, to assume a single mechanism of action on a process so fundamental that it either influences directly a wide variety of biochemical reactions in many areas of metabolism or triggers a succession of events most of which no longer reflect the direct influence of the hormone but more remote consequences of its primary action.


Thyroid Hormone Oxidative Phosphorylation Congenital Hypothyroidism Mature Brain Endemic Goiter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. S. Gordon and A. E. Heming, The effect of thyroid treatment on the respiration of various rat tissues, Endocrinology 34:353–360 (1944).Google Scholar
  2. 2.
    L. Sokoloff, The mechanism of action of thyroid hormones on protein synthesis and its relationship to the differences in sensitivities of mature and immature brain, in “Protein Metabolism of the Nervous System” (A. Lajtha, ed.) pp. 367–382, Plenum Press, New York (1970).Google Scholar
  3. 3.
    J. Wynn, Organic iodine constituents in human serum, Arch. Biochem. Biophys 87:120–124 (1960).Google Scholar
  4. 4.
    H. A. Selenkow and S. P. Asper, Jr., Biological activity of compounds structurally related to thyroxine, Physiol. Rev 35:426–474 (1955).Google Scholar
  5. 5.
    T. C. Bruice, N. Kharasch, and R. J. Winzler, A correlation of thyroxine-like activity and chemical structure, Arch. Biochem. Biophys 62:306–317 (1956).Google Scholar
  6. 6.
    D. F. Tapley, F. F. Davidoff, W. B. Hatfield, and J. E. Ross, Physiological disposition of D-and L-thyroxine in the rat, Am. J. Physiol 197:1021–1027 ((1959).Google Scholar
  7. 7.
    C. M. Greenberg, B. Blank, F. R. Pfeiffer, and J. F. Pauls, Relative activities of several 3’-and 3’:5’-aryl thyromimetic agents, Am. J. Physiol 205:821–826 (1963).Google Scholar
  8. 8.
    R. Pitt-Rivers and J. R. Tata, “The Thyroid Hormones,” Pergamon Press, London (1960).Google Scholar
  9. 9.
    J. R. Tata and C. J. Shellabarger, An explanation for the difference between the responses of mammals and birds to thyroxine and triiodothyronine, Biochem. J 72:608–613 (1959).Google Scholar
  10. 10.
    K. Sterling and M. Tabachnick, Determination of the binding constants for the interaction of thyroxine and its analogues with human serum albumin, J. Biol. Chem 236:2241–2243 (1961).Google Scholar
  11. 11.
    C. Niemann and J. F. Mead, The synthesis of DL-3,5-diiodo-4-(3’5’-diiodo-2’-hydroxyphenoxy)-phenylalanine, a physiologically active isomer of thyroxine, J. Am. Chem. Soc 63:2685–2687 (1941).Google Scholar
  12. 12.
    K. Tomita, H. A. Lardy, D. Johnson, and A. Kent, Synthesis and biological activity of O-methyl derivatives of thyroid hormones, J. Biol. Chem 236:2981–2986 (1961).Google Scholar
  13. 13.
    E. C. Jorgensen, N. Zenker, and C. Greenberg, Thyroxine analogues. III. Antigoitrogenic and calorigenic activity of some alkyl substituted analogues of thyroxine, J. Biol. Chem 235:1732–1737 (1960).Google Scholar
  14. 14.
    C. R. Harington, Synthesis of a sulfur-containing analogue of thyroxine, Biochem. J 43:434–437 (1948).Google Scholar
  15. 15.
    D. Marine, The physiology and principal interrelations of the thyroid, in “Glandular Physiology and Therapy,” pp. 315–333, American Medical Association, Chicago (1935).Google Scholar
  16. 16.
    S. B. Barker, Mechanism of action of thyroid hormone, Physiol. Rev 31:205–243 (1951).Google Scholar
  17. 17.
    J. Wolff and R. C. Goldberg, Disorders of iodine metabolism, in “Biochemical Disorders in Human Disease” (R. H. S. Thompson and E. J. King, eds.) pp. 289–351, Academic Press, New York (1957).Google Scholar
  18. 18.
    S. B. Barker, Peripheral actions of thyroid hormones, Fed. Proc 21:635–641 (1962).Google Scholar
  19. 19.
    F. L. Hoch, Biochemical actions of thyroid hormones, Physiol. Rev 42:605–673 (1962).Google Scholar
  20. 20.
    J. H. Means, L. J. DeGroot, and J. B. Stanbury, “The Thyroid and Its Diseases,” 3rd ed., McGraw-Hill, New York (1963).Google Scholar
  21. 21.
    R. Pitt-Rivers and W. R. Trotter, “The Thyroid Gland” (R. Pitt-Rivers and W. R. Trotter, eds.) Vol. 1, Butterworths, London (1964).Google Scholar
  22. 22.
    L. Sokoloff, Action of thyroid hormones, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 5, Part B, pp. 525–549, Plenum Press, New York (1971).Google Scholar
  23. 23.
    S. N. Gershoff, J. J. Vitale, I. Antonowicz, M. Nakamura, and E. E. Hellerstein, Studies of interrelationships of thyroxine, magnesium, and vitamin B12, J. Biol. Chem 231:849–854 (1958).Google Scholar
  24. 24.
    J. F. Gudernatsch, Feeding experiments on tadpoles. II. A further contribution to the knowledge of organs with internal secretion, Am. J. Anat 15:431–480 (1914).Google Scholar
  25. 25.
    P. P. Cohen, Biochemical aspects of metamorphosis: Transition from ammontelism to ureotelism, Harvey Lectures 60:119–154 (1965).Google Scholar
  26. 26.
