Disorders of Fatty Acids

  • John P. Blass
  • Daniel Steinberg


Fatty acids are a major constituent of brain, (1–3) and furthermore they appear to have crucial roles in determining the properties of membranes. Consequently, any substantive derangement of neural tissues might be expected to have, as one of its effects, a change in fatty acid composition. One of the major problems in evaluating data on fatty acid composition is that of differentiating primary changes in fatty acid metabolism from changes secondary to other abnormalities.


Multiple Sclerosis Fatty Acid Composition Polyunsaturated Fatty Acid Phytanic Acid Fatty Acid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. D’Adamo, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 3, pp. 525–546, Plenum Press, New York (1970).Google Scholar
  2. 2.
    D. M. Bowen and N. S. Radin, Hydroxy fatty acid metabolism in brain, Advan. Lipid Res 6:255–272 (1968).Google Scholar
  3. 3.
    G. Rouser and A. Yamamoto, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 1, pp. 121–170, Plenum Press, New York (1969).Google Scholar
  4. 4.
    L. C. Mokrasch, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 1, pp. 171–193, Plenum Press, New York (1969).Google Scholar
  5. 5.
    G. Schettler, ed., “Lipids and Lipidoses,” Springer-Verlag, New York (1967).Google Scholar
  6. 6.
    N. A. Baumann, C. M. Jacque, S. A. Pollet, and M. L. Harpin, Fatty acid and lipid composition of the brain of a myelin deficient mutant, the Quaking mouse, Europ. J. Biochem 4:340–344 (1968).Google Scholar
  7. 7.
    J. F. Berry, R. Cevallos, and R. R. Wade, Lipid class and fatty acid composition of intact peripheral nerve and during Wallerian degeneration, J. Am. Oil Chem. Soc 42: 492–500 (1965).Google Scholar
  8. 8.
    J. P. Blass, Fatty acid composition of cerebrosides in microsomes and myelin of mouse brain, J. Neurochem 17:545–549 (1970).Google Scholar
  9. 9.
    L. F. Eng, B. Gerstl, R. B. Hayman, Y. L. Lee, R. W. Tietsort, and J. K. Smith, The 2-hydroxy fatty acids in white matter of infant and adult brains, J. Lipid Res 6:135–139 (1965).Google Scholar
  10. 10.
    B. Gerstl, R. B. Hayman, M. G. Tavastjerna, and J. K. Smith, Fatty acids of white matter of human brain, Experientia 18:131–133 (1962).Google Scholar
  11. 11.
    B. Gerstl, M. G. Tavastjerna, R. B. Hayman, L. F. Eng, and J. K. Smith, Alterations in myelin fatty acids and plasmalogens in multiple sclerosis, Ann. N.Y. Acad. Sci 122: 405–416 (1965).Google Scholar
  12. 12.
    B. Gerstl, M. G. Tavastjerna, R. B. Hayman, J. K. Smith, and L. F. Eng, Lipid studies of white matter and thalamus of human brains, J. Neurochem 10:889–902 (1963).Google Scholar
  13. 13.
    B. Hagberg, P. Sourander, and L. Svennerholm, Late infantile progressive eneephalopathy with disturbed polyunsaturated fat metabolism, Acta Paediat. Scand 57:495–499 (1968).Google Scholar
  14. 14.
    B. J. Holub, A. Kuksis, and W. Thompson, Molecular species of mono, di, and triphosphoinositides of bovine brain, J. Lipid Res 11:558–564 (1970).Google Scholar
  15. 15.
    C. M. Jacque, M. L. Harpin, and N. A. Baumann, Brain lipid analysis of a myelin deficient mutant, the Quaking mouse, Europ. J. Biochem 11:218–224 (1969).Google Scholar
  16. 16.
    K. Joseph and E. Hogan, Sphingolipid fatty acid composition in murine genetic leukodystrophies, Trans. Am. Soc. Neurochem 2:85 (1971).Google Scholar
  17. 17.
    Y. Kishimoto, B. W. Agranoff, N. S. Radin, and R. M. Burton, Comparison of the fatty acids of lipids of subcellular brain fractions, J. Neurochem 16:397–404 (1969).Google Scholar
  18. 18.
    Y. Kishimoto and N. S. Radin, Isolation and determination methods for brain cerebrosides, hydroxy fatty acids, and unsaturated and saturated fatty acids, J. Lipid Res 1: 72–78 (1959).Google Scholar
  19. 19.
    Y. Kishimoto and N. S. Radin, Composition of cerebroside acids as a function of age, J. Lipid Res 1:79–82 (1959).Google Scholar
  20. 20.
    Y. Kishimoto and N. S. Radin, Structures of ester linked mono and diunsaturated fatty acids of pig brain, J. Lipid Res 5:98–108 (1965).Google Scholar
  21. 21.
    Y. Kishimoto and N. S. Radin, Determinations of brain gangliosides by determination of ganglioside stearic acid, J. Lipid Res 7:141–145 (1966).Google Scholar
  22. 22.
    Y. Kishimoto, M. Wajda, and N. S. Radin, 6-Acylgalactosyl ceramides of pig brain: Structure and fatty acid composition, J. Lipid Res 9:27–33 (1968).Google Scholar
  23. 23.
    F. A. Manzoli, S. Stefoni, L. Manzolli-Guidotti, and M. Barbieri, Fatty acids of myelin phospholipids, FEBS Letters 10:317–320 (1970).Google Scholar
  24. 24.
    E. Märtensson, A. Percy, and L. Svennerholm, Kidney glycolipids in late infantile metachromatic leukodystrophy, Acta Paediat. Scand 55:109 (1966).Google Scholar
  25. 25.
    M. C. McBrinn and J. S. O’Brien, Lipid composition of the nervous system in Refsum’s disease, J. Lipid Res 9:552–561 (1968).Google Scholar
  26. 26.
    G. F. McMullin, S. C. Smith, and P. A. Wright, Tissue fatty acid composition in four diverse vertebrate species, Comp. Biochem. Physiol 26:211–221 (1968).Google Scholar
  27. 27.
    J. H. Menkes, M. Philippart, and M. C. Concone, Concentration and fatty acid composition of cerebrosides and sulfatides in mature and immature brain, J. Lipid Res 7:479–486 (1966).Google Scholar
  28. 28.
    K. Nishimura and T. Yamakawa, Isolation of cerebroside containing glucose and its possible significance in ganglioside metabolism, Lipids 3:262–266 (1968).Google Scholar
  29. 29.
    J. S. O’Brien, Cell membranes — composition, structure, function, J. Theoret. Biol 15: 307–324 (1967).Google Scholar
  30. 30.
    J. S. O’Brien, Stability of the myelin membrane, Science 147:1099–1107 (1965).Google Scholar
  31. 31.
    J. S. O’Brien, D. L. Fillerup, and J. F. Mead, Quantification and fatty acid composition of cerebroside sulfate in human cerebral gray and white matter, J. Lipid Res 5:109–116 (1964).Google Scholar
  32. 32.
    J. S. O’Brien, D. L. Fillerup, and J. F. Mead, Quantification and fatty acid and fatty aldehyde composition of ethanolamine, choline, and serine glycerophosphatides in human cerebral grey and white matter, J. Lipid Res 5:329–338 (1964).Google Scholar
  33. 33.
    J. S. O’Brien and G. Rouser, The fatty acid composition of brain sphingolipids: Sphingomyelin, ceramide, cerebroside, cerebroside sulfate, J. Lipid Res 5:339–342 (1964).Google Scholar
  34. 34.
    J. S. O’Brien and E. L. Sampson, Fatty acid and fatty aldehyde composition of the major brain lipids in normal human grey matter, white matter, and myelin, J. Lipid Res 6: 545–551 (1965).Google Scholar
  35. 35.
    J. S. O’Brien and E. L. Sampson, Kinky hair disease. II. Biochemical studies, J. Neuropathol. Exptl. Neurol 25:523–530 (1966).Google Scholar
  36. 36.
    N. S. Radin and Y. Akahori, Fatty acids of human brain cerebrosides, J. Lipid Res 2: 335–341 (1961).Google Scholar
  37. 37.
    A. Rosenberg and N. Stern, Changes in sphingosine and fatty acid components of the gangliosides in developing rat and human brain, J. Lipid Res 7:122–131 (1966).Google Scholar
  38. 38.
    G. Rouser, G. Feldman, and C. Galli, Fatty acid compositions of human brain lecithin and sphingomyelin in normal individuals, senile cerebral cortical atrophy, Alzheimer’s disease, metachromatic leukodystrophy, Tay-Sachs and Niemann-Pick diseases, J. Am. Oil Chem. Soc 42:411–412 (1965).Google Scholar
  39. 39.
    S. Stallberg-Stenhagen and L. Svennerholm, Fatty acid composition of human brain sphingomyelins: Normal variation with age and changes during myelin disorders, J. Lipid Res 6:146–155 (1965).Google Scholar
  40. 40.
    L. Svennerholm, in “Brain Lipids and Lipoproteins and the Leucodystrophies” (J. Folchpi and H. Bauer, eds.) pp. 104–119, Elsevier, New York (1963).Google Scholar
  41. 41.
    L. Svennerholm, Distribution and fatty acid composition of phosphoglycerides in normal human brain, J. Lipid Res 9:570–579 (1968).Google Scholar
  42. 42.
    L. Svennerholm and S. Stallberg-Stenhagen, Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age, J. Lipid Res 9:215–225 (1968).Google Scholar
  43. 43.
    H. Yabuuchi and J. S. O’Brien, Brain lipids. VI. Brain cardiolipin: Isolation and fatty acid positions, J. Neurochem 15:1383–1390 (1968).Google Scholar
  44. 44.
    H. Yabuuchi and J. S. O’Brien, Positional distribution of fatty acids in glycerophosphatides of bovine grey matter, J. Lipid Res 9:65–67 (1968).Google Scholar
  45. 45.
    M. B. Weber, A study of brain lipids, nucleic acids and proteins in the ataxic (axj) mouse, Neurology 18:243–249 (1968).Google Scholar
  46. 46.
