Advertisement

Experimental Allergic Encephalomyelitis

  • Marian W. Kies

Abstract

This chapter is a series of discussions based on research in experimental demyelination. The discussions more or less follow the development of research on experimental allergic encephalomyelitis (EAE) as it evolved from our studies and those of others in the field. It began quite simply with the desire to clarify the etiology and pathogenesis of EAE; it appeared that this information was not only necessary but would be sufficient to permit the more difficult analysis of the etiology and pathogenesis of the human illness, multiple sclerosis. Although we were not committed to the thesis that the two diseases were one and the same entity, it seemed to us that they must share some basic mechanism.

Keywords

Multiple Sclerosis Myelin Basic Protein Basic Protein Experimental Allergic Encephalomyelitis Acute Disseminate Encephalomyelitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Kibler and R. Shapira, Isolation and properties of an encephalitogenic protein from bovine, rabbit, and human central nervous system tissue, J. Biol. Chem 243:281–286 (1968).Google Scholar
  2. 2.
    E. H. Eylar and G. A. Hashim, Allergic encephalomyelitis: The structure of the encephalitogenic determinant, Proc. Natl. Acad. Sci 61:644–650 (1968).Google Scholar
  3. 3.
    E. H. Eylar and G. A. Hashim, Allergic encephalomyelitis: Cleavage of the C-tryptophyl bond in the encephalitogenic basic protein from bovine myelin, Arch. Biochem. Biophys 131:215–222 (1969).Google Scholar
  4. 4.
    P. R. Carnegie, N-terminal sequence of an encephalitogenic protein from human myelin, Biochem. J 111:240–242(1969).Google Scholar
  5. 5.
    G. A. Hashim and E. H. Eylar, The structure of the terminal regions of the encephalitogenic Al protein, Biochem. Biophys. Res. Commun 34:770–776 (1969).Google Scholar
  6. 6.
    R. F. Kibler, R. Shapira, S. McKneally, J. Jenkins, P. Seiden, and F. Chou, Encephalitogenic protein: Structure, Science 164:577–580 (1969).Google Scholar
  7. 7.
    P. R. Carnegie, Digestion of an Arg-Pro bond by trypsin in the encephalitogenic basic protein of human myelin, Nature 223:958–959 (1969).Google Scholar
  8. 8.
    E. H. Eylar and G. A. Hashim, The structure of the encephalitogenic protein of myelin, Second Internat. Meeting Internat. Soc. Neurochem., Milan (R. Paoletti, R. Famuagalli, and C. Galli, eds.) pp. 53-54 (1969).Google Scholar
  9. 9.
    G. A. Hashim and E. H. Eylar, The structure of the terminal regions of the encephalitogenic basic protein from bovine myelin, Arch. Biochem. Biophys 135:321–333 (1969).Google Scholar
  10. 10.
    E. H. Eylar J. Caccam, J. Jackson, F. C. Westall, and A. B. Robinson, Experimental allergic encephalomyelitis: Synthesis of disease-inducing site of the basic protein, Science 168:1220–1223 (1970).Google Scholar
  11. 11.
    V. A. Lennon, A. V. Wilks, and P. R. Carnegie, Immunologic properties of the main encephalitogenic peptide from the basic protein of human myelin, J. Immunol 105:1223–1229 (1970).Google Scholar
  12. 12.
    E. H. Eylar, Amino acid sequence of the basic protein of the myelin membrane, Proc. Natl. Acad. Sci 67:1425–1431 (1970).Google Scholar
  13. 13.
    P. R. Carnegie, Properties, structure and possible neuroreceptor role of the encephalitogenic protein of human brain, Nature 229:25–28 (1971).Google Scholar
  14. 14.
    F. C. Westall, A. B. Robinson, J. Caccam, J. Jackson, and E. H. Eylar, Essential chemical requirements for induction of allergic encephalomyelitis, Nature 229:22–24 (1971).Google Scholar
  15. 15.
    G. S. Baldwin and P. R. Carnegie, Specific enzymatic methylation of an arginine in the experimental allergic encephalomyelitis protein from human myelin, Science 171:579–581 (1971).Google Scholar
  16. 16.
    S. Brostoff and E. H. Eylar, Localization of methylated arginine in the Al protein from myelin, Proc. Natl. Acad. Sci 68:765–769 (1971).Google Scholar
  17. 17.
    E. H. Eylar, F. C. Westall, and S. Brostoff, Allegic encephalomyelitis. An encephalitogenic peptide derived from the basic protein of myelin, J. Biol. Chem 246:3418–3424 (1971).Google Scholar
  18. 18.
    P. R. Burnett and E. H. Eylar, Allergic encephalomyelitis. Oxidation and cleavage of the single ryptophan residue of the Al protein from bovine and human myelin, J. Biol. Chem 246: 3425–3430 (1971).Google Scholar
  19. 19.
    P. R. Carnegie, Amino acid sequence of the encephalitogenic basic protein from human myelin, Biochem. J 123:57–67 (1971).Google Scholar
  20. 20.
    G. S. Baldwin and P. R. Carnegie, Isolation and partial characterization of methylated arginines from the encephalitogenic basic protein of myelin, Biochem. J 123:69–74 (1971).Google Scholar
  21. 21.
    R. Shapira, S. S. McKneally, F. Chou, and R. F. Kibler, Encephalitogenic fragment of myelin basic protein. Amino acid sequence of bovine, rabbit, guinea pig, monkey, and human fragments, J. Biol. Chem 246:4630–4640 (1971).Google Scholar
  22. 22.