    E. Frieden, Thyroid hormones and the biochemistry of amphibian metamorphosis, Rec. Progr. Hormone Res 23:139–194 (1967).Google Scholar
  27. 27.
    R. Michels, J. Cason, and L. Sokoloff, Thyroxine: Effects on amino acid incorporation into protein in vivo, Science 140:1417–1418 (1963).Google Scholar
  28. 28.
    J. R. Tata, Biological action of thyroid hormones at the cellular and molecular levels, in “Actions of Hormones on Molecular Processes” (G. Litwack and D. Kritchevsky, eds.) pp. 58–131, Wiley, New York (1964).Google Scholar
  29. 29.
    H. F. Müller, Beitrage zur Kenntniss der Basedowischen Krankheit, Deutsch. Arch. Klin. Med 51:335–412(1893).Google Scholar
  30. 30.
    W. M. Boothby and I. Sandiford, The total and the nitrogenous metabolism in exophthalmic goiter, J.A.M.A 81:795–800 (1923).Google Scholar
  31. 31.
    C. D. Fitch, R. Coker, and J. S. Dinning, Metabolism of creatine-l-C14 by vitamin E-deficient and hyperthyroid rats, Am. J. Physiol 198:1232–1234 (1960).Google Scholar
  32. 32.
    A. Magnus-Levy, Über den respiratorischen Gewechsel unter dem Einfluss der Thyroidea sowie unter verschiedenen pathologischen Zustanden, Berl. Klin. Wschr 32:650–652 (1895).Google Scholar
  33. 33.
    I. A. Mirsky and R. H. Broh-Kahn, The effect of experimental hyperthyroidism on carbohydrate metabolism, Am. J. Physiol 117:6–12 (1936).Google Scholar
  34. 34.
    R. Sternheimer, The effect of a single injection of thyroxine on carbohydrates, protein, and growth in the rat liver, Endocrinology 25:899–908 (1939).Google Scholar
  35. 35.
    S. D. Burton, E. Robbins, and S. O. Byers, Effect of hyperthyroidism on glycogen content of the isolated rat liver, Am. J. Physiol 188:509–513 (1957).Google Scholar
  36. 36.
    K. R. Hornbrook, P. V. Quinn, J. H. Siegel, and T. M. Brody, Thyroid hormone regulation of cardiac glycogen metabolism, Biochem. Pharmacol 14:925–936 (1965).Google Scholar
  37. 37.
    C. Rich, E. L. Bierman, and I. L. Schwartz, Plasma nonesterified fatty acids in hyperthyroid states, J. Clin. Invest 38:275–278 (1959).Google Scholar
  38. 38.
    M. Vaughan, An in vitro effect of triiodothyronine on rat adipose tissue, J. Clin. Invest 46:1482–1491 (1967).Google Scholar
  39. 39.
    K. Fletcher and N. B. Myant, Influence of the thyroid on the synthesis of cholesterol by liver and skin in vitro, J. Physiol 144:361–372 (1958).Google Scholar
  40. 40.
    A. H. Philips and R. H. Langdon, The influence of thyroxine and other hormones on hepatic TPN-cytochrome reductase activity, Biochim. Biophys. Acta 19:380–382 (1956).Google Scholar
  41. 41.
    V. R. Potter, Possible biochemical mechanisms underlying adaptation to cold, Fed. Proc 17:1060–1063 (1958).Google Scholar
  42. 42.
    J. S. Hart, Metabolic alterations during chronic exposure to cold, Fed. Proc 17:1045–1054 (1958).Google Scholar
  43. 43.
    R. D. Dallam and R. B. Howard, Thyroxine-enhanced oxidative phosphorylation of rat liver mitochondria, Biochim. Biophys. Acta 37:188–189 (1960).Google Scholar
  44. 44.
    D. L. Drabkin, Cytochrome C metabolism and liver regeneration. Influence of thyroid gland and thyroxine, J. Biol. Chem 182:335–349 (1950).Google Scholar
  45. 45.
    H. M. Klitgard, Effect of thyroidectomy on cytochrome C concentration of selected rat tissues, Endocrinology 78:642–644 (1966).Google Scholar
  46. 46.
    S. Pedersen, J. R. Tata, and L. Ernster, Ubiquinone (coenzyme Q) and the regulation of basal metabolic rate by thyroid hormones, Biochim. Biophys. Acta 69:407–409 (1963).Google Scholar
  47. 47.
    Y. P. Lee, A. E. Takemori, and H. Lardy, Enhanced oxidation of α-glycerophosphate by mitochondria of thyroid-fed rats, J. Biol. Chem 234:3051–3054 (1959).Google Scholar
  48. 48.
    R. S. Rivlin and R. G. Langdon, Effects of thyroxine upon biosynthesis of flavin mono-nucleotide and flavin adenine nucleotide, Endocrinology 84:584–588 (1969).Google Scholar
  49. 49.
    R. S. Rivlin, Regulation of flavoprotein enzymes in hyperthyroidism, Advan. Enzyme Regulation 8:239–250 (1970).Google Scholar
  50. 50.
    R. S. Rivlin, Medical progress: Riboflavin metabolism, New Engl. J. Med 283:463–472 (1970).Google Scholar
  51. 51.
    W. F. Loomis and F. Lipmann, Reversible inhibition of the coupling between phosphorylation and oxidation, J. Biol. Chem 173:807–808 (1948).Google Scholar
  52. 52.
    G. F. Maley and H. A. Lardy, Metabolic effects of thyroid hormones in vitro II. Influence of thyroxine and triiodothyronine on oxidative phosphorylation, J. Biol. Chem 204:435–444 (1953).Google Scholar
  53. 53.
    F. L. Hoch and F. Lipmann, The uncoupling of respiration and phosphorylation by thyroid hormones, Proc. Natl. Acad. Sci 40:909–921 (1954).Google Scholar
  54. 54.