    M. Fewster and J. F. Mead, Fatty acid and fatty aldehyde composition of glial cell lipids isolated from bovine white matter, J. Neurochem 15:1303–1312 (1968).Google Scholar
  47. 47.
    E. G. Lapetina, E. F. Soto, and E. De Robertis, Lipids and proteolipids in isolated subcellular membranes of rat brain cortex, J. Neurochem 15:437–445 (1968).Google Scholar
  48. 48.
    P. Lesch and K. Bernhard, Composition of the neutral lipids and their fatty acids in whale brain. II. Brains of finnwhales (Balaenoptera physalus), Helv. Chim. Acta 51:652–660 (1968).Google Scholar
  49. 49.
    M. A. Wells and J. C. Dittmer, A comprehensive study of the postnatal changes in the concentration of lipids of developing rat brain, Biochemistry 6:3169–3175 (1967).Google Scholar
  50. 50.
    J. S. O’Brien, E. L. Sampson, and M. B. Stern, Lipid composition of myelin from the peripheral nervous system, J. Neurochem 14:357–365 (1967).Google Scholar
  51. 51.
    J. Clausen, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 1, pp. 273–300, Plenum Press, New York (1969).Google Scholar
  52. 52.
    L. F. Eng and E. P. Noble, The maturation of rat brain myelin, Lipids 3:157–162 (1968).Google Scholar
  53. 53.
    E. Marshall, R. Fumagalli, R. Niemiro, and R. Paoletti, The change in fatty acid composition of rat brain phospholipids during development, J. Neurochem 13:857–862 (1966).Google Scholar
  54. 54.
    N. F. Avrova and S. A. Zabelinskii, Fatty acids and long chain bases of vertebrate brain gangliosides, J. Neurochem 18:675–681 (1971).Google Scholar
  55. 55.
    P. Stoffyn and J. Folch-Pi, Type of linkage binding fatty acids present in brain white matter proteolipid apoprotein, Biochem. Biophys. Res. Commun 44:157–161 (1971).Google Scholar
  56. 56.
    K. Samuelsson, Separation and identification of cerebrosides in cerebrospinal fluid by gas-liquid chromatography-mass spectrometry, Scand. J. Lab. Clin. Invest 27:381–391 (1971).Google Scholar
  57. 57.
    D. R. Illingworth and J. Glover, The composition of lipids in cerebrospinal fluid of children and adults, J. Neurochem 18:769–776 (1971).Google Scholar
  58. 58.
    J. Clausen and J. B. Hansen, Myelin constituents of the human central nervous system. Studies of phospholipid, glycolipid, and fatty acid pattern in normal and multiple sclerosis brains, Acta Neurol. Scand 46:1–17 (1970).Google Scholar
  59. 59.
    H. B. White, C. Galli, and R. Paoletti, Ethanolamine phosphoglyceride fatty acids in aging human brains, J. Neurochem 18:1337–1339 (1971).Google Scholar
  60. 60.
    C, Alling and L. Svennerholm, Concentration and fatty acid composition of cholesteryl esters of normal human brain, J. Neurochem 16:751–759 (1969).Google Scholar
  61. 61.
    J. F. Berry and W. H. Cevallos, Lipid class and fatty acid compositions of peripheral nerve from normal and organophosphorous poisoned chickens, J. Neurochem 13:117–124 (1966).Google Scholar
  62. 62.
    G. G. Lunt and C. E. Rowe, Production of unesterified fatty acid in the brain, Biochim. Biophys. Acta 152:681–693 (1968).Google Scholar
  63. 63.
    C. E. Rowe, The occurrence and metabolism in vitro of unesterified fatty acid in mouse brain, Biochim. Biophys. Acta 84:424–434 (1964).Google Scholar
  64. 64.
    N. G. Bazan, H. E.P. de Bazan, W. G. Kennedy, and C. D. Joel, Regional distribution and rate of production of free fatty acids in rat brain, J. Neurochem 18:1387–1393 (1971).Google Scholar
  65. 65.
    N. S. Burt, A. R. McNabb, and R. J. Rossiter, Chemical studies of peripheral nerve during Wallerian degeneration. II. Lipids after nerve crush, Biochem. J 47:318–323 (1950).Google Scholar
  66. 66.
    A. C. Johnson, A. R. McNabb, and R. J. Rossiter, Chemical studies of peripheral nerve during Wallerian degeneration, Biochem. J 45:500–507, (1949).Google Scholar
  67. 67.
    W. A. Manneil, Wallerian degeneration in the rat, a chemical study, Can. J. Med. Sci 30: 173–179(1952).Google Scholar
  68. 68.
    R. E. McCaman and E. Robins, Quantitative biochemical studies of Wallerian degeneration in the peripheral and central nervous systems, J. Neurochem 5:18–31 (1959).Google Scholar
  69. 69.
    H. Bauer and R. Heitmann, Chemical and serological investigations in multiple sclerosis, Deutsch. Z. Nervenheilk 178:47–77 (1958).Google Scholar
  70. 70.
    J. N. Cumings, Lipid chemistry of the brain in demyelinating diseases, Brain 78:554–563 (1965).Google Scholar
  71. 71.
    C. Honneger, On thin layer chromatography of lipids — Investigations of brain samples from patients with multiple sclerosis and normals, Helv. Chim. Acta 45:281–289 (1962).Google Scholar
  72. 72.
    D. W. Clarke and B. Gittens, The effect of serum from multiple sclerosis patients on the free fatty acid output of rat brain slices, Can. J. Physiol. Pharmacol 46:507–509 (1968).Google Scholar
  73. 73.
    R. H. S. Thompson, The biochemistry of multiple sclerosis, in “Scientific Basis of Medicine, Annual Reviews,” pp. 283–301, Athlone Press, London (1961).Google Scholar
  74. 74.
    A. N. Davison and M. Wajda, Cerebral lipids in multiple sclerosis, J. Neurochem 9:427–432 (1962).Google Scholar
  75. 75.
    Y. Eto and K. Suzuki, Fatty acid composition of cholesterol esters in brains of patients with Schilder’s disease, Gm1-gangliosidosis, and Tay-Sachs disease, and its possible relation to the β-position fatty acids of lecithin, J. Neurochem 18:1007–1016 (1971).Google Scholar
  76. 76.
    “The Nomenclature of Lipids,” Biochemistry 6:3287-3292 (1967).Google Scholar
  77. 77.
    “The Nomenclature of Lipids,” Arch. Biochem. Biophys 123:409-415 (1968).Google Scholar
  78. 78.
    S. G. Pakkala, D. L. Fillerup, and J. F. Mead, The very long chain fatty acids of human brain sphingolipids, Lipids 1:449–450 (1966).Google Scholar
  79. 79.
    A. N. Davison and N. A. Gregson, The physiologic roles of cerebron sulphuric acid in the brain, Biochem. J 85:558–568 (1962).Google Scholar
  80. 80.
    R. P. Bunge, Glial cells and the central myelin sheath, Physiol. Rev 48:197–251 (1968).Google Scholar
  81. 81.
    S. Korey, “The biology of Myelin,” Hoeber-Harper, New York (1959).Google Scholar
  82. 82.
    W. E. Norton and S. E. Poduslo, The bulk isolation and properties of bovine Oligodendroglia, Proc. Third Intern. Meeting Intern. Soc. Neurochem. Budapest, p. 34 (1971).Google Scholar
  83. 83.
    F. A. Vandenheuvel, Study of the biologic structure at the molecular level with stereochemical projections. II. The structure of myelin in relation to other membrane systems, J. Am. Oil Chem. Soc 42:481–492 (1965).Google Scholar
  84. 84.
    F. A. Vandenheuvel, Structural studies of biologic membranes: The structure of myelin, Ann. N.Y. Acad. Sci 122:57–76 (1965).Google Scholar
  85. 85.
    J. B. Finean, The nature and stability of brain lipids, Circulation 26:1151–1162 (1962).Google Scholar
  86. 86.
    J. B. Finean and R. E. Burge, The determination of the Fourier transform of the myelin layer from a study of swelling phenomena, J. Mol. Biol 7:672–682 (1963).Google Scholar
  87. 87.
    J. B. Finean, The nature and stability of lipid-protein-polysaccharide association in nerve myelin, in “Brain Lipids and Lipoproteins and the Leucodystrophies” (J. Folch-Pi and H. Bauer, eds.) pp. 57–63, Elsevier, New York (1963).Google Scholar
  88. 88.
    B. D. Ladbrooke, T. J. Jenkinson, V. B. Kamat, and D. Chapman, Physical studies of myelin: Thermal analysis, Biochim. Biophys. Acta 164:101–109 (1968).Google Scholar
  89. 89.
    S. G. Kayser and S. Patton, Function of very long chain fatty acids in membrane structure: Evidence from milk cerebrosides, Biochim. Biophys. Res. Commun 41:1572–1578 (1970).Google Scholar
  90. 90.
    J. F. Danielli and H. A. Davson, A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol 5:495–508 (1935).Google Scholar
  91. 91.
    D. E. Green and S. Fleischer, The role of lipids in mitochondrial electron transfer and oxidative phosphorylation, Biochim. Biophys. Acta 70:554–582 (1963).Google Scholar
  92. 92.
    A. A. Benson, On the orientation of lipids in chloroplast and cell membranes, J. Am. Oil Chem. Soc 43:265–270 (1966).Google Scholar
  93. 93.
    R. B. Park and T. Biggens, Quantasome: Size and composition, Science 144:1009–1011 (1964).Google Scholar
  94. 94.
    G. O. Burr and M. M. Burr, A new deficiency disease produced by the rigid exclusion of fat from the diet, J. Biol. Chem 82:345–367 (1929).Google Scholar
  95. 95.
    J. F. Mead, The metabolism of the essential fatty acids. VI. Distribution of unsaturated fatty acids in rats on fat-free and supplemented diets, J. Biol. Chem 227:1025–1034 (1957).Google Scholar
  96. 96.