    R. Shapira, F. C.-H. Chou, S. McKneally, E. Urban, and R. F. Kibler, Biological activity and synthesis of an encephalitogenic determinant, Science 173:736–738 (1971).Google Scholar
  23. 23.
    E. H. Eylar, S. Brostoff, G. Hashim, J. Caccam, and P. Burnett, Basic Al protein of the myelin membrane. The complete amino acid sequence, J. Biol. Chem 246:5770–5784 (1971).Google Scholar
  24. 1.
    R. Koritschoner and F. Schweinburg, Clinical and experimental observations on paralysis after injection of rabies vaccine, Z. Immunitätsforsch 42:217–283 (1925).Google Scholar
  25. 2.
    T. M. Rivers, D. H. Sprunt, and G. P. Berry, Observations on attempts to produce acute disseminated encephalomyelitis in monkeys, J. Exptl. Med 58:39–53 (1933).Google Scholar
  26. 3.
    T. M. Rivers and F. F. Schwentker, Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys, J. Exptl. Med 61:689–702 (1935).Google Scholar
  27. 4.
    E. A. Kabat, A. Wolf, and A. E. Bezer, Rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of brain tissue with adjuvants, Science 104: 362–363 (1946)Google Scholar
  28. E. A. Kabat, A. Wolf, and A. E. Bezer, The rapid production of acute disseminated encephalomyelitis in rhesus monkey by injection of heterologous and homologous brain tissue with adjuvants, J. Exptl. Med 85:117–130 (1947)Google Scholar
  29. E. A. Kabat, A. Wolf, and A. E. Bezer, Studies on the acute disseminated encephalomyelitis in rhesus monkeys, III, J. Exptl. Med 88:417–426 (1948).Google Scholar
  30. 5.
    I. M. Morgan, Allergic encephalomyelitis in monkeys in response to injection of normal monkey cord, J. Bacteriol 51:614–615 (1946)Google Scholar
  31. I. M. Morgan, Allergic encephalomyelitis in monkeys in response to injection of normal monkey nervous tissue, J. Exptl. Med 85: 131–194 (1947).Google Scholar
  32. 6.
    J. Freund, Some aspects of active immunization, Ann. Rev. Microbiol 1:291–308 (1947).Google Scholar
  33. 7.
    J. Freund, E. R. Stern, and T. M. Pisani, Isoallergic encephalomyelitis and radiculitis in guinea pigs after one injection of brain and mycobacteria in water-in-oil emulsion, J. Immunol 57:179–194 (1947).Google Scholar
  34. 8.
    E. C. Alvord, Jr., in “Handbook of Clinical Neurology” (P. J. Vinken and G. W. Bruyn, eds.) Vol. 9, pp. 500–571, North Holland Publishing Co., Amsterdam (1970).Google Scholar
  35. 9.
    S. Wright, The Effect of Inbreeding and Cross-Breeding on Guinea Pigs, U.S. Department of Agriculture Bulletin No. 1090 (1922).Google Scholar
  36. 10.
    S. Levine and E. J. Wenk, Induction of experimental allergic encephalomyelitis in rats without the aid of adjuvants, Ann. N.Y. Acad. Sci 122:209–224 (1965).Google Scholar
  37. 11.
    B. H. Waksman, in “ ‘Allergic’ Encephalomyelitis” (M. W. Kies and E. C. Alvord, Jr., eds.) pp. 263–272, Charles C. Thomas, Springfield, Ill. (1959).Google Scholar
  38. 12.
    E. Witebsky, in “ ‘Allergic’ Encephalomyelitis” (M. W. Kies and E. C. Alvord, Jr., eds.) pp. 321–334, Charles C. Thomas, Springfield, Ill. (1959).Google Scholar
  39. 13.
    B. Niedieck, E. Kuwert, O. Palacios, and O. Drees, Immunochemical and serological studies on the lipid hapten of myelin with relationship to experimental allergic enceph-alomyelitis (EAE), Ann. N.Y. Acad. Sci 122:266–276 (1965).Google Scholar
  40. 14.
    M. W. Kies and E. C. Alvord, Jr., in “ ‘Allergic’ Encephalomyelitis” (M. W. Kies and E. C. Alvord, Jr., eds.) pp. 293–299, Charles C Thomas, Springfield, Ill. (1959).Google Scholar
  41. 15.
    J. Folch and M. B. Lees, Proteolipides, a new type of tissue lipoproteins, J. Biol. Chem 191: 807–817 (1951).Google Scholar
  42. 16.
    E. Roboz, N. Henderson, and M. W. Kies, A collagen-like compound isolated from bovine spinal cord — I, J. Neurochem 2:254–260 (1958).Google Scholar
  43. 17.
    M. W. Kies, E. C. Alvord, Jr., and E. Roboz, The allergic encephalomyelitic activity of a collagen-like compound isolated from bovine spinal cord — II, J. Neurochem 2:261–264 (1958).Google Scholar
  44. 18.
    M. W. Kies, J. B. Murphy, and E. C. Alvord, Jr., in “Chemical Pathology of the Nervous System” (J. Folch-Pi, ed.) pp. 197–204, Pergamon Press, London (1961).Google Scholar
  45. 19.