    G. F. Maley and H. A. Lardy, Efficiency of phosphorylation in selected oxidations by mitochondria from normal and thyrotoxic rat livers, J. Biol. Chem 215:377–388 (1955).Google Scholar
  55. 55.
    H. G. Klemperer, The uncoupling of oxidative phosphorylation in rat liver mitochondria by thyroxine, triiodothyronine, and related substances, Biochem. J 60:122–135 (1955).Google Scholar
  56. 56.
    C. Cooper and A. L. Lehninger, Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. I. Span β-hydroxybutyrate to oxygen, J. Biol. Chem 219:489–505 (1956).Google Scholar
  57. 57.
    F. L. Hoch, Rapid effects of a subcalorigenic dose of L-thyroxine on mitochondria, J. Biol. Chem 241:524–525 (1966).Google Scholar
  58. 58.
    L. Ernster, D. Ikkos, and R. Luft, Enzymic activities of human skeletal muscle mitochondria: A tool in clinical metabolic research, Nature 184:1851–1854 (1959).Google Scholar
  59. 59.
    L. Sokoloff and S. Kaufman, Thyroxine stimulation of amino acid incorporation into protein, J. Biol. Chem 236:795–803 (1961).Google Scholar
  60. 60.
    D. F. Tapley, C. Cooper, and A. L. Lehninger, The action of thyroxine on mitochondria and oxidative phosphorylation, Biochim. Biophys. Acta 18:597–598 (1955).Google Scholar
  61. 61.
    D. F. Tapley, The effect of thyroxine and other substances on the swelling of isolated rat liver mitochondria, J. Biol Chem 222:325–339 (1956).Google Scholar
  62. 62.
    A. L. Lehninger, Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation, Physiol. Rev 42:461–517 (1962).Google Scholar
  63. 63.
    D. F. Tapley, Mode and site of action of thyroxine, Proc. Mayo Clin 39:626–636 (1964).Google Scholar
  64. 64.
    D. F. Tapley and C. Cooper, Effect of thyroxine on the swelling of mitochondria isolated from various tissues of the rat, Nature 178:119 (1956).Google Scholar
  65. 65.
    G. E. Paget and J. M. Thorp, An effect of thyroxine on the fine structure of the rat liver cell, Nature 199:1307–1308 (1963).Google Scholar
  66. 66.
    M. J. Dimino and F. L. Hoch, Localization of endogenous and exogenous thyroid hormone in rat liver mitochondria, Fed. Proc 31:213 (1972) (abst.).Google Scholar
  67. 67.
    S. Wallach, J. V. Bellavia, P. J. Gamponia, and P. Bristrim, Thyroxine-induced stimulation of hepatic cell transport of calcium and magnesium, J. Clin. Invest 51:1572–1577 (1972).Google Scholar
  68. 68.
    Ismail Beigi and I. S. Edelman, Mechanism of thyroid calorigenesis: Role of active sodium transport, Proc. Natl. Acad. Sci 67:1071–1078 (1970).Google Scholar
  69. 69.
    Ismail Beigi and I. S. Edelman, The mechanism of the calorigenic action of thyroid hormone, J. Gen. Physiol 57:710–722 (1971).Google Scholar
  70. 70.
    T. Valcana and P. S. Timiras, Effect of hypothyroidism on ionic metabolism and Na-K activated ATP phosphohydrolase activity in the developing rat brain. J. Neurochem 16:935–943 (1969).Google Scholar
  71. 71.
    E. Goetsch, Newer methods in the diagnosis of thyroid disorders: Pathological and clinical, N.Y. J. Med 18:259–267 (1918).Google Scholar
  72. 72.
    O. Thibault, Action renforcatrice de 1a thyroxine sur Feffect inhibiteur de l’adrénaline sur l’intestin de lapin isolé, Compt. Rend. Soc. Biol. Paris 142:499–504 (1948).Google Scholar
  73. 73.
    H. E. Swanson, Interrelationships between thyroxine and adrenalin in the regulation of oxygen consumption in the albino rat, Endocrinology 59:217–225 (1956).Google Scholar
  74. 74.
    T. S. Danowski, A. C. Heineman, Jr., J. V. Bonessi, and C. Moses, Hydrocortisone and/or desiccated thyroid in physiologic dosage. XIV. Effects of thyroid hormone excesses on pressor activity and epinephrine responses, Metabolism 13:747–752 (1964).Google Scholar
  75. 75.
    A. D’lorio and J. Leduc, The influence of thyroxine on the O-methylation of catechols, Arch. Biochem. Biophys 87:224–227 (1960).Google Scholar
  76. 76.
    M. H. Zile, Effect of thyroxine and related compounds on monamine oxidase activity, Endocrinology 66:311–312 (1960).Google Scholar
  77. 77.
    T. S. Harrison, Adrenal medullary and thyroid relationships, Physiol. Rev 44:161–185 (1964).Google Scholar
  78. 78.
    R. P. Zimon, E. V. Flock, G. M. Tyce, S. G. Sheps, and C. A. Owen, Jr., Effect of thyroid hormones on metabolism of DL-norepinephrine by isolated rat liver, Endocrinology 80: 808–814 (1967).Google Scholar
  79. 79.
    R. J. Wurtman, I. J. Kopin, and J. Axelrod, Thyroid function and the cardiac disposition of catecholamines, Endocrinology 73:63–74 (1963).Google Scholar
  80. 80.
    W. R. Brewster, Jr., J. P. Isaacs, P. F. Osgood, and T. L. King, The hemodynamic and matabolic interrelationships in the activity of epinephrine, norepinephrine, and the thyroid hormones, Circulation 13:1–20 (1956).Google Scholar
  81. 81.