    J. F. Mead and D. R. Howton, Metabolism of essential fatty acids. VII. Conversion of γ-linolenic acid to arachidonic acid, J. Biol. Chem 229:575–582 (1957).Google Scholar
  97. 97.
    M. Guarnier and R. M. Johnson, The essential fatty acids, Advan. Lipid Res 8:115–174 (1970).Google Scholar
  98. 98.
    R. B. Alfin-Slater and L. Aftergood, Essential fatty acids reinvestigated, Physiol. Rev 48: 758–784 (1968).Google Scholar
  99. 99.
    H. M. Sinclair, ed., “Essential Fatty Acids,” Academic Press, New York (1958).Google Scholar
  100. 100.
    A. T. James and J. E. Lovelock, Essential fatty acids and human disease, Brit. Med. Bull 14:262–266 (1958).Google Scholar
  101. 101.
    L. A. Biran, W. Bartley, C. W. Carter, and A. Renshaw, Studies on essential fatty acid deficiency. Effect of the deficiency on the lipids in various rat tissues and the influence of dietary supplementation with essential fatty acids on deficient rats, Biochem. J 93:492–498 (1964).Google Scholar
  102. 102.
    L. Rathbone, The effect of diet on the fatty acid compositions of serum, brain, brain mitochondria and myelin in the rat, Biochem. J 97:620–628 (1965).Google Scholar
  103. 103.
    W. J. Culley and E. T. Mertz, Effect of restricted food intake on growth and composition of pre-weanling rat brain, Proc. Soc. Exptl. Biol. Med 118:233–235 (1965).Google Scholar
  104. 104.
    L. J. Machlin, G. J. Marco, and R. S. Gordon, Effect of diet and encephalomalacia on the fatty acid composition of the brain of young and old chickens, J. Am. Oil Chem. Soc 39: 229–232 (1962).Google Scholar
  105. 105.
    B. L. Walker, Maternal diet and brain fatty acids in young rats, Lipids 2:497–500 (1967).Google Scholar
  106. 106.
    H. Mohrhauer and R. T. Holman, Alteration of the fatty acid composition of brain lipids by varying levels of dietary essential fatty acids, J. Neurochem 10:523–530 (1963).Google Scholar
  107. 107.
    G. A. Dhopeschwarkar and J. F. Mead, Fatty acid uptake by the brain. III. Incorporation of 1[14C] oleic acid into the adult rat brain, Biochim. Biophys. Acta 210:250–256 (1970).Google Scholar
  108. 108.
    E. T. Pritchard, The formation of phospholipids from 14C-labelled precursors in developing rat brain in vivo, J. Neurochem 10:495–502 (1963).Google Scholar
  109. 109.
    H. Keen and C. Chlouverakis, Metabolism of isolated rat retina. The role of nonesterified fatty acid, Biochem. J 94:488–493 (1965).Google Scholar
  110. 110.
    C. H. Tator, J. R. Evans, and J. Olszewski, Tracers for detection of brain tumors. Evaluation of radioiodinated human serum albumin and radioiodinated fatty acid, Neurology 16: 650–661 (1966).Google Scholar
  111. 111.
    G. R. Webster, The incorporation of long-chain fatty acids into phospholipids of respiring slices of rat cerebrum, Biochem. J 102:373–380 (1967).Google Scholar
  112. 112.
    J. Bernsohn, L. M. Stephanides, and H. Norgello, Incorporation of [l-14C]linoleic acid into the central nervous system of the adult cat after intracisternal administration, Brain Res 28:327–337 (1971).Google Scholar
  113. 113.
    S. Gatt, Metabolism of 1[14C]lignoceric acid in the rat, Biochim. Biophys. Acta 70:370–380 (1963).Google Scholar
  114. 114.
    A. F. Adamo, L. I. Gidez, and F. M. Yatsu, Acetyl transport mechanisms. Involvement of N-acetyl aspartic acid in de novo fatty acid biosynthesis in the developing rat brain, Exptl. Brain Res 5:267–273 (1968).Google Scholar
  115. 115.
    K. Bernhard and W. Pedersen, Fatty acid synthesis in rat brain, Helv. Chim. Acta 46: 2363–2368 (1967).Google Scholar
  116. 116.
    A. Etzrodt and H. Debuch, Incorporation of l[14C]acetate into the fatty acids and aldehydes of the ethanolamine-containing phospholipids in the brain of young rats, Z. Physiol. Chem 351:603–612 (1970).Google Scholar
  117. 117.
    E. Grossi, P. Paoletti, and M. Poggi, The effect of insulin on brain cholesterol and fatty acid biosynthesis, World Neurol 3:209–215 (1965).Google Scholar
  118. 118.
    A. K. Hajra and N. S. Radin, Isotopic studies of the biosynthesis of the cerebroside fatty acids in rats, J. Lipid Res 4:270–278 (1963).Google Scholar
  119. 119.
    A. J. Fulco and J. F. Mead, The biosynthesis of lignoceric, cerebronic and nervonic acids, J. Biol. Chem 236:2416–2420 (1967).Google Scholar
  120. 120.
    P. A. Srere and A. Bhaduri, Incorporation of radioactive citrate into fatty acids, Biochim. Biophys. Acta 59:487–489 (1962).Google Scholar
  121. 121.
    K. Miyamoto, L. M. Stephanides, and J. Bernsohn, Acetate-l-14C incorporation into polyunsaturated fatty acids of phospholipids of developing chick brain, J. Lipid Res 8:191–195 (1967).Google Scholar
  122. 122.
    S. Tucek, The use of choline acetyltransferase for measuring the synthesis of acetyl CoA and its release from brain mitochondria, Biochem. J 104:749–756 (1967).Google Scholar
  123. 123.
    D. D. Clarke, W. J. Nicklas, and S. Berl, Tricarboxylic acid cycle metabolism in brain. Effect of fluoroacetate and fluorocitrate on the labelling of glutamate, aspartate, glutamine and γ-amino butyrate, Biochem. J 120:345–351 (1970).Google Scholar
  124. 124.
    A. F. D’Adamo and A. P. D’Adamo, Acetyl transport mechanisms in the nervous system. The oxoglutarate shunt and fatty acid synthesis in the developing rat brain, J. Neurochem 15:315–323 (1968).Google Scholar
  125. 125.
    S. Berl and D. D. Clarke, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 2, pp. 447–471, Plenum Press, New York (1969).Google Scholar
  126. 126.
    S. Berl, A. Lajtha, and H. Waelsch, Amino acid and protein metabolism. VI. Cerebral compartments of glutamic acid metabolism, J. Neurochem 7:186–197 (1961).Google Scholar
  127. 127.
    H. Waelsch, S. Berl, C. A. Rossi, D. D. Clarke, and D. P. Purpura, Quantitative aspects of CO2 fixation in mammalian brain in vivo, J. Neurochem 11:717–728 (1964).Google Scholar
  128. 128.
    R. O. Brady, Biosynthesis of fatty acids. II. Studies with enzymes obtained from brain, J. Biol. Chem 235:3099–3103 (1960).Google Scholar
  129. 129.
    J. D. Robinson, R. M. Bradley, and R. O. Brady, Biosynthesis of fatty acids. III. Utilization of substituted acetyl coenzyme A derivatives as intermediates, J. Biol. Chem 238: 528–532 (1963).Google Scholar
  130. 130.
    E. Aeberhard and J. H. Menkes, Biosynthesis of long-chain fatty acids by subcellular particles of mature brain, J. Biol. Chem 243:3834–3840 (1968).Google Scholar
  131. 131.
    J. M. Bourre, S. Pollet, G. Dubois, and N. A. Baumann, Biosynthesis of long-chain fatty acids in mouse brain microsomes, Compt. Rend. Acad. Sci., Ser. D 271:1221–1223 (1970).Google Scholar
  132. 132.
    K. Miyamoto, L. M. Stephanides, and J. Bernsohn, Incorporation of 1[14C] linoleate and linolenate into polyunsaturated fatty acids of phospholipids of the embryonic chick brain, J. Neurochem 14:227–237 (1967).Google Scholar
  133. 133.
    A. K. Hajra and N. S. Radin, In vivo conversion of labelled fatty acid to the sphingolipid fatty acid in rat brain, J. Lipid Res 4:448–453 (1967).Google Scholar
  134. 134.
    A. K. Hajra and N. S. Radin, Biosynthesis of cerebroside odd-numbered fatty acids, J. Lipid Res 3:327–332 (1963).Google Scholar
  135. 135.
    W. Pedersen, L. Hausheer, and K. Bernhard, Further studies in neurochemistry: The incorporation of l[14C]propionate in the fatty acids of brain cerebrosides, Helv. Chim. Acta 46:675–677 (1963).Google Scholar
  136. 136.
    J. D. Robinson, R. O. Brady, and R. M. Bradley, Biosynthesis of fatty acids. IV. Studies with inhibitors, J. Lipid Res 4:144–150 (1963).Google Scholar
  137. 137.
    H. Mcllwain, “Biochemistry and the Central Nervous System,” J. and A. Churchill, London (1959).Google Scholar
  138. 138.
    H. F. Bradford, Carbohydrate and energy metabolism, in “Applied Neurochemistry,” Part II: “Metabolic Pathways” (A. N. Davison and John Dobbing, eds.) pp. 222–250, Blackwell Press, Oxford (1968).Google Scholar
  139. 139.
    L. Sokoioff, Metabolism of the central nervous system in vivo, in “Handbook of Physiology,” Section I: “Neurophysiology” (H. W. Magoun, ed.) Vol. 3, pp. 1843–1864, Waverly Press, Baltimore (1960).Google Scholar
  140. 140.
    S. S. Kety, The general metabolism of the brain in vivo, in “The Metabolism of the Nervous System” (D. Richter, ed.) pp. 221–266, Pergamon Press, London (1957).Google Scholar
  141. 141.
    H. H. Merritt, “Textbook of Neurology” Lea and Febiger, Philadelphia (1963).Google Scholar
  142. 142.
    O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, R. G. Herrera, and G. F. Cahill, Brain metabolism during fasting, J. Clin. Invest 46:1589–1595 (1967).Google Scholar
  143. 143.