    E. C. Alvord, Jr., and M. W. Kies, Clinico-pathologic correlations in experimental allergic encephalomyelitis — II. Development of an index for quantitative assay of encephalitogenic activity of “antigens,” J. Neuropathol. Exptl. Neurol 18:447–457 (1959).Google Scholar
  46. 20.
    B. H. Waksman, H. Porter, M. B. Lees, R. D. Adams, and J. Folch, A study of the chemical nature of components of bovine white matter effective in producing allergic encephalomyelitis in the rabbit, J. Exptl. Med 100:451–471 (1954).Google Scholar
  47. 21.
    R. F. Kibler, R. H. Fox, and R. Shapira, Isolation of a highly purified encephalitogenic protein from spinal cord, Nature 204:1273–1275 (1964).Google Scholar
  48. 22.
    S. Levine, in “Immunological Disorders of the Nervous System” (L. P. Rowland, ed.) Proc. Ass. Res. Nerv. Ment. Dis 49:33–46 (1971).Google Scholar
  49. 23.
    M. W. Kies, S. Gordon, R. H. Laatsch, and E. C. Alvord, Jr., in “Fourth International Congress for Neuropathology,” Vol. 1: “Histochemistry and Biochemistry,” pp. 20–29, Georg Thieme Verlag, Stuttgart (1962).Google Scholar
  50. 24.
    R. H. Laatsch, M. W. Kies, S. Gordon, and E. C. Alvord, Jr., The encephalitogenic activity of myelin isolated by ultracentrifugation, J. Exptl. Med 115:777–788 (1962).Google Scholar
  51. 25.
    E. H. Eylar, J. Salk, G. C. Beveridge, and L. V. Brown, Experimental allergic encephalomyelitis. An encephalitogenic basic protein from bovine myelin, Arch. Biochem. Biophys 132:34–48 (1969).Google Scholar
  52. 26.
    M. W. Kies, J. B. Murphy, and E. C. Alvord, Jr., Fractionation of guinea pig brain proteins with encephalitogenic activity, Fed. Proc 19:207 (1960).Google Scholar
  53. 27.
    G. E. Deibler, R. E. Martenson, and M. W. Kies, Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species, Prep. Biochem 2(2): 139–165 (1972).Google Scholar
  54. 28.
    M. W. Kies, E. B. Thompson, and E. C. Alvord, Jr., Studies on myelin protein-lipid complexes, Abst. Vol. Sixth Internat. Congr. Biochem 8:53 (1964).Google Scholar
  55. 29.
    L. F. Eng, F.-C. Chao, B. Gerstl, D. Pratt, and M. G. Tavaststjerna, The maturation of human white matter myelin. Fractionation of the myelin membrane protein, Biochemistry 7:4455–4465 (1968).Google Scholar
  56. 30.
    L. Autilio, Fractionation of myelin proteins, Fed. Proc 25:764 (1966).Google Scholar
  57. 31.
    R. E. Martenson and F. N. LeBaron, Studies on the acid-extractable proteins of bovine brain white matter, J. Neurochem 13:1469–1479 (1966).Google Scholar
  58. 32.
    M. W. Kies, E. C. Alvord, Jr., R. E. Martenson, and F. N. LeBaron, Encephalitogenic activity of bovine basic proteins, Science 151:821–822 (1966).Google Scholar
  59. 33.
    L. Ornstein, Disc electrophoresis — I. Background and theory, Ann. N. Y. Acad. Sci 121(2): 321–349 (1964)Google Scholar
  60. B. J. Davis, Disc electrophoresis — II. Method and application to human serum proteins, Ann. N.Y. Acad. Sci 121(2):404–427 (1964).Google Scholar
  61. 34.
    R. A. Reisfeld, U. J. Lewis, and D. E. Williams, Disk electrophoresis of basic proteins and Peptides on Polyacrylamide gels, Nature (London) 195:281–283 (1962).Google Scholar
  62. 35.
    R. E. Martenson, G. E. Deibler, and M. W. Kies, Myelin basic proteins of the rat central nervous system. Purification, encephalitogenic properties, and amino acid compositions, Biochim. Biophys. Acta 200:353–362 (1970).Google Scholar
  63. 36.
    E. W. Johns, The electrophoresis of histones in Polyacrylamide gel and their quantitative determination, Biochem. J 104:78–82 (1967).Google Scholar
  64. 37.
    R. E. Martenson, G. E. Deibler, and M. W. Kies, Electrophoretic characterization of basic proteins in acid extracts of central nervous system tissue, J. Neurochem 18:2417–2426 (1971).Google Scholar
  65. 38.
    R. E. Martenson and M. K. Gaitonde, Electrophoretic analysis of the highly basic proteins of the rat brain fraction which induce experimental allergic encephalomyelitis, J. Neurochem 16:333–347 (1969)Google Scholar
  66. R. E. Martenson and M. K. Gaitonde, Comparative studies of highly basic proteins of ox brain and rat brain. Microheterogeneity of basic encephalitogenic (myelin) protein, J. Neurochem 16:889–898 (1969).Google Scholar
  67. 39.
    R. E. Martenson, G. E. Deibler, and M. W. Kies, in “Immunological Disorders of the Nervous System” (L. P. Rowland, ed.) Proc. Ass. Res. Nerv. Ment. Dis 49:76–93 (1971).Google Scholar
  68. 40.
    G. S. Baldwin and P. R. Carnegie, Isolation and partial characterization of methylated arginines from the encephalitogenic basic protein of myelin, Biochem. J 123:69–74 (1971).Google Scholar
  69. 41.