    A. Surtshin, J. K. Cordonnier, and S. Lang, Lack of influence of the sympathetic nervous system on the calorigenic response to thyroxine, Am. J. Physiol 188:503–506 (1957).Google Scholar
  82. 82.
    W. Y. Lee, D. Bronsky, and S. S. Waldstein, Studies of thyroid and sympathetic nervous system interrelationships. II. Effects of guanethidine on manifestations of hyperthyroid-ism, J. Clin. Endocrinol. Metab 22:879–885 (1962).Google Scholar
  83. 83.
    L. Sokoloff, S. Kaufman, P. L. Campbell, C. M. Francis, and H. V. Gelboin, Thyroxine Stimulation of amino acid incorporation into protein. Localization of stimulated step, J. Biol. Chem 238:1432–1437 (1963).Google Scholar
  84. 84.
    J. R. Tata, L. Ernster, O. Lindberg, E. Arrhenius, S. Pedersen, and R. Hedman, The action of thyroid hormones at the cell level, Biochem. J 86:408–428 (1963).Google Scholar
  85. 85.
    L. Sokoloff, P. L. Campbell, C. M. Francis, and C. B. Klee, Thyroxine Stimulation of amino acid incorporation into ribosomal protein, Biochim. Biophys. Acta 76:329–332 (1963).Google Scholar
  86. 86.
    L. Sokoloff, C. M. Francis, and P. L. Campbell, Thyroxine Stimulation of amino acid incorporation into protein independent of any action on messenger RNA synthesis, Proc. Natl. Acad. Sci 52:728–736 (1964).Google Scholar
  87. 87.
    R. L. Krause and L. Sokoloff, Effects of thyroxine on initiation and completion of protein chains of hemoglobin in vitro, J. Biol. Chem 242:1431–1438 (1967).Google Scholar
  88. 88.
    L. Sokoloff, P. A. Roberts, M. M. Januska, and J. E. Kline, Mechanisms of stimulation of protein synthesis by thyroid hormones in vivo, Proc. Natl. Acad. Sci 60:652–659 (1968).Google Scholar
  89. 89.
    J. R. Tata, Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin, Nature 197:1167–1168 (1963).Google Scholar
  90. 90.
    W. P. Weiss and L. Sokoloff, Reversal of thyroxine-induced hypermetabolism by puromycin, Science 140:1324–1326 (1963).Google Scholar
  91. 91.
    T. F. Necheles, Peptide synthesis in bone marrow: Insulin and thyroxin effects, Am. J. Physiol 203:693–696 (1962).Google Scholar
  92. 92.
    S. Gelber, P. L. Campbell, G. E. Deibler, and L. Sokoloff, Effects of L-thyroxine on amino acid incorporation into protein in mature and immature rat brain, J. Neurochem 11:221–229 (1964).Google Scholar
  93. 93.
    D. M. Brown, Thyroxine stimulation of amino acid incorporation into protein of skeletal muscle in vitro, Endocrinology 78:1252–1254 (1966).Google Scholar
  94. 94.
    L. Sokoloff, Role of mitochondria in the stimulation of protein synthesis by thyroid hormones, in “Some Regulatory Mechanisms for Protein Synthesis in Mammalian Cells” (A. Pietro, M. R. Lamborg, and F. T. Kenney, eds.) pp. 345–367, Proceedings of the Third Kettering Symposium, 1968, Academic Press, New York (1968).Google Scholar
  95. 95.
    C. B. Klee and L. Sokoloff, Mitochondrial differences in mature and immature brain. Influence on rate of amino acid incorporation into protein and responses to thyroxine, J. Neurochem 11:709–716 (1964).Google Scholar
  96. 96.
    J. R. Tata and C. C. Widnell, Ribonucleic acid synthesis during the early action of thyroid hormones, Biochem. J 98:604–620 (1966).Google Scholar
  97. 97.
    E. C. Wolff and J. Wolff, The mechanism of action of the thyroid hormones, in “The Thyroid Gland” (R. Pitt-Rivers and W. R. Trotter, eds.) Vol. 1, pp. 237–281, Butter-worths, London (1964).Google Scholar
  98. 98.
    J. Wolff and E. C. Wolff, The effect of thyroxine on isolated dehydrogenases, Biochim. Biophys. Acta 26:387–396 (1957).Google Scholar
  99. 99.
    J. Wolff, The effect of thyroxine on isolated dehydrogenases. IL Sedimentation changes in glutamic dehydrogenase, J. Biol. Chem 237:230–235 (1962).Google Scholar
  100. 100.
    J. Wolff, The effect of thyroxine on isolated dehydrogenases. HI. The site of action of thyroxine on glutamic dehydrogenase, the function of adenine and guanine nucleotides, and the relation of kinetic to sedimentation changes, J. Biol. Chem 237:236–242 (1962).Google Scholar
  101. 101.
    K. McCarthy, W. Lovenberg, and A. Sjoerdsma, The mechanism of the inhibition of horse liver alcohol dehydrogenase by thyroxine and related compounds, J. Biol. Chem 243:2754–2760 (1968).Google Scholar
  102. 102.
    B. A. Askonas, Effect of thyroxine on creatine Phosphokinase activity, Nature 167:933–934 (1951).Google Scholar
  103. 103.
    S. A. Kuby, L. Noda, and H. A. Lardy, Adenosine triphosphate-creatine transphosphorylase. III. Kinetic studies, J. Biol. Chem 210:65–82 (1954).Google Scholar
  104. 104.
    A. Horvath, Inhibition by thyroxine of enzymes requiring pyridoxal-5-phosphate, Nature 179:968 (1957).Google Scholar
  105. 105.