    R. A. Hawkins, D. H. Williamson, and H. A. Krebs, Ketone body utilization by adult and suckling rat brain in vivo, Biochem. J 122:13–18 (1971).Google Scholar
  144. 144.
    U. Gottstein, W. Mueller, W. Berchoff, H. Gaertner, and K. Held, Utilization of nonesterified fatty acids and ketone bodies in the human brain, Klin. Wschr 49:406–411 (1971).Google Scholar
  145. 145.
    F. S. Rolleston and E. A. Newsholm, Effects of fatty acids, ketone bodies, lactate and pyruvate on glucose utilization by guinea-pig cerebral cortex slices, Biochem. J 104:519–523 (1967).Google Scholar
  146. 146.
    R. W. Von Korff, Personal communication.Google Scholar
  147. 147.
    M. A. Page, H. A. Krebs, and D. H. Williamson, Activities of the enzymes of ketone-body utilization in brain and other tissues of suckling rats, Biochem. J 121:49–53 (1971).Google Scholar
  148. 148.
    A. L. Smith, H. S. Satterthwaite, and L. Sokoioff, Induction of brain D(-)-β-hydroxybutyrate dehydrogenase activity by fasting, Science 163:79–81 (1969).Google Scholar
  149. 149.
    I. Pull and H. Mcllwain, 3-Hydroxybutyrate dehydrogenase of rat brain on dietary change and during maturation, J. Neurochem 18:1163–1165 (1971).Google Scholar
  150. 150.
    R. Martinez and A. Toledano, Histochemical study of the metabolism of the ketone bodies in the nervous system. IV. Localization of the D(—)-β-hydroxybutyric dehydrogenase in the cerebellum and medulla oblongata, Acta Histochem 38:218–260 (1970).Google Scholar
  151. 151.
    P. M. Vignais, G. H. Gallagher, and I. Zabin, Activation and oxidation of long chain fatty acids by rat brain, J. Neurochem 2:283–287 (1958).Google Scholar
  152. 152.
    D. S. Beattie and R. E. Basford, Brain mitochondria. III. Fatty acid oxidation by bovine brain mitochondria, J. Neurochem 12:103–111 (1965).Google Scholar
  153. 153.
    K. G. Raju, Metabolism of acetate, Propionate, butyrate, and glucose by bovine cerebral cortex slices, Am. J. Physiol 219:1739–1741 (1970).Google Scholar
  154. 154.
    M. E. Volk, R. H. Millington, and S. Weinhouse, Oxidation of endogenous fatty acids of rat tissues in vitro, J. Biol. Chem 195:493–501 (1952).Google Scholar
  155. 155.
    C. Allweis, T. Landau, M. Abeles, and J. Magnes, The oxidation of uniformly labelled albumin-bound palmitic acid to CO2 by the perfused cat brain, J. Neurochem 13:795–804 (1966).Google Scholar
  156. 156.
    J. F. Mead and G. M. Levis, A one carbon degradation of the long chain fatty acids of brain sphingolipids, J. Biol. Chem 238:1634–1636 (1963).Google Scholar
  157. 157.
    G. M. Levis, The possible role of ascorbic acid in the α-hydroxyacid decarboxylase of brain microsomes, Biochim. Biophys. Acta 99:194 (1965).Google Scholar
  158. 158.
    Y. Kishimoto and N. S. Radin, Occurrence of 2-hydroxy fatty acids in animal tissues, J. Lipid Res 4:139–143 (1963).Google Scholar
  159. 159.
    G. M. Levis and J. F. Mead, A 2-hydroxy acid decarboxylase in brain microsomes, J. Biol. Chem 239:77–80 (1964).Google Scholar
  160. 160.
    Y. Kishimoto and N. S. Radin, Structures of the 2-hydroxy unsaturated fatty acids of pig brain sphingolipids, J. Lipid Res 5:94–97 (1964).Google Scholar
  161. 161.
    W. E. Davis, A. K. Hajra, S. S. Parmer, N. S. Radin, and J. F. Mead, Decarboxylation of 2-keto fatty acids by brain, J. Lipid Res 7:270–276 (1966).Google Scholar
  162. 162.
    R. C. MacDonald and J. F. Mead, The alpha oxidation system of brain microsomes. Cofactors for alpha-hydroxyacid decarboxylation, Lipids 3:275–283 (1968).Google Scholar
  163. 163.
    K. Lippel and J. F. Mead, Alpha-oxidation of 2-hydroxystearic acid in vitro, Biochim. Biophys. Acta 152:669–680 (1968).Google Scholar
  164. 164.
    S. Hammarstrom, Configuration of 2-hydroxy fatty acids from brain cerebroside determined by gas chromatography, FEBS Letters 5:192–195 (1969).Google Scholar
  165. 165.
    B. Preiss and K. Bloch, Omega-oxidation of long chain fatty acids in rat liver, J. Biol. Chem 239:85–88 (1964).Google Scholar
  166. 166.
    K. Wakabayashi and N. Shimazono, Studies on omega-oxidation of fatty acids in vitro I. Overall reaction and intermediates, Biochim. Biophys. Acta 70:132–142 (1963).Google Scholar
  167. 167.
    S. Bergström, B. Borgström, B. N. Tryding, and G. Westöö, Intestinal absorption and metabolism of 2,2-dimethylstearic acid in the rat, Biochem. J 58:604–608 (1954).Google Scholar
  168. 168.
    G. J. Antony and B. R. Landau, Relative contributions of alpha, beta and omega-oxidative pathways to in vitro fatty acid oxidation in rat liver, J. Lipid Res 9:267–269 (1968).Google Scholar
  169. 169.
    Y. Kishimoto, W. E. Davies, and N. S. Radin, Turnover of the fatty acids of rat brain gangliosides, glycerophosphatides, cerebrosides, and sulfatides as a function of age, J. Lipid Res 6:525–531 (1965).Google Scholar
  170. 170.
    Y. Kishimoto and N. S. Radin, Metabolism of brain glycolipid fatty acids, Lipids 1:47–61 (1966).Google Scholar
  171. 171.
    L. N. Irwin and F. E. Samson, Content and turnover of gangliosides in rat brain following behavioral stimulation, J. Neurochem 18:203–211 (1971).Google Scholar
  172. 172.
    M. E. Smith, The metabolism of myelin lipids, Advan. Lipid Res 5:241–278 (1968).Google Scholar
  173. 173.
    F. N. LeBaron, Metabolism of myelin constituents, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 3, pp. 561–573, Plenum Press, New York (1970).Google Scholar
  174. 174.
    E. Grossi, P. Paoletti, and R. Paoletti, The in vitro and in vivo effects of chlorpromazine on brain lipid synthesis, J. Neurochem 6:73–78 (1960).Google Scholar
  175. 175.
    R. Fumagalli, E. Grossi, and P. Paoletti, The effect of imipramine and desmethylimipra-mine on lipid biosynthesis in brain and liver, J. Neurochem 10:213–217 (1963).Google Scholar
  176. 176.
    W. L. Holmes, Drugs affecting lipid synthesis, in “Lipid Pharmacology” (R. Paoletti, ed.) pp. 131–184, Academic Press, New York (1964).Google Scholar
  177. 177.
    S. G. Eliasson, Lipid synthesis in peripheral nerve from alloxan diabetic rats, Lipids 1: 237–240 (1966).Google Scholar
  178. 178.
    M. E. Smith, The effect of fasting on lipid metabolism of the central nervous system of the rat, J. Neuwchem 10:531–536 (1963).Google Scholar
  179. 179.
    H. B. White, G. Galli, and R. Paoletti, Brain recovery from essential fatty acid deficiency in developing rats, J. Neuwchem 18:869–882 (1971).Google Scholar
  180. 180.
    S. Refsum, Heredoataxia hemerolopica polyneuritiformis — A previously undescribed familial syndrome. A preliminary communication, Nord. Med 28:2682–2685 (1945).Google Scholar
  181. 181.
    S. Refsum, Heredopathia atactica polyneuritiformis, Acta Psychiat. Neurol. Suppl 38: 9–303 (1946).Google Scholar
  182. 182.
    S. Refsum, Heredopathia atactica polyneuritiformis reconsidered, World Neurol 1:334–337 (1960).Google Scholar
  183. 183.
    D. Steinberg, F. Q. Vroom, W. K. Engel, J. Cammermeyer, C. E. Mize, and J. Avigan, Refsum’s disease: A recently characterized lipidosis involving the nervous system, Ann. Int. Med 66:365–395 (1967).Google Scholar
  184. 184.
    S. Refsum and L. Eldjarn, Heredopathia atactica polyneuritiformis — An inborn error in the metabolism of branched-chain fatty acids, in “Zukunft der Neurologie” (H. G. Bammer, ed.) pp. 36–44, Georg Thieme, Stuttgart (1967).Google Scholar
  185. 185.
    S. Refsum, L. Salomonsen, and M. Skatvedt, Heredopathia atactica polyneuritiformis in children, J. Pediat 35:335–343 (1949).Google Scholar
  186. 186.
    R. Richterich, S. Rosin, and E. Rossi, Refsum’s disease (heredopathia atactica polyneuritiformis). An inborn error of lipid metabolism with storage of 3,7,11,15-tetramethyl hexadecanoic acid. Formal genetics, Humangenetik 1:333–336 (1965).Google Scholar
  187. 187.
    S. Refsum, Heredopathia atactica polyneuritiformis, Acta Genet. Stat. Med 7:334–347 (1957).Google Scholar
  188. 188.
    R. Richterich, P. van Mechelen, and E. Rossi, Refsum’s disease (heredopathia atactica polyneuritiformis): An inborn error of lipid metabolism with storage of 3,7,11,15-tetramethylhexadecanoic acid, Am. J. Med 39:230–236 (1965).Google Scholar
  189. 189.
    N. C. Nevin, J. N. Cumings, and F. McKeown, Refsum’s syndrome, heredopathia atactica polyneuritiformis, Brain 90:419–428 (1967).Google Scholar
  190. 190.