    G. E. Deibler and R. E. Martenson, Determination of methylated basic amino acids with the amino acid analyzer. Application to total acid hydrolyzates of myelin basic proteins, J. Biql. Chem 248:2387–2391 (1973)Google Scholar
  70. G. E. Deibler and R. E. Martenson, Chromatographic fractionation of myelin basic protein. Partial characterization and methylarginine contents of the multiple forms, J. Biol. Chem 248:2392–2396 (1973).Google Scholar
  71. 42.
    E. R. Einestein, D. M. Robertson, J. M. DiCaprio, and W. S. Moore, The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity, J. Neurochem 9:353–361 (1962).Google Scholar
  72. 43.
    H. C. Rauch and S. Raffel, Immunofluorescent localization of encephalitogenic protein in myelin, J. Immunol 92:452–455 (1964).Google Scholar
  73. 44.
    A. Nakao, W. J. Davis, and E. R. Einstein, Basic proteins from the acidic extract of bovine spinal cord. I. Isolation and characterization; II. Encephalitogenic, immunologie and structural interrelationships, Biochim. Biophys. Acta 130:163–170; 171-179 (1966).Google Scholar
  74. 45.
    H. C. Rauch and S. Raffel, Antigen uptake by specifically reactive cells in experimental allergic encephalomyelitis, N.Y. Acad. Sci 122:297–307 (1965).Google Scholar
  75. 46.
    H. C. Rauch and E. Roboz-Einstein, in “Pathogenesis and Etiology of Demyelinating Diseases” (K. Burdzy and P. Kallos, eds.) Add. Internat. Arch. Allergy 36:376–386 (1969).Google Scholar
  76. 47.
    S. Hruby, E. C. Alvord, Jr., and C. M. Shaw, Relationships between antibodies and experimental allergic encephalomyelitis. I. Production of hemagglutinating and gelprecipitating antibodies in rabbits and guinea pigs, Internat. Arch. Allergy 36:599–611 (1969).Google Scholar
  77. 48.
    M. W. Kies and E. A. Bump, A rapid qualitative test for detection of precipitating antibody to myelin basic protein, Res. Commun. in Chem. Pathol. Pharmacol 4:569–579 (1972).Google Scholar
  78. 49.
    R. S. Farr, A quantitative immunochemical measure of the primary interaction between I*BSA and antibody, J. Infect. Dis 103:239–262 (1958).Google Scholar
  79. 50.
    R. P. Lisak, R. G. Heinze, and M. W. Kies, Relationships between antibodies and experimental allergic encephalomyelitis. III. Coprecipitation and radioautography of 125I-labeled antigen-antibody complexes for detection of antibodies to myelin basic protein, Internat. Arch. Allergy 37:621–629 (1970).Google Scholar
  80. 51.
    M. W. Kies, Chemical studies on an encephalitogenic protein from guinea pig brain, Ann. N.Y. Acad. Sci 122:161–170 (1965).Google Scholar
  81. 52.
    M. W. Kies, Physico-chemical studies on the encephalitogenic protein from guinea pig brain, Proc. Fifth Internat. Congr. Neuropathol., Zurich (Internat. Congr. Series No. 100) p.p 257-258 (1965).Google Scholar
  82. 53.
    M. W. Kies and S. Schwimmer, Observations on Proteinase in brain, J. Biol. Chem 145: 685–691 (1942).Google Scholar
  83. 54.
    R. F. Kibler and R. Shapira, Isolation and properties of an encephalitogenic protein from bovine, rabbit, and human central nervous system tissue, J. Biol. Chem 243:281–286 (1968).Google Scholar
  84. 55.
    E. H. Eylar and G. A. Hashim, Allergic encephalomyelitis: The structure of the encephalitogenic determinant, Proc. Natl. Acad. Sci 61:644–650 (1968).Google Scholar
  85. 56.
    P. R. Carnegie, Digestion of an Arg-Pro bond by trypsin in the encephalitogenic basic protein of human myelin, Nature 223:958–959 (1969).Google Scholar
  86. 57.
    E. H. Eylar and G. A. Hashim, The structure of the encephalitogenic protein of myelin, Second Internat. Meeting Internat. Soc. Neurochem., Milan (R. Paoletti, R. Famuagalli, and C. Galli, eds.) pp. 53-54 (1969).Google Scholar
  87. 58.
    R. F. Kibler, R. Shapira, S. McKneally, J. Jenkins, P. Seiden, and F. Chou, Encephalitogenic protein: Structure, Science 164:577–580 (1969).Google Scholar
  88. 59.
    R. Shapira, S. S. McKneally, F. Chou, and R. F. Kibler, Encephalitogenic fragment of myelin basic protein. Amino acid sequence of bovine, rabbit, guinea pig, monkey, and human fragments, J. Biol. Chem 246:4630–4640 (1971).Google Scholar
  89. 60.
    P. R. Carnegie, N-terminal sequence of an encephalitogenic protein from human myelin, Biochem. J 111:240–242 (1969).Google Scholar
  90. 61.
    G. A. Hashim and E. H. Eylar, The structure of the terminal regions of the encephalitogenic basic protein from bovine myelin, Arch. Biochem. Biophys 135:324–333 (1969).Google Scholar
  91. 62.