    H. A. Lardy, Effect of thyroid hormones on enzyme systems, in “The Thyroid,” pp. 90–101, Brookhaven Symposium in Biology, No. 7, 1954, Brookhaven National Laboratory, Upton, New York (1955).Google Scholar
  106. 106.
    J. J. Vitale, D. M. Hegsted, M. Nakamura, and P. Connors, The effect of thyroxine on magnesium requirement, J. Biol. Chem 226:597–601 (1957).Google Scholar
  107. 107.
    J. J. Vitale, M. Nakamura, and D. M. Hegsted, The effect of magnesium deficiency on oxidative phosphorylation, J. Biol. Chem 228:573–576 (1957).Google Scholar
  108. 108.
    S. H. Mudd, J. H. Park, and F. Lipmann, Magnesium antagonism of the uncoupling of oxidative phosphorylation by iodothyronines, Proc. Natl. Acad. Sci 41:571–576 (1955).Google Scholar
  109. 109.
    B. M. Allen, Brain development in anuran larvae after thyroid or pituitary gland removal, Endocrinology 8:639–651 (1924).Google Scholar
  110. 110.
    R. D. Adams and N. P. Rosman, Hypothyroidism: Neuromuscular system, in “The Thyroid” (S. C. Werner and S. H. Ingbar, eds.) 3rd ed. pp. 771–780, Harper and Row, New York (1971).Google Scholar
  111. 111.
    P. Marie, C. Trétiakoff, and E. Stumfer, Étude anatomopathologique des centres nerveux dans un cas de myxoedème congénital avec crétinisme, L’Encephale 15:601–608 (1920).Google Scholar
  112. 112.
    J. T. Eayrs and S. H. Taylor, The effect of thyroid deficiency induced by methyl thiouracil on the maturation of the central nervous system, J. Anat. (London.) 85:350–358 (1951).Google Scholar
  113. 113.
    R. Balázs, S. Kovács, P. Teichgräber, W. A. Cocks, and J. T. Eayrs, Biochemical effects of thyroid deficiency on the developing brain, J. Neurochem 15:1335–1349 (1968).Google Scholar
  114. 114.
    J. T. Eayrs and B. Goodhead, Postnatal development of the cerebral cortex in the rat, J. Anat. (London.) 93:385–402 (1959).Google Scholar
  115. 115.
    J. T. Eayrs, The cerebral cortex of normal and hypothyroid rats, Acta Anat 25:160–183 (1955).Google Scholar
  116. 116.
    J. L. Nicholson and J. Altman, Synaptogenesis in the rat cerebellum: Effects of early hypo-and hyper-thyroidism, Science 176:530–531 (1972).Google Scholar
  117. 117.
    P. Weiss and F. Rosetti, Growth responses of opposite sign among different neuron types exposed to thyroid hormones, Proc. Natl. Acad Sci 37:540–556 (1951).Google Scholar
  118. 118.
    T. Ferguson, Thyroxine effects upon the mitotic activity of medulla oblongata after unilateral excision in embryos of the frog, Gen. Comp. Endocrinol 7:74–79 (1966).Google Scholar
  119. 119.
    N. P. Rosman, M. J. Malone, M. Helferstein, and E. Kraft, The effect of thyroid deficiency on myelination of the brain, Neurology 22:99–106 (1972).Google Scholar
  120. 120.
    M. Hamburgh, Evidence for a direct effect of temperature and thyroid hormone on myelinogenesis in vitro, Develop. Biol 13:15–30 (1966).Google Scholar
  121. 121.
    A. Moosa and V. Dubowitz, Slow nerve conduction velocity in cretins, Arch. Dis. Child 46:852–854 (1971).Google Scholar
  122. 122.
    F. J. Schulte, G. Albert, and R. Michaelis, Gestationsalter und Nervenleitgeschwindigkeit bei normalen und abnormalen Neugeborenen, Deutsch. Med. Wschr 94:599–601 (1969).Google Scholar
  123. 123.
    J. T. Eayrs, The vascularity of the cerebral cortex in normal and cretinous rats, J. Anat 88:164–173 (1954).Google Scholar
  124. 124.
    J. F. Fazekas, F. B. Graves, and R. W. Alman, The influence of the thyroid on cerebral metabolism, Endocrinology 48:169–174 (1951).Google Scholar
  125. 125.
    M. Hamburgh and E. Vicari, Effect of thyroid hormone on nervous system maturation, Anat. Rec 127:302 (1957).Google Scholar
  126. 126.
    E. H. Craigie, Vascular patterns of the developing nervous system, in “Biochemistry of the Developing Nervous System” (H. Waelsch, ed.) pp. 28–51, Academic Press, New York(1955).Google Scholar
  127. 127.
    E. Scharrer, The blood vessels of the nervous tissue, Quart. Rev. Biol 19:308–318 (1944).Google Scholar
  128. 128.
    R. L. Friede, “Histochemical Atlas of Tissue Oxidation in the Brain Stem of the Cat,” Karger, Basel (1961).Google Scholar
  129. 129.
    M. M. Brand and A. Bignami, The effects of chronic hypoxia on the neonatal and infantile brain, Brain 92:233–254 (1969).Google Scholar
  130. 130.
    C. Kennedy, G. D. Grave, J. W. Jehle, and L. Sokoloff, Changes in blood flow in the component structures of the dog brain during postnatal maturation, J. Neurochem 19:2423–2433 (1972).Google Scholar
  131. 131.
    P. B. Bradley, J. T. Eayrs, and K. Schmaboch, The electroencephalogram of normal and hypothyroid rats, Electroencephalog. Clin. Neurophysiol 12:467–477 (1960).Google Scholar
  132. 132.