    K. Try, Heredopathia atactica polyneuritiformis (Refsum’s disease). The diagnostic value of phytanic acid determination in serum lipids, Europ. Neurol 2:296–314 (1969).Google Scholar
  191. 191.
    M. D. Toussaint, C. Coers, and M. N. Toppet, Heredopathia atactica polyneuritiformis (Refsum’s syndrome). Clinical inquiry and biopsy, Bull. Soc. Belg. Ophthalmol 122:383 (1959).Google Scholar
  192. 192.
    W. Kahlke, Refsum’s syndrome, in “Lipids and Lipidoses” (A. Schettler, ed.) pp. 352–383, Springer-Verlag, New York (1967).Google Scholar
  193. 193.
    S. Refsum, Heredopathia atactica polyneuritiformis, a metabolic disease of nervous tissue, Nord. Med 73:570 (1965).Google Scholar
  194. 194.
    J. Dereux and S. E. Gruner, Refsum’s disease — Biopsy study of a case using the electron microscope, Rev. Neurol. (Paris) 109:564 (1963).Google Scholar
  195. 195.
    S. Refsum, Diagnosis and differential diagnosis of herodopathia atactica polyneuritiformis, Deutsch. Z. Nervenheilk 195:257–262 (1969).Google Scholar
  196. 196.
    E. M. Ashenhurst, J. H. D. Millar, and T. G. Milliken, Refsum’s syndrome affecting a brother and two sisters, Brit. Med. J 2:415–417 (1958).Google Scholar
  197. 197.
    K. Try, O. Stokke, and L. Eldjarn, Two new cases of heredopathia atactica polyneuritiformis (Refum’s disease) with demonstrated phytanic acid accumulation, Scand. J. Clin. Lab. Invest 17:(Suppl. 86), 195 (1965).Google Scholar
  198. 198.
    D. Steinberg and J. H. Herndon, Jr., Refsum’s disease: Phytanic acid storage disease, in “Shy’s The Cellular and Molecular Basis of Neurologic Disease” (G. M. Shy, E. S. Goldensohn, and S. H. Appel, eds.) Lea and Febiger, Philadelphia (in press).Google Scholar
  199. 199.
    J. Cammermeyer, Neuropathological changes in hereditary neuropathies: Manifestation of the syndrome heredopathia atactica polyneuritiformis in the presence of interstitial hypertrophic polyneuropathy, J. Neuropathol. Exptl. Neurol 15:340–367 (1956).Google Scholar
  200. 200.
    E. H. Kolodny, W. K. Hass, B. Lane, and W. D. Drucker, Refsum’s syndrome: Report of a case including electron microscopic studies of the liver, Arch. Neurol 12:583–596 (1965).Google Scholar
  201. 201.
    L. van Bogaart, P. van Mechelen, J. J. Martin, and G. C. Guazzi, On the neuropathology of Refsum-Thiebaut disease, Rev. Neurol 116:229–240 (1967).Google Scholar
  202. 202.
    M. Fardeau and W. K. Engel, Ultrastructural study of a peripheral nerve biopsy in Refsum’s disease, J. Neuropathol. Exptl. Neurol 28:278–294 (1969).Google Scholar
  203. 203.
    E. Klenk and W. Kahlke, On the existence of 3,7,11,1 S-tetramethylhexadecanoic acid (phytanic acid) in the cholestero esters and other lipid fractions of organs from an illness of unknown genesis (thought to be heredopathia atactica polyneuritiformis, Refsum’s syndrome), Z. Physiol. Chem 33:133–139 (1963).Google Scholar
  204. 204.
    W. Kahlke, Refsum’s syndrome — Lipidchemical investigations in 9 cases, Klin. Wschr 42: 1011–1016(1964).Google Scholar
  205. 205.
    W. Kahlke and R. Richterich, Refsum’s disease (heredopathia atactica polyneuritiformis), an inborn error of lipid metabolism with storage of 3,7,11,15-tetramethylhexadecanoic acid. II. Isolation and identification of the storage product, Am. J. Med 39:237–241 (1965).Google Scholar
  206. 206.
    G. J. Kremer, On the existence of 3,7,11,1 S-tetramethylhexadecanoic acid in the lipids of normal sera, Klin. Wschr 43:517–518 (1965).Google Scholar
  207. 207.
    J. Avigan, The presence of phytanic acid in normal human and animal plasma, Biochim. Biophys. Acta 116:391–394 (1966).Google Scholar
  208. 208.
    R. P. Hansen, 3,7,11,15-Tetramethylhexadecanoic acid: Its occurrence in the tissues afflicted with Refsum’s syndrome, Biochim. Biophys. Acta 106:304–310 (1965).Google Scholar
  209. 209.
    J. Dereux, A. Lowenthal, Y. Mardens, and D. Korcher, Phytanic acid levels in serum and central nervous system in Refsum’s disease, Pathol. Europ 3:468–473 (1968).Google Scholar
  210. 210.
    S.-C. Tsai, Oxidation of phytanic acid as related to Refsum’s disease, N. Y. State J. Med 69:3149–3152(1969).Google Scholar
  211. 211.
    K. A. Karlsson, A. Norrby, and B. Samuelsson, Use of thin-layer chromatography for the preliminary diagnosis of Refsum’s disease (heredopathia atactica polyneuritiformis), Biochim. Biophys. Acta 144:162–164 (1967).Google Scholar
  212. 212.
    W. S. Alexander, Phytanic acid in Refsum’s syndrome, J. Neurol. Neurosurg. Psychiat 29: 412–416 (1966).Google Scholar
  213. 213.
    M. Bonduelle, P. Gouygnes, G. Lormeau, G. Deloux, P. Laudat, and L. M. Wolf, Refsum’s disease; studies of lipids of serum and urine, Rev. Neurol 115:933–942 (1966).Google Scholar
  214. 214.
    D. Steinberg, Remarks on the biochemical basis of Refsum’s disease, Nord. Med 73: 571–572 (1965).Google Scholar
  215. 215.
    L. Eldjarn, Biochemical points of view on the origin of phytanic acid, Nord. Med 73: 571 (1965).Google Scholar
  216. 216.
    J. H. Baxter and G. W. A. Milne, Phytenic acid: Identification of five isomers in chemical and biological products of phytol, Biochim. Biophys. Acta 176:265–277 (1969).Google Scholar
  217. 217.
    J. Avigan, D. Steinberg, A. Gutman, C. E. Mize, and G. W. A. Milne, Alpha-decarboxylation, an important pathway for degradation of phytanic acid in animals, Biochem. Biophys. Res. Commun 24:838–844 (1966).Google Scholar
  218. 218.
    C. E. Mize, D. Steinberg, J. Avigan, and H. M. Fales, A pathway for oxidative degradation of phytanic acid in mammals, Biochem. Biophys. Res. Commun 25:359–365 (1966).Google Scholar
  219. 219.
    C. E. Mize, J. Avigan, D. Steinberg, R. C. Pittman, H. M. Fales, and G. W. A. Milne, A major pathway for the mammalian oxidative degradation of phytanic acid, Biochim. Biophys. Acta 176:720–739 (1969).Google Scholar
  220. 220.
    S.-C. Tsai, J. H. Herndon, Jr., B. W. Uhlendorf, H. M. Fales, and C. E. Mize, The formation of alpha-hydroxyphytanic acid from phytanic acid in mammalian tissues, Biochem. Biophys. Res. Commun 28:571–577 (1967).Google Scholar
  221. 221.
    S.-C. Tsai, J. Avigan, and D. Steinberg, Studies on the alpha-oxidation of phytanic acid by rat liver mitochondria, J. Biol. Chem 244:2682–2692 (1969).Google Scholar
  222. 222.
    E. Klenk and G. J. Kremer, Investigations of the metabolism of phytol, dihydrophytol and of phytanic acid, Z. Physiol. Chem 343:39–51 (1965).Google Scholar
  223. 223.
    R. P. Hansen, F. B. Shorland, and I. A. M. Prior, The fate of phytanic acid when administered to rats, Biochim. Biophys. Acta 116:178–180 (1966).Google Scholar
  224. 224.
    R. P. Hansen, F. B. Shorland, and I. A. M. Prior, The occurrence of 4,8,12-trimethyltridecanoic acid in the tissues of rats fed high levels of phytanic acid, Biochim. Biophys. Acta 152:642–644 (1968).Google Scholar
  225. 225.
    D. Steinberg, J. Avigan, C. Mize, L. Eldjarn, K. Try, and S. Refsum, Conversion of U-C14-phytol to phytanic acid and its oxidation in heredopathia atactica polyneuritiformis, Biochem. Biophys. Res. Commun 19:783–789 (1965).Google Scholar
  226. 226.
    D. Steinberg, C. E. Mize, J. Avigan, H. M. Fales, L. Eldjarn, K. Try, O. Stokke, and S. Refsum, Studies on the metabolic error in Refsum’s disease, J. Clin. Invest 46:313–322 (1967).Google Scholar
  227. 227.
    C. E. Mize, J. Avigan, J. H. Baxter, H. M. Fales, and D. Steinberg, Metabolism of phytol-U-14C and phytanic acid-U-14C in the rat, J. Lipid Res 7:692–697 (1966).Google Scholar
  228. 228.
    R. A. P. Kark, W. K. Engel, J. P. Blass, D. Steinberg, and G. O. Walsh, Heredopathia atactica polyneuritiformis (Refsum’s disease) — A second trial of dietary therapy in two patients, Birth Defects: Orig. Art. Ser. (Nerv. Syst.) 7:53–55 (1971).Google Scholar
  229. 229.
    L. Eldjarn, K. Try, O. Stokke, A. W. Munthe-Kaas, S. Refsum, D. Steinberg, J. Avigan, and C. Mize, Dietary effects on serum phytanic acid levels and on clinical manifestations in heredopathia atactica polyneuritiformis, Lancet 1:691–693 (1966).Google Scholar
  230. 230.
    D. Steinberg, J. Avigan, C. E. Mize, J. H. Baxter, J. Cammermeyer, H. M. Fales, and P. F. Highet, Effects of dietary phytol and phytanic acid in animals, J. Lipid Res 7:684–691 (1966).Google Scholar
  231. 231.