    E. H. Eylar and G. A. Hashim, Allergic eneephalomyelitis: Cleavage of the C-tryptophyl bond in the encephalitogenic basic protein from bovine myelin, Arch. Biochem. Biophys 131:215–222 (1969).Google Scholar
  92. 63.
    G. A. Hashim and E. H. Eylar, The structure of the terminal regions of the encephalitogenic Al protein, Biochem. Biophys. Res. Commun 34:770–776 (1969).Google Scholar
  93. 64.
    E. H. Eylar, Amino acid sequence of the basic protein of the myelin membrane, Proc. Natl. Acad. Sci 67:1425–1431 (1970).Google Scholar
  94. 65.
    M. W. Kies, E. B. Thompson, and E. C. Alvord, Jr., The relationship of myelin proteins to experimental allergic eneephalomyelitis, Ann. N.Y. Acad. Sci 122:148–160 (1965).Google Scholar
  95. 66.
    M. W. Kies and E. C. Alvord, Jr., in “Pathogenesis and Etiology of Demyelinating Diseases” (K. Burdzy and P. Kallos, eds.) Add. Internat. Arch. Allergy 36:182–202 (1969).Google Scholar
  96. 67.
    R. E. Martenson, G. E. Deibler, and M. W. Kies, Comparison of amino-acid sequences of hypothalamic peptide, brain-specific histone and myelin basic protein, Nature New Biol 234:87–89 (1971).Google Scholar
  97. 68.
    M. W. Kies, R. E. Martenson, and G. E. Deibler, in “Structural and Functional Proteins of the Nervous System” (A. N. Davison, I. G. Morgan, and P. Mandel, eds.) pp. 201–214 Plenum Press, New York (1972).Google Scholar
  98. 69.
    R. E. Martenson, G. E. Deibler, M. W. Kies, S. Levine, and E. C. Alvord, Jr., Myelin basic proteins of mammalian and submammalian vertebrates: Encephalitogenic activities in guinea pigs and rats, J. Immunol 109:261–270 (1972).Google Scholar
  99. 70.
    H. C. Agrawall, N. L. Banik, A. H. Bone, M. L. Cuzner, A. N. Davison, and R. F. Mitchel, The chemical composition of dogfish myelin, Biochem. J 124:70P (1971).Google Scholar
  100. 71.
    C. W. Cotman and H. R. Mahler, Resolution of insoluble proteins in rat brain subcellular fractions, Arch. Biochem. Biophys 120:384–396 (1967).Google Scholar
  101. 72.
    E. Mehl, Comparison of the protein composition of myelin from different species, Abst. First Internat. Congr. Neurochem., Strasbourg, p. 154 (1967).Google Scholar
  102. 73.
    R. E. Martenson, G. E. Deibler, and M. W. Kies, Extraction of rat myelin basic protein free of other basic proteins of whole central nervous system tissue. An analysis of its electrophoretic heterogeneity, J. Biol. Chem 244:4268–4272 (1969).Google Scholar
  103. 74.
    R. E. Martenson, G. E. Deibler, M. W. Kies, S. S. McKneally, R. Shapira, and R. F. Kibler, Differences between the two myelin basic proteins of the rat central nervous system: A deletion in the smaller protein, Biochim. Biophys. Acta 263:193–203 (1972).Google Scholar
  104. 75.
    R. H. Swanborg and L. S. Amesse, Experimental allergic encephalomyelitis: Species variability of the encephalitogenic determinant, J. Immunol 107:281–283 (1971).Google Scholar
  105. 76.
    V. A. Lennon, A. V. Wilks, and P. R. Carnegie, Immunologic properties of the main encephalitogenic peptide from the basic protein of human myelin, J. Immunol 105:1223–1229 (1970).Google Scholar
  106. 77.
    E. H. Eylar, J. Caccam, J. Jackson, F. C. Westall, and A. B. Robinson, Experimental allergic encephalomyelitis: Synthesis of disease-inducing site of the basic protein, Science 168:1220–1223 (1970).Google Scholar
  107. 78.
    R. Shapira, F. C.-H. Chou, S. McKneally, E. Urban, and R. F. Kibler, Biological activity and synthesis of an encephalitogenic determinant, Science 173:736–738 (1971).Google Scholar
  108. 79.
    P. R. Burnett and E. H. Eylar, Allergic encephalomyelitis. Oxidation and cleavage of the single tryptophan residue of the Al protein from bovine and human myelin, J. Biol. Chem 246:3425–3430 (1971).Google Scholar
  109. 80.
    E. H. Eylar, F. C. Westall, and S. Brostoff, Allergic encephalomyelitis. An encephalitogenic peptide derived from the basic protein of myelin, J. Biol. Chem 246:3418–3424 (1971).Google Scholar
  110. 81.
    L.-P. Chao and E. R. Einstein, Localization of the active site through chemical modification of the encephalitogenic protein, J. Biol. Chem 245:6397–6403 (1970).Google Scholar
  111. 82.
    E. H. Eylar, S. Brostoff, J. Jackson, and H. Carter, Allergic encephalomyelitis in monkeys induced by a peptide from the A1 protein, Proc. Natl. Acad. Sci 69:617–619 (1972).Google Scholar
  112. 83.
    R. F. Kibler, P. K. Re’, S. McKneally, R. Shapira, and M. F. Keeling, Biological activity of an encephalitogenic fragment in the monkey, J. Biol. Chem 247:969–972 (1972).Google Scholar
  113. 84.