    P. B. Bradley, J. T. Eayrs, A. Glass, and W. Heath, The maturational and metabolic consequences of neonatal thyroidectomy upon the recruiting response in the rat, Electroencephalog. Clin. Neurophysiol 13:577–586 (1961).Google Scholar
  133. 133.
    J. T. Eayrs and W. A. Lishman, The maturation of behavior in hypothyroidism and starvation, Brit. J. Anim. Behav 3:17–24 (1955).Google Scholar
  134. 134.
    J. T. Eayrs, Thyroid and central nervous development, in “The Scientific Basis of Medicine Annual Reviews,” pp. 317–339, Athlone, London (1966).Google Scholar
  135. 135.
    J. T. Eayrs, Age as a factor determining the severity and reversibility of the effects of thyroid deprivation in the rat, J. Endocrinol 22:409–419 (1961).Google Scholar
  136. 136.
    F. Khamsi and J. T. Eayrs, A study of the effects of thyroid hormones on growth and development, Growth 30:143–156 (1966).Google Scholar
  137. 137.
    E. A. Carr, W. H. Beierwaltes, J. V. Neel, R. Davidson, G. H. Lowrey, V. N. Dodson, and J. H. Tanton, The various types of thyroid malfunction in cretinism and their relative frequency, Pediatrics 28:1–16 (1961).Google Scholar
  138. 138.
    T. H. Shepard, Phenylthiocarbamide non-tasting among congenital athyrotic cretins: Further studies in an attempt to explain the increased incidence, J. Clin. Invest 40:1751–1757 (1961).Google Scholar
  139. 139.
    K. Miyai, M. Azukizawa, and Y. Kumahara, Familial isolated thyrotropin deficiency with cretinism, New Engl. J. Med 285:1043–1048 (1971).Google Scholar
  140. 140.
    G. Little, C. K. Meador, R. Cunningham, and J. A. Pittman, “Cryptothyroidism,” the major cause of sporadic “athyreotic” cretinism, J. Clin. Endocrinol. Metab 25:1529 (1965).Google Scholar
  141. 141.
    E. M. McGirr and J. H. Hutchison, Dysgenesis of the thyroid gland as a cause of cretinism and juvenile myxedema, J. Clin. Endocrinol. Metab 15:668–679 (1955).Google Scholar
  142. 142.
    J. B. Stanbury, Familial goiter, in “The Metabolic Basis of Inherited Disease” (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.) 3rd ed. Chapter 10, pp. 223–265, McGraw-Hill, New York (1972).Google Scholar
  143. 143.
    G. H. Lowrey, R. H. Aster, E. A. Carr, G. Ramon, W. H. Beierwaltes, and N. R. Spafford, Early diagnostic criteria of congenital hypothyroidism, A.M.A. J. Dis. Child 96:131–143 (1958).Google Scholar
  144. 144.
    S. Raiti and G. H. Newns, Cretinism: Early diagnosis and its relation to mental prognosis, Arch. Dis. Childh 46:692–694 (1971).Google Scholar
  145. 145.
    J. Money, Psychologic studies in hypothyroidism, Arch. Neurol. Psychiat 76:296–309 (1956).Google Scholar
  146. 146.
    D. W. Smith, R. M. Blizzard, and L. Wilkins, The mental prognosis in hypothyroidism of infancy and childhood, Pediatrics 19:1011–1022 (1957).Google Scholar
  147. 147.
    R. L. Wall, H. J. Umlauf, and L. J. Geppert, Muscle reflex patterns in infancy and childhood, Pediatrics 64:701–710 (1964).Google Scholar
  148. 148.
    M. Goldberg and F. C. Larson, The Achilles reflex: A diagnostic test of thyroid dysfunction, Lancet 1:243–245 (1963).Google Scholar
  149. 149.
    R. Harris, M. Delia Rovere, and P. F. Prior, Electroencephalographic studies in infants and children with hypothyroidism, Arch. Dis. Child 40:612–617 (1965).Google Scholar
  150. 150.
    E. A. Nieman, The electroencephalogram in congenital hypothyroidism: A study of 10 cases, J. Neurol. Neurosurg. Psychiat 24:50–57 (1961).Google Scholar
  151. 151.
    Y. Taher, M. Gabr, O. Shahin, and M. K. A. Khalek, Electroencephalographic changes in cretinism, Clin. Electroencephalog 1:6–12 (1970).Google Scholar
  152. 152.
    A. Topper, Mental achievement of congenitally hypothyroid children, A.M.A. J. Dis. Child 81:233–249 (1951).Google Scholar
  153. 153.
    R. Asher, Myxoedemetous madness, Brit. Med. J 2:555–562 (1949).Google Scholar
  154. 154.
    W. M. Easson, Myxedema with psychosis, Arch. Gen. Psychiat 14:277–283 (1966).Google Scholar
  155. 155.
    M. Maiden, Hypothermic coma in myxedema, Brit. Med. J 2:764–766 (1955).Google Scholar
  156. 156.
    V. K. Summers, Myxedema coma, Brit. Med. J 2:366–368 (1953).Google Scholar
  157. 157.
    E. H. Jellinek, Fits, faints, coma and dementia in myxoedema, Lancet 2:1010–1012 (1962).Google Scholar
  158. 158.
    S. N. Nickel and B. Frame, Neurologic manifestations of myxedema, Neurology 8:511–516 (1958).Google Scholar
  159. 159.
    G. M. Cremer, N. P. Goldstein, and J. Paris, Myxedema and ataxia, Neurology 19:37–46 (1969).Google Scholar
  160. 160.
    V. Pendred, Deaf-mutism and goitre, Lancet 2:532 (1896).Google Scholar
  161. 161.
    F. R. Fraser, Association of congenital deafness with goitre (Pendred’s syndrome), Ann. Hum. Genet 28:201–249 (1965).Google Scholar
  162. 162.