    W. Stoffel and W. Kahlke, The transformation of phytol into 3,7,11,15-tetramethylhexadecanoic (phytanic) acid in heredopathia atactica polyneuritiformis (Refsum’s syndrome), Biochem. Biophys. Res. Commun 19:33–36 (1965).Google Scholar
  232. 232.
    J. H. Baxter, D. Steinberg, C. E. Mize, and J. Avigan, Absorption and metabolism of uniformly 14C-labeled phytol and phytanic acid by the intestine of the rat studied with thoracic duct cannulation, Biochim. Biophys. Acta 137:277–290 (1967).Google Scholar
  233. 233.
    D. Steinberg, J. Avigan, C. Mize, and J. Baxter, Phytanic acid formation and accumulation in phytol-fed rats, Biochem. Biophys. Res. Commun 19:412–416 (1965).Google Scholar
  234. 234.
    F. B. Shorland, R. P. Hansen, and I. A. M. Prior, The effect of phytanic acid on the fatty acid composition of the lipids of the rat with further observations on its metabolism, Proc. Seventh Intern. Congr. Nutr 5:339 (1966).Google Scholar
  235. 235.
    J. H. Baxter and D. Steinberg, Absorption of phytol from dietary chlorophyll in the rat, J. Lipid Res 8:615–620 (1967).Google Scholar
  236. 236.
    J. H. Baxter, Absorption of chlorophyll phytol in normal man and in patients with Refsum’s disease, J. Lipid Res 9:636–641 (1968).Google Scholar
  237. 237.
    R. P. Hansen and J. D. Morrison, The isolation and identification of 2,6,10,14-tetramethylpentadecanoic acid from butter fat, Biochem. J 93:225–228 (1964).Google Scholar
  238. 238.
    R. P. Hansen, Occurrence of 2,6,10,14-tetramethylpentadecanoic acid in sheep fat, Chem. Ind 28:1258–1259 (1965).Google Scholar
  239. 239.
    R. P. Hansen, 4,8,12-Trimethyltridecanoic acid: Its isolation and identification from sheep perinephric fat, Biochim. Biophys. Acta 164:550–557 (1968).Google Scholar
  240. 240.
    R. P. Hansen, The isolation and identification of 4,8,12-trimethyltridecanoic acid from butter fat, J. Dairy Res 36:77–85 (1969).Google Scholar
  241. 241.
    W. R. H. Duncan and G. A. Garton, Blood lipids. III. Plasma lipids of the cow during pregnancy and lactation, Biochem. J 89:414–419 (1963).Google Scholar
  242. 242.
    A. K. Lough, Blood lipids. 4. The isolation of 3,7,11,1 S-tetramethylhexadecanoic acid (phytanic acid) from ox plasma lipids, Biochem. J 91:584–588 (1964).Google Scholar
  243. 243.
    R. P. Hansen, 3,7,11,1 S-Tetramethylhexadecanoic acid: Its occurrence in sheep fat, New Zealand J. Sci 8:158–160 (1965).Google Scholar
  244. 244.
    R. P. Hansen, Occurrence of 3,7,11,1 S-tetramethylhexadecanoic acid in ox perinephric fat, Chem. Ind 7:303–304 (1965).Google Scholar
  245. 245.
    S. Patton and A. A. Benson, Phytol metabolism in the bovine, Biochim. Biophys. Acta 125:22–32 (1966).Google Scholar
  246. 246.
    W. Sonneveld, P. H. Begemann, G. J. van Beers, R. Keuning, and J. C. M. Schogt, 3,7,11, 15-Tetramethylhexadecanoic acid, a constituent of butter fat, J. Lipid Res 3:351–355 (1962).Google Scholar
  247. 247.
    L. Eldjarn, K. Try, and O. Stokke, The existence of an alternative pathway for the degradation of branched-chain fatty acids, and its failure in heredopathia atactica polyneuritiformis (Refsum’s disease), Biochim. Biophys. Acta 116:395–397 (1966).Google Scholar
  248. 248.
    O. Stokke, Alpha-oxidation of fatty acids in various mammals, and a phytanic acid feeding experiment in an animal with a low alpha-oxidation capacity, Scand. J. Clin. Lab. Invest 20:305–312 (1967).Google Scholar
  249. 249.
    O. Stokke, Evidence against a CO2-fixation mechanism in the degradation of a betamethyl-substituted fatty acid in mammals, Biochim. Biophys. Acta 176:230–236 (1969).Google Scholar
  250. 250.
    L. Eldjarn, Heredopathia atactica polyneuritiformis (Refsum’s disease) — A defect in the omega-oxidation mechanism of fatty acids, Scand. J. Clin. Lab. Invest 17:178–181 (1965).Google Scholar
  251. 251.
    L. Eldjarn, K. Try, and O. Stokke, The ability of patients with heredopathia atactica polyneuritiformis to omega-oxidize and degrade several isoprenoid branch-chained fatty structures, Scand. J. Clin. Lab. Invest 18:141–150 (1966).Google Scholar
  252. 252.
    K. Try and L. Eldjarn, Normalization of the tricaprin test for omega-oxidation in Refsum’s disease upon lowering of serum phytanic acid, Scand. J. Clin. Lab. Invest 20:294–296 (1967).Google Scholar
  253. 253.
    K. Try, The in vitro omega-oxidation of phytanic acid and other branched-chain fatty acids by mammalian liver, Scand. J. Clin. Lab. Invest 22:224–230 (1968).Google Scholar
  254. 254.
    D. Steinberg, J. H. Herndon, Jr., B. W. Uhlendorf, C. E. Mize, J. Avigan, and G. W. A. Milne, Refsum’s disease: Nature of the enzyme defect, Science 156:1740–1742 (1967).Google Scholar
  255. 255.
    D. Steinberg, J. Avigan, C. E. Mize, J. H. Herndon, Jr., H. M. Fales, and G. W. A. Milne, The nature of the metabolic defect in Refsum’s disease, Pathol. Europ 3:450–458 (1968).Google Scholar
  256. 256.
    J. H. Herndon, Jr., D. Steinberg, B. W. Uhlendorf, and H. M. Fales, Refsum’s disease: Characterization of the enzyme defect in cell culture, J. Clin. Invest 48:1017–1032 (1969).Google Scholar
  257. 257.
    L. Eldjarn, O. Stokke, and K. Try, Alpha-oxidation of branched-chain fatty acids in man and its failure in patients with Refsum’s disease showing phytanic acid accumulation, Scand. J. Clin. Lab. Invest 18:694–695 (1966).Google Scholar
  258. 258.
    O. Stokke, K. Try, and L. Eldjarn, Alpha-oxidation as an alternative pathway for the degradation of branched-chain fatty acids in man, and its failure in patients with Refsum’s disease, Biochim. Biophys. Acta 144:271–284 (1967).Google Scholar
  259. 259.
    K. Try, Indications of only a partial defect in the alpha-oxidation mechanism in Refsum’s disease, Scand. J. Clin. Lab. Invest 20:255–262 (1967).Google Scholar
  260. 260.
    C. E. Mize, J. H. Herndon, Jr., J. P. Blass, G. W. A. Milne, C. Follansbee, P. Laudat, and D. Steinberg, Localization of the oxidative defect in phytanic acid degradation in patients with Refsum’s disease, J. Clin. Invest 48:1033–1040 (1969).Google Scholar
  261. 261.
    J. H. Herndon, Jr., D. Steinberg, and B. W. Uhlendorf, Refsum’s disease: Defective oxidation of phytanic acid in tissue cultures derived from homozygotes and heterozygotes, New Engl. J. Med 281:1034–1038 (1969).Google Scholar
  262. 262.
    D. Steinberg, C. E. Mize, H. J. Herndon, Jr., H. M. Fales, W. K. Engel, and F. Q. Vroom, Phytanic acid in patients with Refsum’s syndrome and response to dietary treatment, Arch. Int. Med 125:75–87 (1970).Google Scholar
  263. 263.
    J. C. Fratantoni, C. W. Hall, and E. F. Neufeld, Hurler and Hunter syndromes — Mutual correction of the defect in cultured fibroblasts, Science 162:570–572 (1968).Google Scholar
  264. 264.
    B. S. Danes and A. G. Beam, Correction of cellular metachromasia in cultured fibroblasts in several inherited mucopolysaccharidoses, Proc. Natl. Acad. Sci 67:357–364 (1970).Google Scholar
  265. 265.
    J. P. Blass, J. Avigan, and D. Steinberg, a-Hydroxy fatty acids in hereditary ataxic poly-neuritis (Refsum’s disease), Biochim. Biophys. Acta 187:36–41 (1969).Google Scholar
  266. 266.
    J. Cammermeyer, Personal communication.Google Scholar
  267. 267.
    J. P. Blass, J. Avigan, and R. G. Clark, Effects of phytol feeding and experimental allergic encephalomyelitis on myelin synthesis, Fed. Proc 28:838 (1969).Google Scholar
  268. 268.
    J. P. Blass, R. A. P. Kark, and W. K. Engel, Clinical studies of a patient with pyruvate decarboxylase deficiency, Arch. Neurol 25:449–460 (1971).Google Scholar
  269. 269.
    J. P. Blass, Unpublished observations.Google Scholar
  270. 270.
    W. Zeman and P. Dyken, Neuronal ceroid-lipofuchsinosis (Batten’s disease) — Relationship to amaurotic familial idiocy, Pediatrics 44:570–583 (1969).Google Scholar
  271. 271.
    W. Zeman, The neuronal ceroid-lipofuchsinoses-Batten’s syndrome, Trans. Am. Soc. Neurochem 2:51 (1971).Google Scholar
  272. 272.
    P. E. Duffy, M. Kornfeld, and K. Suzuki, Neurovisceral storage disease with curvilinear bodies, J. Neuropathol. Exptl. Neurol 27:351–370 (1968).Google Scholar
  273. 273.