    C.-M. Shaw, W. J. Fahlberg, M. W. Kies, and E. C. Alvord, Jr., Suppression of experimental “allergie” encephalomyelitis in guinea pigs by encephalitogenic proteins extracted from homologous brain, J. Exptl. Med 3:171–180 (1960).Google Scholar
  114. 85.
    C.-M. Shaw, E. C. Alvord, Jr., J. Kaku, and M. W. Kies, Correlation of experimental allergic encephalomyelitis with delayed-type skin sensitivity to specific homologous encephalitogen, Ann. N.Y. Acad. Sci 122:318–331 (1965).Google Scholar
  115. 86.
    D. Hughes and E. J. Field, Inhibition of macrophage migration in vitro by brain and encephalitogenic factor in allergic encephalomyelitis, Internat. Arch. Allergy 33:45–58 (1968).Google Scholar
  116. 87.
    D. Hughes and S. E. Newman, Lymphocyte sensitivity to encephalitogenic factor in guinea pigs with experimental allergic encephalomyelitis as shown by in vitro inhibition of macrophage migration, Internat. Arch. Allergy 34:237–256 (1968).Google Scholar
  117. 88.
    E. A. Caspary and E. J. Field, Encephalitogenic factor in experimental “allergic” encephalomyelitis, Nature 197:1218 (1963).Google Scholar
  118. 89.
    R. H. Swanborg, Immunological response to altered encephalitogenic protein, Fed. Proc 27:620 (1968).Google Scholar
  119. 90.
    L. E. Spitler, E. H. Eylar, C. von Muller, and H. H. Fudenberg, Experimental allergic encephalitis: Cellular immunity to encephalitogenic protein without disease, Fed. Proc 30:305 (1971).Google Scholar
  120. 91.
    E. C. Alvord, Jr., and L. D. Stevenson, Experimental production of encephalomyelitis in guinea pigs. Res. Publ. Ass. Nerv. Ment. Dis 28:99–112 (1950).Google Scholar
  121. 92.
    B. H. Waksman and R. D. Adams, A histologie study of the early lesion in experimental allergic encephalomyelitis in the guinea pig and rabbit, Am. J. Pathol 41:135–162 (1962).Google Scholar
  122. 93.
    P. W. Lampert and M. W. Kies, Mechanisms of demyelination in allergic encephalomyelitis of guinea pigs. An electron microscopic study, Exptl. Neurol 18:210–223 (1967).Google Scholar
  123. 94.
    S. Levine and E. J. Wenk, Studies on the mechanism of altered susceptibility to experimental allergic encephalomyelitis, Am. J. Pathol 39(4):419–441 (1961).Google Scholar
  124. 95.
    S. Levine, Presidential address. Allergic encephalomyelitis: cellular transformation and vascular blockade, J. Neuropathol. Exptl. Neurol 29:6–20 (1970).Google Scholar
  125. 96.
    S. Levine and E. M. Hoenig, A new form of localized allergic encephalomyelitis featuring polymorphonuclear neutrophilic leukocytes, Am. J. Pathol 64:13–27 (1971).Google Scholar
  126. 97.
    P. Y. Paterson, in “ ‘Allergic’ Encephalomyelitis” (M. W. Kies and E. C. Alvord, Jr., eds.) pp. 444–450, Charles C. Thomas, Springfield, Ill. (1959).Google Scholar
  127. 98.
    S. H. Stone, Transfer of allergic encephalomyelitis by lymph node cells in inbred guinea pigs, Science 134:619–620 (1961).Google Scholar
  128. 99.
    M. W. Kies, A. R. Baig, and B. F. Driscoll, Unpublished.Google Scholar
  129. 100.
    G. A. Falk, M. W. Kies, and E. C. Alvord, Jr., Delayed hypersensitivity to myelin basic protein in the passive transfer of experimental allergic encephalomyelitis, J. Immunol 101:638–644 (1968).Google Scholar
  130. 101.
    G. A. Falk, M. W. Kies, and E. C. Alvord, Jr., Passive transfer of experimental allergic encephalomyelitis: Mechanisms of suppression, J. Immunol 103:1248–1253 (1969).Google Scholar
  131. 102.
    E. C. Alvord, Jr., C.-M. Shaw, S. Hruby, and M. W. Kies, Encephalitogen-induced inhibition of experimental allergic encephalomyelitis: Prevention, suppression and therapy, Ann. N.Y. Acad. Sci 122:333–345 (1965).Google Scholar
  132. 103.
    H. C. Rauch and J. Griffin, in “Pathogenesis and Etiology of Demyelinating Diseases” (K. Burdzy and P. Kallos, eds.) Add. Internat. Arch. Allergy 36:387–400 (1969).Google Scholar
  133. 104.
    S. Levine and E. J. Wenk, Rapid passive transfer of allergic encephalomyelitis, J. Immunol 99:1277–1285 (1967).Google Scholar
  134. 105.
    S. Levine, E. J. Wenk, and E. M. Hoenig, Passive transfer of allergic encephalomyelitis between inbred rat strains: Correlation with transplantation antigens. Transplantation 5: 534–541 (1967).Google Scholar
  135. 106.
    S. Levine and E. M. Hoenig, Induced localization of allergic adrenalitis and encephalomyelitis at sites of thermal injury, J. Immunol 100:1310–1318 (1968).Google Scholar
  136. 107.