    W. R. Trotter, Deafness and thyroid dysfunction, Brit. Med. Bull 16:92–98 (1960).Google Scholar
  163. 163.
    S. Refetoff, L. T. DeWind, and L. J. DeGroot, Familial syndrome combining deaf-mutism, stippled epiphyses, goiter and abnormally high PBI: Possible target organ refractoriness to thyroid hormone, J. Clin. Endocrinol. Metab 27:279–294 (1967).Google Scholar
  164. 164.
    A. Gesell, C. S. Amatruda, and C. S. Culotta, Effect of thyroid therapy on the mental and physical growth of cretinous infants, Am. J. Dis. Child 52:1117–1138 (1936).Google Scholar
  165. 165.
    A. Lewis, A study of cretinism in London with especial reference to mental development and problems of growth, Lancet 1:1505–1509 (1937).Google Scholar
  166. 166.
    L. Wilkins, The rates of growth, osseous development and mental development in cretins as a guide to thyroid treatment, J. Pediat 12:429 (1938).Google Scholar
  167. 167.
    R. P. Goodkind and H. L. Higgins, Hypothyroidism in infants and children, New Engl. J. Med 224:722–726 (1941).Google Scholar
  168. 168.
    H. Bruch and D. J. McCune, Mental development of congenitally hypothyroid children: Its relationship to physical development and adequacy of treatment, Am. J. Dis. Child 67:205–224 (1944).Google Scholar
  169. 169.
    L. S. Radwin, J. P. Michelson, B. Kramer, and A. B. Berman, End results in treatment of congenital hypothyroidism, Am. J. Dis. Child 78:821–843 (1949).Google Scholar
  170. 170.
    E. B. Man, A. C. Mermann, and R. E. Cooke, The development of children with congenital hypothyroidism, J. Pediat 63:926–941 (1963).Google Scholar
  171. 171.
    W. H. Gantt and W. Fleischmann, Effect of thyroid therapy on the conditioned reflex function in hypothyroidism, Am. J. Psychiat 104:673–681 (1948).Google Scholar
  172. 172.
    R. McCarrison, Observations on endemic cretinism in the Chitral and Gilgit valleys, Proc. Roy. Soc. Med 2:1–36 (1909).Google Scholar
  173. 173.
    G. Raman and W. H. Beierwaltes, Correlation of goiter, deaf-mutism and mental retardation with serum thyroid hormone levels in non-cretinous inhabitants of a severe endemic goiter area in India, J. Clin. Endocrinol. Metab 19:228–233 (1959).Google Scholar
  174. 174.
    J. C. Choufoer, M. Van Rhijn, and A. Querido, Endemic goiter in western New Guinea. II. Clinical picture, incidence and pathogenesis of endemic cretinism, J. Clin. Endocrinol. Metab 25:385–402 (1965).Google Scholar
  175. 175.
    L. C. G. Lobo, F. Pompeu, and D. Rosenthal, Endemic cretinism in Goiaz, Brazil, J. Clin. Endocrinol. Metab 23:407–412 (1963).Google Scholar
  176. 176.
    R. Fierro-Benitez, W. Penafiel, L. J. DeGroot, and I. Ramirez, Endemic goiter and endemic cretinism in the Andrean region, New Engl. J. Med 280:296–302 (1969).Google Scholar
  177. 177.
    P. O. D. Pharoah, I. H. Buttfield, and B. S. Hetzel, Neurological damage to the fetus resulting from severe iodine deficiency during pregnancy, Lancet 1:308–310(1971).Google Scholar
  178. 178.
    Editorial “New light on endemic cretinism,” Lancet 2:365-366 (1972).Google Scholar
  179. 179.
    K. M. Saxena, J. D. Crawford, and N. B. Talbot, Childhood thyrotoxicosis: A long-term perspective, Brit. Med. J 2:1153–1158 (1964).Google Scholar
  180. 180.
    T. McKendrick and G. H. Newns, Thyrotoxicosis in children: A follow-up study, Arch. Dis. Childh 40:71–76(1965).Google Scholar
  181. 181.
    J. C. Syner, P. S. Fancher, and J. W. Kemble, Chorea associated with hyperthyroidism, U.S. Armed Forces Med. J 5:61–67 (1954).Google Scholar
  182. 182.
    J. Logothetis, Neurologic and muscular manifestations of hyperthyroidism, Arch. Neuro 5:533–544 (1961).Google Scholar
  183. 183.
    L. L. Levitsky, E. Trias, and M. S. Grossman, Spontaneous thyrotoxicosis in infancy: Report of a case, Pediatrics 46:627–629 (1970).Google Scholar
  184. 184.
    H. E. Leszynsky, E. Gross-Kieselstein, and A. Abrahamov, Hyperthyroidism in a 3-month-old baby, Pediatrics 47:1069–1073 (1971).Google Scholar
  185. 185.
    J. M. McKenzie, Neonatal Grave’s disease, J. Clin. Endocrinol. Metab 24:660–668 (1964).Google Scholar
  186. 186.
    M. J. Hoffman, B. S. Hetzel, and J. Manson, Neonatal thyrotoxicosis, Aust. Ann. Med 15:262–265 (1966).Google Scholar
  187. 187.
    C. Farrehi, Accelerated maturity in fetal thyrotoxicosis, Clin. Pediat 7:134–137 (1968).Google Scholar
  188. 188.
    C. Farrehi, M. Mitchell, and D. M. Fawcett, Heart failure in congenital thyrotoxicosis, Pediatrics 37:460–466 (1966).Google Scholar
  189. 189.
    D A. Fisher, Pediatric aspects, in “The Thyroid” (S. C. Werner and S. H. Ingbar, eds.) 3rd ed. pp. 665–681, Harper and Row, New York (1971).Google Scholar
  190. 190.
    D. A. Fisher, W. D. Odell, C. J. Hobel, and R. Garza, Thyroid function in the term fetus, Pediatrics 44:526–535 (1969).Google Scholar
  191. 191.
    A. N. Marks and E. B. Man, Serum butanol-extractable iodine concentrations in prematures, Pediatrics 35:753–758 (1965).Google Scholar
  192. 192.
    P. Scheinberg, Cerebral circulation and metabolism in hyperthyroidism, J. Clin. Invest 29:1010–1013 (1950).Google Scholar
  193. 193.
    L. Sokoloff, R. L. Wechsler, R. Mangold, K. Balls, and S. S. Kety, Cerebral blood flow and oxygen consumption in hyperthyroidism before and after treatment, J. Clin. Invest 32:202–208 (1953).Google Scholar
  194. 194.
    S. Sensenbach, L. Madison, S. Eisenberg, and L. Ochs, The cerebral circulation and metabolism in hyperthyroidism and myxedema, J. Clin. Invest 33:1434–1440 (1954).Google Scholar
  195. 195.
    P. Scheinberg, E. A. Stead, Jr., E. S. Brannon, and J. V. Warren, Correlative observations on cerebral metabolism and cardiac output in myxedema, J. Clin. Invest 29:1139–1146 (1950).Google Scholar
  196. 196.
    J. T. Eayrs, Endocrine influence on cerebral development, Arch. Biol. Liege 75:529–565 (1964).Google Scholar
  197. 197.
    M. Hamburgh and L. B. Flexner, Biochemical and physiological differentiation during morphogenesis. XXI. Effect of hypothyroidism and hormone therapy on enzyme activities of the developing cerebral cortex of the rat, J. Neurochem 1:279–288 (1957).Google Scholar
  198. 198.
    C. A. Garcia Argiz, J. M. Pasquini, B. Kaplun, and C. J. Gomez, Hormonal regulation of brain development. II. Effect of neonatal thyroidectomy on succinate dehydrogenase and other enzymes in developing cerebral cortex and cerebellum of the rat, Brain Res 6;635–646 (1967).Google Scholar
  199. 199.
    C. B. Klee and L. Sokoloff, Changes in d(—)-β-hydroxybutyrate dehydrogenase activity during brain maturation in the rat, J. Biol. Chem 242:3880–3883 (1967).Google Scholar
  200. 200.
    G. D. Grave, S. Satterthwaite, C. Kennedy, and L. Sokoloff, Accelerated postnatal development of D(—)-β-hydroxybutyrate dehydrogenase activity in the brain in hyperthyroidism, J. Neurochem 20:495–501 (1973).Google Scholar
  201. 201.
    W. S. Schwark, R. L. Singhal, and G. M. Ling, Metabolic control mechanisms in mammalian systems. Regulation of key glycolytic enzymes in developing brain during experimental cretinism, J. Neurochem 19:1171–1182 (1972).Google Scholar
  202. 202.
    A. Cuaron, J. Gamble, N. B. Myant, and C. Osorio, The effect of thyroid deficiency on the growth of the brain and on the deposition of brain phospholipids in foetal and newborn rabbits, J. Physiol. (Lond.) 168:613–630(1963).Google Scholar
  203. 203.
    P. Walravens and H. P. Chase, Influence of thyroid on formation of myelin lipids, J. Neurochem 16:1477–1484(1969).Google Scholar
  204. 204.
    J. Grippo and J. H. Menkes, Effect of thyroid on fatty acid biosynthesis in brain, Pediat. Res 5:466–471 (1971).Google Scholar
  205. 205.
    N. B. Myant, The role of the endocrine glands in mammalian brain development, in “Advances in Experimental Medicine and Biology” (Vol. 13 of Chemistry and Brain Development, R. Paoletti and A. N. Davison, eds.), pp. 227–237, Plenum Press, New York (1971).Google Scholar
  206. 206.
    S. E. Geel and P. S. Timiras, Influence of neonatal hypothyroidism and of thyroxine on the acetylcholinesterase and Cholinesterase activities in the developing central nervous system of the rat, Endocrinology 80:1069–1074 (1967).Google Scholar
  207. 207.
    J. M. Pasquini, B. Kaplun, C. A. Garcia Argiz, and C. J. Gomez, Hormonal regulation of brain development. I. The effect of neonatal thyroidectomy upon nucleic acids, protein, and two enzymes in developing cerebral cortex and cerebellum of the rat, Brain Res 6:621–634 (1967).Google Scholar
  208. 208.
    S. E. Geel and P. S. Timiras, The influence of neonatal hypothyroidism and thyroxine on the ribonucleic acid and deoxyribonucleic acid concentrations of rat cerebral cortex, Brain Res 4:135–142 (1967).Google Scholar
  209. 209.
    L. Sokoloff, Action of thyroid hormones and cerebral development, Am. J. Dis. Child 114:498–506(1967).Google Scholar
  210. 210.
    L. Schneck, D. H. Ford, and R. Rhines, The uptake of S35-L-methionine into the brain of euthyroid and hyperthyroid neonatal rats, Acta Neurol. Scand 40:285–290 (1965).Google Scholar
  211. 211.
    S. Geel, T. Valcana, and P. S. Timiras, Effect of neonatal hypothyroidism and of thyroxine on l-[14C] leucine incorporation into protein in vivo and the relationship to ionic levels in the developing brain of the rat, Brain Res 4:143–150 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Louis Sokoloff
    • 1
  • Charles Kennedy
    • 2
  1. 1.National Institute of Mental HealthBethesdaUSA
  2. 2.Georgetown University HospitalUSA

Personalised recommendations