    M. E. Richardson and J. H. Bornhofen, Early childhood cerebral lipidosis with prominent myoclonus, Arch. Neurol 18:34–43 (1968).Google Scholar
  274. 274.
    W. S. Harcourt and E. A. Porta, Ceroid, Am. J. Med. Sci 250:324–345 (1965).Google Scholar
  275. 275.
    J. H. Menkes, M. Alter, G. K. Steigleder, D. R. Weaky, and J. H. Sung, A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration, Pediatrics 29:764–779 (1962).Google Scholar
  276. 276.
    M. J. Aguilar, D. L. Chadwick, K. Okuyama, and S. Kamoshita, Kinky hair disease. I. Clinical and pathological features, J. Neuropathol. Exptl. Neurol 25:507–522 (1966).Google Scholar
  277. 277.
    H. Pilz and H. Jatzkewitz, Thin layer Chromatographic determination of C18 and C24sphingomyelin in normal and pathologic brain including a case of Niemann-Pick disease, J. Neurochem 11:603–611 (1964).Google Scholar
  278. 278.
    W. T. Norton and S. Poduslo, cited in W. Kahlke, Metachromatic leukodystrophy, in “Lipids and Lipidoses” (G. Schettler, ed.) pp. 310–331, Springer-Verlag, New York (1967).Google Scholar
  279. 279.
    L. van Bogaert, H. J. Schere, and E. Epstein, “A Cerebral Form of Generalized Cholesterosis,” Masson et Cie, Paris (1937).Google Scholar
  280. 280.
    M. Philippart and L. van Bogaert, Cholestanolosis (cerebrotendinous xanthomatosis). A follow-up study on the original family, Arch. Neurol 21:603–610 (1969).Google Scholar
  281. 281.
    J. H. Menkes, J. R. Schimschock, and P. D. Swanson, Cerebrotendinous xanthomatosis — The storage of cholestanol within the nervous system, Arch. Neurol 19:47–53 (1968).Google Scholar
  282. 282.
    J. H. Menkes, Personal communication.Google Scholar
  283. 283.
    M. Wolman, Involvement of nervous tissue in primary familial xanthomatosis with adrenal calcification, Pathol. Europ 3:259–265 (1968).Google Scholar
  284. 284.
    G. C. Guazzi, J. J. Martin, M. Philippart, H. Roels, C. Hooff, H. van der Eecken, M. J. Delbeke, and L. Urints, Wolman’s disease. Distribution and significance of the central nervous system lesions, Pathol. Europ 3:266–277 (1968).Google Scholar
  285. 285.
    A. C. Crocker, G. F. Vawter, E. B. D. Newhauser, and A. Rosowsky, Wolman’s disease-Three new patients with a recently described lipidosis, Pediatrics 35:627–640 (1965).Google Scholar
  286. 286.
    B. D. Lake and A. D. Patrick, Wolman’s disease — Deficiency of E600 resistant acid esterase activity with storage of lipids in lysosomes, J. Pediat 76:262–266 (1970).Google Scholar
  287. 287.
    M. Philippart, Gargoylism, Rein et Fois: Maladies Nutr 9:245–249 (1966).Google Scholar
  288. 288.
    M. Philippart, Personal communication.Google Scholar
  289. 289.
    D. S. Fredrickson, Classification and features of lipidoses affecting the nervous system, Pathol. Europ 3:121–142 (1968).Google Scholar
  290. 290.
    G. Majno and M. L. Karnovsky, A biochemical and morphological study of myelination and demyelination. II. Lipogenesis in vitro by rat nerves following transection, J. Exptl. Med 108:197–213 (1958).Google Scholar
  291. 291.
    J. Domonkos and L. Heiner, Decomposition of phospholipids during Wallerian degeneration, J. Neurochem 15:87–91 (1968).Google Scholar
  292. 292.
    N. Miani, The relationship between axon and Schwann cell. Phospholipid metabolism of degenerating and regenerating peroneal-tibial nerves of the rabbit in vitro, J. Neurochem 9:525–536 (1952).Google Scholar
  293. 293.
    M. A. Stewart, J. V. Passonneau, and O. H. Lowry, Substrate changes in peripheral nerve during substrate ischaemia and Wallerian degeneration, J. Neurochem 12:719–727 (1965).Google Scholar
  294. 294.
    E. T. Pritchard and R. J. Rossiter, Chemical studies of peripheral nerve during Wallerian degeneration. X. In vitro incorporation of 14C-labelled precursors into Phosphatides, J. Neurochem 3:341–346 (1958).Google Scholar
  295. 295.
    D. Kline, W. L. Magee, E. T. Pritchard, and R. J. Rossiter, Chemical studies of peripheral nerve during Wallerian degeneration. VII. Labelling of phospholipid and cholesterol from carboxy-14C acetate, J. Neurochem 3:52–58 (1958).Google Scholar
  296. 296.
    E. R. Peterson and M. R. Murray, Patterns of peripheral demyelination in vitro, Ann. N.Y. Acad. Sci 122:39–50 (1965).Google Scholar
  297. 297.
    G. Majno and M. L. Karnovsky, Experimental study of diptheritic Polyneuritis in the rabbit and guinea pig. II. The effect of diptheria toxin on lipid biosynthesis by guinea pig nerve, J. Neuropathol. Exptl. Neurol 19:7–24 (1960).Google Scholar
  298. 298.
    N. Malamud, Neuropathology of phenylketonuria, J. Neuropathol. Exptl. Neurol 25: 254–268 (1966).Google Scholar
  299. 299.
    J. H. Menkes, The pathogenesis of mental retardation in phenylketonuria and other inborn errors of amino acid metabolism, Pediatrics 39:297–308 (1967).Google Scholar
  300. 300.
    J. H. Menkes, Cerebral lipids in phenylketonuria, Pediatrics 37:967–978 (1966).Google Scholar
  301. 301.
    J. L. Foote, R. J. Allen, and B. W. Agranoff, Fatty acids in esters and cerebrosides of human brain in phenylketonuria, J. Lipid Res 6:518–524 (1965).Google Scholar
  302. 302.
    L. C. Scheinberg and S. R. Korey, Multiple sclerosis, Ann. Rev. Med 13:411–430 (1962).Google Scholar
  303. 303.
    R. E. Caspary, Demyelinating diseases and allergic encephalomyelitis. A comparative review with special reference to multiple sclerosis, in “Biochemical Aspects of Neurological Disorders” (J. N. Cumings, ed.) pp. 44–61, Blackwell Press, Oxford (1968).Google Scholar
  304. 304.
    Y. Kishimoto, N. S. Radin, W. W. Turtellotte, J. A. Parker, and H. H. Itabashi, Gangliosides and glycerophospholipids in multiple sclerosis white matter, Arch. Neurol 16:44–54 (1967).Google Scholar
  305. 305.
    J. Bernsohn and L. M. Stephanides, Aetiology of multiple sclerosis, Nature 215:821–823 (1967)Google Scholar
  306. 306.
    Editorial: Fatty acids and multiple sclerosis, Lancet 2:708–709 (1967)Google Scholar
  307. 307.
    H. Jatzkewitz, The role of cerebroside sulfuric esters in leukodystrophy and a new method for the quantitative ultramicrodetermination of the brain sphingolipids, in “Brain Lipids and Lipoproteins and the Leucodystrophies” (J. Folch-Pi and H. Bauer, eds.) pp. 147–152, Elsevier, New York (1963).Google Scholar
  308. 308.
    H. Jatzkewitz, A new method for quantitative ultramicrodetermination of sphingolipids from brain, Z. Physiol. Chem 336:25–39 (1964).Google Scholar
  309. 309.
    C. M. Plum and S. E. Hansen, The cerebral lipids in multiple sclerosis, Acta Psychiat. Neurol. Scand 141:83–92 (1960).Google Scholar
  310. 310.
    J. N. Cumings and H. Goodwin, Sphingolipids and phospholipids of myelin in multiple sclerosis, Lancet 2:664–665 (1968).Google Scholar
  311. 311.
    H. P. Schwarz, L. Dreisbach, M. Barrionevo, A. Kleschik, and I. Kostyk, Chromatography of sphingolipids in human brain, J. Lipid Res 2:208–214 (1961).Google Scholar
  312. 312.
    P. J. Riekkinen, J. Palo, A. U. Arstila, H. J. Savolainen, U. K. Rinne, E. K. Kaualo, and H. Frey, Protein composition of multiple sclerosis myelin. Arch. Neurol 24:545–549 (1971).Google Scholar
  313. 313.
    B. Gerstl, M. J. Kahnke, J. K. Smith, M. G. Tavastjerna, and R. B. Hayman, Brain lipids in multiple sclerosis and other diseases, Brain 84:310–319 (1961).Google Scholar
  314. 314.
    R. W. R. Baker, R. H. S. Thompson, and K. J. Zilkha, Fatty-acid composition of brain lecithins in multiple sclerosis, Lancet 1:26–27 (1963).Google Scholar
  315. 315.
    R. W. R. Baker, R. H. Thompson, and K. J. Zilkha, Serum fatty acids in multiple sclerosis, J. Neurol. Neurosurg. Psychiat 27:408–414 (1964).Google Scholar
  316. 316.
    R. W. R. Baker, R. H. S. Thompson, and K. J. Zilkha, Changes in the amounts of linoleic acid in the serum of patients with multiple sclerosis, J. Neurol. Neurosurg. Psychiat 29: 95–98 (1966).Google Scholar
  317. 317.
    R. W. R. Baker, H. Sanders, R. H. S. Thompson, and K. J. Zilkha, Serum cholesterol linoleate levels in multiple sclerosis, J. Neurol. Neurosurg. Psychiat 28:212–217 (1965).Google Scholar
  318. 318.
    S. Gul, A. D. Smith, R. H. S. Thompson, H. Payling-Wright, and K. J. Zilkha, Fatty acid composition of phospholipids from platelets and erythrocytes in multiple sclerosis, J. Neurol. Neurosurg. Psychiat 33:506–510 (1970).Google Scholar
  319. 319.