    S. Levine and R. Sowinski, Allergic encephalomyelitis: New form featuring polymorphonuclear leukocytes, Science 171:498–499 (1971).Google Scholar
  137. 108.
    R. F. Kibler and A. E. Barnes, Antibody studies in rabbit encephalomyelitis induced by a water-soluble protein fraction of rabbit cord, J. Exptl. Med 116:807–825 (1962).Google Scholar
  138. 109.
    R. P. Lisak, R. G. Heinze, M. W. Kies, and E. C. Alvord, Jr., Antibodies to encephalitogenic basic protein in experimental allergic encephalomyelitis, Proc. Soc. Exptl. Biol. Med 130:814–818 (1969).Google Scholar
  139. 110.
    V. A. Lennon, S. Whittingham, P. R. Carnegie, T. A. McPherson, and I. R. MacKay, Detection of antibodies to the basic protein of human myelin by radioimmunoassay and immunofluorescence, J. Immunol 107:56–62 (1971).Google Scholar
  140. 111.
    M. W. Chase in “ ‘Allergic’ Encephalomyelitis” (M. W. Kies and E. C. Alvord, Jr., eds.) pp. 348–374, Charles C. Thomas, Springfield, Ill. (1959).Google Scholar
  141. 112.
    H. Pabst and J.-M. Dupuy, Transfer of allergic encephalomyelitis with plasma factors, Fed. Proc 29:622 (1970).Google Scholar
  142. 113.
    A. Ferraro and C. L. Cazzullo, Prevention of experimental encephalomyelitis in guinea pigs, J. Neuropathol. Exptl. Neurol 8:61–68 (1949)Google Scholar
  143. A. Ferraro, L. Roizin, and C. L. Cazzullo, Experimental studies in allergic encephalomyelitis, J. Neuropathol. Exptl. Neurol 9:18–28 (1950).Google Scholar
  144. 114.
    M. W. Kies, C.-M. Shaw, W. J. Fahlberg, and E. C. Alvord, Jr., Factors affecting the suppression of allergic encephalomyelitis by homologous brain protein fractions, Ann. Allergy 18:849–858 (1960).Google Scholar
  145. 115.
    C.-M. Shaw, E. C. Alvord, Jr., W. J. Fahlberg, and M. W. Kies, Specificity of encephalitogen-induced inhibition of experimental “allergic” encephalomyelitis in the guinea pig, J. Immunol 89:54–61 (1962).Google Scholar
  146. 116.
    E. C. Alvord, Jr., C.-M. Shaw, W. J. Fahlberg, and M. W. Kies, An analysis of various types of inhibition of experimental “allergic” encephalomyelitis in the guinea pig, Z. Immunol. Forsch 126:217–227 (1964).Google Scholar
  147. 117.
    E. C. Alvord, Jr, Pathogenesis of experimental allergic encephalomyelitis: Introductory remarks, Ann. N.Y. Acad. Sci 122:245–255 (1965).Google Scholar
  148. 118.
    E. R. Einstein, J. Csejtey, W. J. Davis, and H. C. Rauch, Protective action of the encephalitogen and other basic proteins in experimental allergic encephalomyelitis. Immunochemistry 5:567–575 (1968).Google Scholar
  149. 119.
    G. A. Hashim and F. J. Schilling, Prevention of experimental allergic encephalomyelitis by nonencephalitogenic basic peptides, Arch. Biochem. Biophys 156:287–297 (1973).Google Scholar
  150. 120.
    R. H. Swanborg, Inhibition of experimental allergic encephalomyelitis (EAE) with modified encephalitogen, Fed. Proc 30:305 (1971).Google Scholar
  151. 121.
    E. H. Eylar, J. Jackson, B. Rothenberg, and S. W. Brostoff, Suppression of the immune response: Reversal of the disease state with antigen in allergic encephalomyelitis, Nature 236:74–76 (1972).Google Scholar
  152. 122.
    D. Teitelbaum, A. Meshorer, T. Hirshfeld, R. Arnon, and M. Sela, Suppression of experimental allergic encephalomyelitis by a synthetic Polypeptide, Europ. J. Immunol 1: 242–248 (1971).Google Scholar
  153. 123.
    G. A. Falk, R. G. Heinze, M. W. Kies, and E. C. Alvord, Jr., Skin-fixing antibody in experimental allergic encephalomyelitis, J. Immunol 100:321–328 (1968).Google Scholar
  154. 124.
    E.-C. Alvord, Jr., C.-M. Shaw, R. P. Lisak, G. A. Falk, and M. W. Kies, Relationships between antibodies and experimental allergic encephalomyelitis. V. Antibodies and delayed hypersensitivity in production and prevention of experimental allergic encephalomyelitis, Internat. Arch. Allergy 38:403–412 (1970).Google Scholar
  155. 125.
    R. P. Lisak, G. A. Falk, R. G. Heinze, M. W. Kies, and E. C. Alvord, Jr., Dissociation of antibody production from disease suppression in the inhibition of allergic encephalomyelitis by myelin basic protein, J. Immunol 104:1435–1446 (1970).Google Scholar
  156. 126.
    M. W. Brandriss, J. W. Smith, and R. M. Friedman, Suppression of experimental allergic encephalomyelitis by antimetabolites, Ann. N.Y. Acad. Sci 122:356–368 (1965).Google Scholar
  157. 127.
    W. W. Tourtellotte, in “Immunological Disorders of the Nervous System” (L. P. Rowland, ed.), Res. Publ. Ass. Nerv. Ment. Dis 49:112–147 (1971).Google Scholar
  158. 128.
    C. E. Lumsden, The immunogenesis of the multiple sclerosis plaque, Brain Res 28: 365–390 (1971).Google Scholar
  159. 129.
    R. E. Rocklin, O. L. Meyers, and J. R. David, An in vitro assay for cellular hypersensitivity in man, J. Immunol 104:95–102 (1970).Google Scholar
  160. 130.
    J. R. David and P. Y. Paterson, In vitro demonstration of cellular sensitivity in allergic encephalomyelitis, J. Exptl. Med 122:1161–1171 (1965).Google Scholar
  161. 131.
    H. C. Rauch, R. W. Ferraresi, S. Raffel, and E. R. Einstein, Inhibition of in vitro cell migration in experimental allergic encephalomyelitis, J. Immunol 102:1431–1436 (1969).Google Scholar
  162. 132.
    R. E. Rocklin, W. A. Sheremata, R. G. Feldman, M. W. Kies, and J. R. David, The Guillain-Barré syndrome and multiple sclerosis, New Engl. J. Med 284:803–808 (1971).Google Scholar
  163. 133.
    R. F. Kibler, D. W. Paty, and V. Sherr, in “Immunological Disorders of the Nervous System” (L. P. Rowland, ed.) Res. Publ. Ass. Nerv. Ment. Dis 49:95–105 (1971).Google Scholar
  164. 134.
    D. Hughes, E. A. Caspary, and E. J. Field, Lymphocyte transformation induced by encephalitogenic factor in multiple sclerosis and other neurological diseases, Lancet 2: 1205–1207 (1968).Google Scholar
  165. 135.
    P. C. Dau and R. D. A. Peterson, Transformation of lymphocytes from patients with multiple sclerosis. Use of encephalitogen of human origin, with a report of a trial of immunosuppressive therapy in multiple sclerosis, Arch. Neurol 23:32–40 (1970).Google Scholar
  166. 136.
    H. Bartfeldt and T. Atoynatan, In vitro delayed (cellular) hypersensitivity in multiple sclerosis to central nervous system antigens, Internat. Arch. Allergy Appl. Immunol 39: 361–367 (1970).Google Scholar
  167. 137.
    P. O. Behan, W. M. H. Behan, R. G. Feldman, and M. W. Kies, Cell-mediated hypersensitivity to neural antigens in humans and non-human primates with neurological diseases, Arch. Neurol 27:145–152 (1972).Google Scholar
  168. 138.
    M. B. Bornstein and H. Iwanami, Experimental allergic encephalomyelitis: Demyelinating activity of serum and sensitized lymph node cells on cultured nerve tissues, J. Neuropathol. Exptl. Neurol 30:240–248 (1971).Google Scholar
  169. 139.
    M. B. Bomstein, “A Tissue Culture Approach to Demyelinative Disorders,” N. C. I. Monograph, No. 11, p. 197 (1963).Google Scholar
  170. 140.
    O. Berg and B. Kallen, An in vitro gliotoxic effect of serum from animals with experimental allergic encephalomyelitis, Acta Pathol 54:425–433 (1962).Google Scholar
  171. 141.
    F. J. Seil, G. A. Falk, M. W. Kies, and E. C. Alvord, Jr., The in vitro demyelinating activity of sera from guinea pigs sensitized with whole CNS and with purified encephali-togen, Exptl. Neurol 22:545–555 (1968)Google Scholar
  172. M. W. Kies, B. F. Driscoll, F. J. Seil, and E. C. Alvord, Jr., Myelination inhibition factor: dissociation from induction of experimental allergic encephalomyelitis, Science 179:689–690 (1973).Google Scholar
  173. 142.
    R. P. Lisak, R. G. Heinze, G. A. Falk, and M. W. Kies, Search for antincephalitogen antibody in human demyelinative diseases, Neurology 18:122–128 (1968).Google Scholar
  174. 143.
    D. E. McFarlin, S. E. Blank, R. F. Kibler, S. McKneally, and R. Shapira, Experimental allergic encephalomyelitis in the rat: response to encephalitogenic proteins and peptides, Science 179:478–480 (1973).Google Scholar
  175. 144.
    R. E. Martenson, S. Levine, G. E. Deibler, and A. J. Kramer, Chemically derived fragments of guinea pig and bovine myelin basic proteins. Their encephalitogenic activity in Lewis rats, (submitted for publication).Google Scholar
  176. 145.
    L. E. Spitler, C. M. von Muller, H. H. Fudenberg, and E. H. Eylar, Experimental allergic encephalitis. Dissociation of cellular immunity to brain protein and disease production, J. Exp. Med 136:156–174 (1972).Google Scholar
  177. 146.
    G. A. Hashim and F. J. Schilling, Allergic encephalomyelitis: characterization of the determinants for delayed type hypersensitivity, Biochem. Biophys. Res. Commun 50:589–596 (1973)Google Scholar
  178. G. A. Hashim, F. Hwang, and F. J. Schilling, Experimental allergic encephalomyelitis: basic protein regions responsible for delayed hypersensitivity, Arch. Biochem. Biophys 156:298–309 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Marian W. Kies
    • 1
  1. 1.Section on Myelin Chemistry, Laboratory of Cerebral MetabolismNational Institute of Mental HealthBethesdaUSA

Personalised recommendations