    J. N. Cumings, R. C. Shortman, and T. Skirbic, Lipid studies in blood and brain in multiple sclerosis and motor neurone disease, J. Clin. Pathol 18:611–644 (1965).Google Scholar
  320. 320.
    J. F. Mead, Personal communication.Google Scholar
  321. 321.
    M. G. McCall, T. L. G. Brereton, A. Dawson, K. Millingen, J. M. Sutherland, and E. D. Acheson, Frequency of multiple sclerosis in three Australian cities — Perth, Newcastle and Hobart. J. Neurol. Neurosurg. Psychiat 31:1–9 (1968).Google Scholar
  322. 322.
    D. S. P. Patterson, S. Terlecki, J. T. Done, D. Sweasey, and C. N. Herbert, Neurochemistry of the spinal cord in experimental border disease (hypomyelinogenesis congenita) of lambs, J. Neurochem 18: 883–894 (1971).Google Scholar
  323. 323.
    D. H. Henneman, M. D. Altschule, R. M. Gonce, and L. Alexander, Carbohydrate metabolism in brain diseasc — glucose metabolism in multiple sclerosis, Arch. Neurol. Psychiat 72: 688–695 (1954).Google Scholar
  324. 324.
    I. C. K. McKenzie and G. R. Webster, Studies on intermediate carbohydrate metabolism in multiple sclerosis, J. Neurol. Neurosurg. Psychiat 23: 127–132 (1960).Google Scholar
  325. 325.
    A. E. Hansen, R. A. Stewart, G. Hughes, and L. Soderhjelm, Relation of linoleic acid to infant feeding, Acta Paediat 51: (Suppl. 137), 5–41 (1962).Google Scholar
  326. 326.
    R. Caren and L. Carbo, Plasma fatty acids in pancreatic cystic fibrosis and liver disease, J. Clin. Endocrinol 26:470–477 (1966).Google Scholar
  327. 327.
    S. Futterman, J. L. Downer, and A. Hendrickson, Effect of essential fatty acid deficiency on the fatty acid composition, morphology and electroretinographic response of the retina, Invest. Ophthalmol 10:151–156 (1971).Google Scholar
  328. 328.
    D. N. Menton, The effects of essential fatty acid deficiency on the fine structure of mouse skin, J. Morphol 132:181–205 (1970).Google Scholar
  329. 329.
    C. Galli, H. B. White, and R. Paoletti, Brain lipid modifications induced by essential fatty acid deficiency in growing male and female rats, J. Neurochem 17:347–355 (1970).Google Scholar
  330. 330.
    J. Clausen and J. Møller, Allergic encephalomyelitis induced by brain antigen after deficiency in polyunsaturated fatty acids during myelination, Intern. Arch. Allergy 36: 224–233 (1969).Google Scholar
  331. 331.
    C. O. Walker, D. W. McCandless, J. D. McGarry, and S. Schenker, Cerebral energy metabolism in short-chain fatty acid induced coma, J. Lab. Clin. Med 76:569–583 (1970).Google Scholar
  332. 332.
    W. K. Engel, N. A. Vick, C. J. Glueck, and R. I. Levy, A skeletal muscle disorder associated with intermittent symptoms and a possible defect of lipid metabolism, New Engl. J. Med 282:697–704 (1970).Google Scholar
  333. 333.
    R. Bressler, Carnitine and the twins, New Engl. J. Med 282:745–746 (1970).Google Scholar
  334. 334.
    D. S. Fredrickson, Familial high density lipoprotein deficiency: Tangier disease, in “The Metabolic Basis of Inherited Disease” (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.) pp. 486–508, McGraw-Hill, New York (1966).Google Scholar
  335. 335.
    W. Kahlke, Tangier disease, in “Lipids and Lipidoses” (G. Schettler, ed) pp. 401–411, Springer-Verlag, New York (1967).Google Scholar
  336. 336.
    J. F. Schwarz, L. P. Rowland, H. Eder, P. A. Marks, E. F. Osserman, E. Hirschberg, and H. Anderson, Bassen-Kornzweig syndrome — Deficiency of serum β-lipoprotein, Arch. Neurol 8:438–454 (1963).Google Scholar
  337. 337.
    W. K. Engel, J. D. Dorman, R. I. Levy, and D. S. Fredrickson, Neuropathy in Tangier disease, Arch. Neurol 17:1–9 (1967).Google Scholar
  338. 338.
    A. M. Gotto, R. I. Levy, K. John, and D. S. Fredrickson, On the protein defect in a-β-lipoproteinemia, New Engl. J. Med 289:813–818 (1971).Google Scholar
  339. 339.
    D. S. Fredrickson, R. I. Levy, and F. T. Lindgren, A comparison of heritable abnormal lipoprotein patterns as defined by 2 different techniques, J. Clin. Invest 47:2446–2457 (1969).Google Scholar
  340. 340.
    H. Mars, L. A. Lewis, A. L. Robertson, A. Butkus, and G. H. Williams, Familial hypo-β-lipoproteinemia: A genetic disorder of lipid metabolism with nervous system involvement, Am. J. Med 46:886–900 (1969).Google Scholar
  341. 341.
    P. T. Kuo and D. R. Bassett, Blood and tissue lipids in a family with hypo-β-Mipoproteinemia, Circulation 26:660 (1962).Google Scholar
  342. 342.
    G. B. Phillips, Quantitative Chromatographic studies of plasma and red blood cell lipids in patients with acanthocytosis, J. Lab. Clin. Med 59:357–363 (1962).Google Scholar
  343. 343.
    P. Ways, C. F. Reed, and D. J. Hanahan, Abnormalities of erythrocyte and plasma lipids in acanthocytosis, J. Clin. Invest 42:1248–1260 (1963).Google Scholar
  344. 344.
    J. W. Estes, T. J. Morley, I. M. Levine, and C. P. Emerson, A new hereditary acanthocytosis syndrome, Am. J. Med 42:868–881 (1967).Google Scholar
  345. 345.
    I. M. Levine, J. W. Estes, and J. M. Looney, Hereditary neurologic disease with acanthocytosis, Arch. Neurol 19:403–409 (1968).Google Scholar
  346. 346.
    E. M. R. Critchley, D. B. Clark, and A. Wikler, Acanthocytosis and neurologic disorder without a-β-lipoproteinemia, Arch. Neurol 18: 134–140 (1968).Google Scholar
  347. 347.
    R. L. Sidman, M. C. Green, and S. H. Appel, “Catalog of the Neurologic Mutants of the Mouse,” Harvard University Press, Cambridge, Mass. (1965).Google Scholar
  348. 348.
    S. Pollet, J. M. Bourre, G. Dubois, and N. Baumann, Biosynthesis of long chain fatty acids in mouse brain microsomes, Proc. Third Intern. Meeting Intern. Soc. Neurochem., Budapest, p. 250 (1971).Google Scholar
  349. 349.
    N. A. Baumann, M. L. Harpin, and J. M. Bourre, Long chain fatty acid formation — Key step in myelination studied in mutant mice, Nature 227:960–961 (1970).Google Scholar
  350. 350.
    H. Singh, N. Spritz, and B. Geyer, Brain myelin in the Quaking mouse, J. Lipid Res 12: 473–481 (1971).Google Scholar
  351. 351.
    R. M. C. Dawson and N. Clarke, Cerebral phospholipids in “Quaking” mice, J. Neuroehem 18:1313–1316(1971).Google Scholar
  352. 352.
    G. Hauser, J. Eichberg, and S. Jacobs, Polyphosphoinositide levels and biosynthesis in Quaking mouse brain, Biochem. Biophys. Res. Commun 43:1072–1080 (1971).Google Scholar
  353. 353.
    N. M. Neskovic, J. L. Nussbaum, and P. Mandel, Glycolipid metabolism in a myelination disorder of Jimpy and Quaking mice, Brain Res 21:39–53 (1970).Google Scholar
  354. 354.
    E. Constantino-Ceccarini and P. Morell, Quaking mice. In vitro studies of brain sphingolipid biosynthesis, Brain Res 29:75–84 (1971).Google Scholar
  355. 355.
    T. Kurihara, J. L. Nussbaum, and P. Mandel, 2′ 3′-cyclic nucleotide 3′-phosphohydrolase in the brain of the “Jimpy” mouse, a mutant with deficient myelination, Brain Res 13: 401–403 (1969).Google Scholar
  356. 356.
    J. L. Nussbaum, N. Neskovic, and P. Mandel, Fatty acid composition of phospholipids and glycolipids in Jimpy mouse brain, J. Neurochem 18:1529–1543 (1971).Google Scholar
  357. 357.
    J Rabinowitz, Enzymic studies on dystrophic mice and their litter-mates (lipogenesis and cholesterol-genesis), Biochim. Biophys. Acta 43:337–338 (1960).Google Scholar
  358. 358.
    W. L. Nyhan, ed., “Amino Acid Metabolism and Genetic Variation,” McGraw-Hill, New York (1968).Google Scholar
  359. 359.
    P. Lampert and S. Carpenter, Electron microscopic studies on the vascular permeability and the mechanism of demyelination in experimental allergic encephalitis, J. Neuropathol. Exptl. Neurol 24:11–24 (1965).Google Scholar
  360. 360.
    D. Steinberg, Phytanic acid storage disease (Refsum’s syndrome), in “The Metabolie Basis of Inherited Disease” (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds), McGraw-Hill, New York (1972).Google Scholar
  361. 361.
    H. J. Kayden, T. J. Reagan, C. E. Mize, J. H. Herndon, Jr., and D. Steinberg, Diffuse cerebral sclerosis erroneously reported as Refsum’s syndrome, Arch, Neurol 28:304 (1973).Google Scholar
  362. 362.
    D. Hutton and D. Steinberg, Identification of Propionate as a degradation product of phytanic acid oxidation in rat and human tissues, J. Biol. Chem (in press).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • John P. Blass
    • 1
  • Daniel Steinberg
    • 2
  1. 1.Departments of Biological Chemistry and Psychiatry and the Mental Retardation CenterUniversity of California, Los AngelesLos AngelesUSA
  2. 2.Division of Metabolic Disease, Department of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations