Genetic Disorders of Brain Development: Animal Models

  • Norbert N. Herschkowitz


The normal functioning of the central nervous system depends on the integrated and coordinated action of an immense number of neurons. The integrated cellular pattern is the result of a sequence of developmental steps: proliferation of cells, migration to determined locations, differentiation to specific functions, and cell death. These processes depend on the genetically controlled selective synthesis and degradation of proteins at specific times during development. Genetic mutations or exogenous factors which affect genetic control can, therefore, interfere with normal brain development and may result in severe brain dysfunction.


Purkinje Cell Brain Development Neural Tube Neural Crest Neural Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Davison and J. Dobbing, The developing brain, in “Applied Neurochemistry” (A. N. Davison and J. Dobbing, eds.) pp. 253–286, Blackwell Scientific Publications, xford (1968).Google Scholar
  2. 2.
    H. G. Callan, The organisation of genetic units in chromosomes, J. Cell. Sci 2:1–7 (1967).Google Scholar
  3. 3.
    R. J. Britten and D. E. Kohne, Repeated sequences in DNA, Science 161:529–540 (1968).Google Scholar
  4. 4.
    C. A. Thomas, Jr., The theory of the master gene, in “The Neurosciences, Second Study Program” (F. O. Schmitt, ed.) pp. 973–998, Rockefeller University Press, New York (1970).Google Scholar
  5. 5.
    M. Jacobson, Development of specific neuronal connections, Science 163:543–547 (1969).Google Scholar
  6. 6.
    K. Paigen, The genetics of enzyme realisation, in “Enzyme Synthesis and Degradation in Mammalian Systems” (M. Rechcigl, ed.) pp. 1–46, S. Karger, Basel and New York (1971).Google Scholar
  7. 7.
    R. Ganschow and K. Paigen, Glucuronidase phenotypes of inbred mouse strains, Genetics 59:335–349 (1968).Google Scholar
  8. 8.
    J. A. Weston, An autoradiographic analysis of the migration and localisation of trunk neural crest cells in the chick, Develop. Biol 6:279–310 (1963).Google Scholar
  9. 9.
    B. Källén, Overgrowth malformation and neoplasia in embryonic brain, Continia Neurol 22:40–60 (1962).Google Scholar
  10. 10.
    L. J. Stensaas and S. S. Stensaas, An electron microscope study of cells in the matrix and intermediate laminae of the cerebral hemisphere of the 45 mm rabbit embryo, Z. Zellforsch. Mikroskop. Anat 91:341–365 (1968).Google Scholar
  11. 11.
    R. L. Sidman, Cell proliferation, migration and interaction in the developing mammalian central nervous system, in “The Neurosciences, Second Study Program” (F. O. Schmitt, ed.) pp. 100–107, Rockefeller University Press, New York (1970).Google Scholar
  12. 12.
    A. Glücksmann, Cell death in normal vertebrate ontogeny, Biol. Rev. (Cambridge) 26: 59–86 (1951).Google Scholar
  13. 13.
    W. E. Watson, Centripetal passage of labelled molecules along mammalian motor axons, J. Physiol. (London) 196:122P–123P (1968).Google Scholar
  14. 14.
    J. B. Angevine, Jr., D. Bodian, A. J. Coulombre, M. U. Edds, Jr., V. Hamburger, M. Jacobson, K. M. Lyser, M. C. Prestige, R. L. Sidman, S. Varon, and P. A. Wers, Embryonic vertebrate central nervous system: Revised terminology, Anat. Rec 166:257–262 (1970).Google Scholar
  15. 15.
    J. Altman, Autoradiographic and histological studies of postnatal neurogenesis, J. Comp. Neurol 128:431–474 (1966).Google Scholar
  16. 16.
    P. Rakic and R. L. Sidman, Histogenesis of cortical layers in human cerebellum, particularly the lamina dissecans, J. Comp. Neurol 139:473–500 (1970).Google Scholar
  17. 17.
    L. W. Lapham, Tetraploid DNA content of Purkinje neurones of human cerebellar cortex, Science 159:310–312 (1968).Google Scholar
  18. 18.
    J. Dobbing and J. Sands, Timing of neuroblast multiplication in developing human brain, Nature 226:639–640 (1970).Google Scholar
  19. 19.
    G. R. DeLong, Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures, Develop. Biol 22:563–583 (1970).Google Scholar
  20. 20.
    P. Weiss and A. C. Taylor, Reconstruction of complete organs from single cell suspensions of chick embryos in advanced stages of differentiation, Proc. Natl. Acad. Sci 46:1177–1185(1960).Google Scholar
  21. 21.
    J. A. Lowden and L. S. Wolfe, Studies on brain gangliosides. 3. Evidence for the location of gangliosides specifically in neurones, Can. J. Biochem 42:1587–1703 (1964).Google Scholar
  22. 22.
    M. T. Vanier, M. Holm, R. Oehman, and L. Svennerholm, Developmental profiles of gangliosides in human and rat brain, J. Neurochem 18:581–592 (1971).Google Scholar
  23. 23.
    R. M. Burton, L. Garcia-Bunnel, M. Golden, and Y. McBride Baltour, Incorporation of radioactivity of D-glycosamine-(l-14C), D-glucose-(l-14C), D-galactose-(l-14C) and dl-serine-(3-14C) into rat brain glycolipids, Biochemistry 2:580–585 (1963).Google Scholar
  24. 24.
    H. S. Maker and G. Hauser, Incorporation of glucose carbon into gangliosides and cerebrosides by slices of developing rat brain, J. Neurochem 14:457–464 (1967).Google Scholar
  25. 25.
    K. Suzuki, G. E. Podulso, and S. E. Podulso, Further evidence for a specific ganglioside fraction closely associated with myelin, Biochim. Biophys. Acta 152:576–586 (1968).Google Scholar
  26. 26.
    W. T. Norton and S. E. Podulso, Neuronal perikarya and astroglia of rat brain: Chemical composition during myelination, J. Lipid Res 12:84–90 (1971).Google Scholar
  27. 27.
    F. E. Samson and D. J. Quinn, Na+-K+-activated ATPase in rat brain development, J. Neurochem 14:421–427 (1967).Google Scholar
  28. 28.
    S. M. Bayer and W. C. McMurray, The metabolism of amino acids in developing rat brain, J. Neurochem 14:695–706 (1967).Google Scholar
  29. 29.
    T. Kobayashi, O. Inman, W. Buno, and H. E. Himwhich, A multidisciplinary study of changes in mouse brain with age, Recent Advan. Biol. Psychiat 5:293–308 (1963).Google Scholar
  30. 30.
    A. N. Davison and A. Peters, “Myelination,” pp. 80–143, Chales C. Thomas, Springfield, Ill. (1970).Google Scholar
  31. 31.
    S. A. Luse, Formation of myelin in the central nervous system of mice and rats as studied with electron microscope, J. Biophys. Biochem. Cytol 2:777–783 (1956).Google Scholar
  32. 32.
    A. Peters, The formation and structure of myelin sheaths in the central nervous system, J. Biophys. Biochem. Cytol 8:431–446 (1960).Google Scholar
  33. 33.
    J. P. M. Bensted, J. Dobbing, R. S. Morgan, R. T. W. Reid, and G. Payling Wright, Neuroglial development and myelination in the spinal cord of the chick embryo, J. Embryol. Exptl. Morphol 5:428–437 (1957).Google Scholar
  34. 34.
    J. Schonbach, K. H. Hu, and R. L. Friede, Cellular and chemical changes during myelination: Histological, autoradiographic, histochemical and biochemical data on myelination in the pyramidal tract and corpus callosum in rat, J. Comp. Neurol 134:21–38 (1968).Google Scholar
  35. 35.
    M. L. Cuzner and A. N. Davison, The lipid composition of rat brain myelin and subcellular fractions during development, Biochem. J 106:29–34 (1968).Google Scholar
  36. 36.
    N. H. Bass and H. H. Hess, A comparison of cerebrosides, proteolipid, proteins and cholesterol as indices of myelin in the architecture of rat cerebrum, J. Neurochem 16: 731–750 (1969).Google Scholar
  37. 37.
    H. C. Agrawal, N. L. Banitz, A. H. Bone, A. N. Davison, R. F. Mitchell, and M. Spohn, The identity of a myelin-like fraction isolated from developing brain, Biochem. J 120: 635–642 (1970).Google Scholar
  38. 38.
    E. R. Einstein and J. Csejtev, Proteins in the developing human brain, Trans. Am. Neurol. Ass 1966:218 (1966).Google Scholar
  39. 39.
    A. S. Balasubramanian and B. K. Bacchawat, Studies on enzymic synthesis of cerebroside sulfate from 3′-phosphoadenosine-5′-phosphosulfate, Indian J. Biochem 2:212–216 (1965).Google Scholar
  40. 40.
    G. M. McKhann and W. Ho, The in vivo and in vitro synthesis of sulfatides during development, J. Neurochem 14:717–724 (1967).Google Scholar
  41. 41.
    H. P. Chase, J. Dorsey, and G. M. McKhann, The effect of malnutrition on synthesis of myelin lipid, Pediatrics 40:551–559 (1967).Google Scholar
  42. 42.
    N. Herschkowitz, G. M. McKhann, S. Saxena, and E. M. Shooter, Characterisation of sulfatide containing lipoproteins in rat brain, J. Neurochem 15:1181–1188 (1968).Google Scholar
  43. 43.
    D. Silberberg, J. A. Benjamins, N. Herschkowitz, and G. M. McKhann, Incorporation of radioactive sulphate into sulphatide during myelination in cultures of rat cerebellum, J. Neurochem 19:11–18 (1972).Google Scholar
  44. 44.
    E. R. Einstein, K. B. Balal, and J. Csejtev, Biochemical maturation of the central nervous system. II. Protein and proteolytic enzyme changes, Brain Res 18:35–49 (1970).Google Scholar
  45. 45.
    B. Balazs, B. W. L. Brooksbank, A.N. Davison, J. T Earys, and D. A. Wilson, The effect of neonatal thyroidectomy on myelination in the rat brain, Brain Res 15:219–232 (1969).Google Scholar
  46. 46.
    J. de Vellis and D. Inglish, Hormonal control of glycerophosphate dehydrogenase in the rat brain, J. Neurochem 15:1061–1070 (1968).Google Scholar
  47. 47.
    J. J. Curry and L. M. Heim, Brain myelination after neonatal administration of oestradiol, Nature 209:915–916 (1966).Google Scholar
  48. 48.
    S. Gluecksohn-Waelsch, Genetic factors and the development of the nervous system, in “Biochemistry of the Developing Nervous System” (H. Waelsch, ed.) pp. 375–396, Academic Press, New York (1955).Google Scholar
  49. 49.
    L. J. Smith and K. F. Stein, Axial elongation in the mouse and its retardation in homozygous loop tail mice, J. Embryol. Exptl. Morphol 10:73–87 (1962).Google Scholar
  50. 50.
    R. Auerbach, Analysis of the developmental effects of a lethal mutation in the house mouse, J. Exptl. Zool 127:305–324 (1954).Google Scholar
  51. 51.
    M. S. Deol, The abnormalities of the inner ear in Kreisler mice, J. Embryol. Exptl. Morphol 12:475–490 (1964).Google Scholar
  52. 52.
    M. S. Deol, The origin of the abnormalities of the inner ear in Dreher mice, J. Embryol. Exptl. Morphol 12:121–133 (1964).Google Scholar
  53. 53.
    H. Fischer, Die Embryogenese der Innenohrmissbildungen bei dem spontan mutierten Dreherstamm der Hausmaus, Z. Mikroskop. Anat. Forsch 64:416–491 (1958).Google Scholar
  54. 54.
    G. M. Truslove, The anatomy and development of the Fidget mouse, J. Genet 54:64–86 (1956).Google Scholar
  55. 55.
    L. Kilham and G. Margolis, Cerebellar disease in cats, induced by inoculation of rat virus, Science 148:244–246 (1965).Google Scholar
  56. 56.
    R. Schmidt, Die postnatale Genese der Kleinhirndefekte röntgenbestrahlter Hausmäuse, Z. Hirnforsch 5:164–209 (1962).Google Scholar
  57. 57.
    U. Hamburgh, Analysis of the postnatal development effect of “Reeler,” a neurological mutation in mice, Develop. Biol 8:165–185 (1963).Google Scholar
  58. 58.
    H. Meier and W. G. Hoag, The neuropathology of “Reeler,” a neuromuscular mutation in mice, J. Neuropathol. Exptl. Neurol 21:649–654 (1962).Google Scholar
  59. 59.
    G. B. Koelle, The histochemical identification of acetyl Cholinesterase in cholinergic, adrenergic and sensory neurones, J. Pharmacol. Exptl. Therap 114:167–184 (1955).Google Scholar
  60. 60.
    R. DeLong and R. Sidman, Alignment defect of reaggregating cells in cultures of developing brains of Reeler mutant mice, Develop. Biol 22:584–600 (1970).Google Scholar
  61. 61.
    R. L. Sidman, M. M. Dickie, and S. H. Appel, Mutant mice (Quaking and Jimpy) with deficient myelination in the central nervous system, Science 144:309–311 (1964).Google Scholar
  62. 62.
    N. A. Baumann, C. M. Jacque, S. A. Pollet, and M. L. Harpin, Fatty acid and lipid composition of the brain of a myelin deficient mutant, the “Quaking” mouse, Europ. J. Biochem 4:340–344 (1968).Google Scholar
  63. 63.
    N. Neskovic, J. L. Nussbaum, and P. Mandl, A study of glycolipid metabolism in myelination disorder of Jimpy and Quaking mice, Brain Res 21:39–53 (1970).Google Scholar
  64. 64.
    G. Hauser, J. Eichberg, and S. Jacobs, Polyphosphoinositide levels and biosynthesis in Quaking mouse brain, Biochem. Biophys. Res. Commun 43:1072–1080 (1971).Google Scholar
  65. 65.
    N. A. Baumann, M. L. Harpin, and J. M. Bourré, Long chain fatty acid formation: Key step in myelination studied in mutant mice, Nature 227:960–961 (1970).Google Scholar
  66. 66.
    P. Morell, W. T. Norton, and S. Greenfield, Isolation and characterisation of myelin protein form adult Quaking mice and its similarity to “early myelin” protein of young controls, Abst. Third Internat. Meeting Internat. Soc. Neurochem, p. 417 (1971).Google Scholar
  67. 67.
    D. M. Bowen and N. S. Radin, Hydrolase activities in brain of neurological mutants: Cerebroside galactosidase, nitrophenyl galactoside hydrolase, nitrophenyl glucoside hydrolase and sulfatase, J. Neurochem 16:457–460 (1969).Google Scholar
  68. 68.
    D. J. Kurtz and J. N. Kanfer, Cerebral acid hydrolase activities: Comparison in “Quaking” and normal mice, Science 168:259–260 (1970).Google Scholar
  69. 69.
    A. Hirano, D. S. Sax, and H. M. Zimmermann, The fine structure of the cerebella of Jimpy mice and their “normal” litter mates, J. Neuropathol. Exptl. Neurol 28:388–400 (1969).Google Scholar
  70. 70.
    J. Torii, M. Adachi, and B. W. Volk. Histochemical and ultrastructural studies of inherited leucodystrophy in mice, J. Neuropathol. Exptl. Neurol 30:278–289 (1971).Google Scholar
  71. 71.
    J. L. Nussbaum, N. Neskovic, and P. Mandel, A study of lipid components in brain of the “Jimpy” mouse, a mutant with myelin deficiency, J. Neurochem 16:927–934 (1969).Google Scholar
  72. 72.
    C. Galli and D. Re C. Galli, Cerebroside and sulfatide deficiency in the brain of “Jimpy” mice, a mutant strain of mice exhibiting neurological symptoms, Nature 220:165–166 (1968).Google Scholar
  73. 73.
    E. L. Hogan, K. C. Joseph, and G. Schmidt, Composition of cerebral lipids in murine sudanophilic leucodystrophy. The Jimpy mutant, J. Neurochem 17:75–83 (1970).Google Scholar
  74. 74.
    C. Galli, G. M. Kneebone, and R. Paoletti, An inborn error of cerebroside biosynthesis as the molecular defect of the Jimpy mouse brain, Life Sci 8:911–918 (1969).Google Scholar
  75. 75.
    M. N. Neskovic, J. L. Nussbaum, and P. Mandel, Enzymatic deficiency in neurological mutants, brain uridine diphosphate galactose: ceramide galactosyl transferase in Jimpy mouse, FEBS Letters 8:213–216 (1970).Google Scholar
  76. 76.
    N. Herschkowitz, F. Vassella, and A. Bischoff, Myelin differences in the central and peripheral nervous system in the Jimpy mouse, J. Neurochem 18:1361–1363 (1971).Google Scholar
  77. 77.
    J. M. Matthieu, U. Schneider, and N. Herschkowitz, In vitro synthesis of sulfatides in a myelin deficient mutant, the Jimpy mouse, Brain Research 42:433–439 (1972).Google Scholar
  78. 78.
    K. J. Joseph and E. L. Hogan, Fatty acid composition of cerebrosides, sulfatides and ceramides in murine sudanophilic leucodystrophy: The Jimpy mutant, J. Neurochem 18: 1639–1645 (1971).Google Scholar
  79. 79.
    M. K. Wolf and A. B. Holden, Tissue culture analysis of the inherited defect of central nervous system myelination in Jimpy mice, J. Neuropathol. Exptl. Neurol 28:195–213 (1969).Google Scholar
  80. 80.
    E. L. Green, Shambling, a neurological mutant of the mouse, J. Hered 58:65–68 (1967).Google Scholar
  81. 81.
    H. Meier, Pathological findings in Shambling hereditary neuropathy of mice, J. Neuropathol. Exptl. Neurol 26:620–633 (1967).Google Scholar
  82. 82.
    A. G. Searle, A lethal allele of Dilute in the house mouse, Heredity 6:395–401 (1952).Google Scholar
  83. 83.
    C. H. Doolittle and H. Rauch, Epinephrine and norepinephrine levels in Dilute lethal mice, Biochem. Biophys. Res. Commun 18:43–47 (1964).Google Scholar
  84. 84.
    D. E. Kelton and H. Rauch, Myelination and myelin degeneration in the central nervous system of Dilute lethal mice, Exptl. Neurol 6:252–262 (1962).Google Scholar
  85. 85.
    D. L. Coleman, Phenylalanine hydroxylase activity in Dilute and non-Dilute strains of mice, Arch. Biochem. Biophys 69:562–568 (1962).Google Scholar
  86. 86.
    H. Rauch and M. T. Yost, Phenylalanine metabolism in Dilute lethal mice, Genetics 48: 1487–1495 (1963).Google Scholar
  87. 87.
    S. Kaufman, The structure of the Phenylalanine hydroxylation cofactor, Proc. Natl. Acad. Sci 50:1085–1093 (1963).Google Scholar
  88. 88.
    R. L. Sidman, P. W. Lane, and M. W. Dickie, Staggerer, a new mutation in the mouse affecting the cerebellum, Science 137:610–612 (1962).Google Scholar
  89. 89.
    H. Grüneberg, “The Genetics of the Mouse,” 2nd ed., Martinus Nijhoff, The Hague (1952).Google Scholar
  90. 90.
    M. S. Deol, The anatomy and development of the mutants Pirouette, Shaker-1 and Waltzer in the mouse, J. Genet 52:562–588 (1954).Google Scholar
  91. 91.
    R. Fankhauser, H. Luginbühl, and U. J. Hartley, Leukodystrophie vom Typus Krabbe beim Hund, Schweiz. Arch. Tierheilkunde 105:198–207 (1963).Google Scholar
  92. 92.
    R. S. Hirth and S. W. Nielsen, A. familial canine globoid cell leucodystrophy (Krabbe type), J. Small Anim. Pract 8:569–575 (1967).Google Scholar
  93. 93.
    K. H. Johnson, Globoid leucodystrophy in the cat, J. Am. Vet. Med. Ass 157:2057–2064 (1970).Google Scholar
  94. 94.
    B. S. Jortner and A. M. Jonas, The neuropathology of globoid cell leucodystrophy in the dog, Acta Neuropathol 10:171–182 (1968).Google Scholar
  95. 95.
    T. F. Fletcher, H. J. Kurtz, and D. G. Low, Globoid cell leucodystrophy (Krabbe type) in the dog, J. Am. Vet. Med. Ass 149:165–172 (1966).Google Scholar
  96. 96.
    K. Suzuki and Y. Suzuki, Globoid cell leucodystrophy (Krabbe’s disease): Deficiency of galacto cerebroside-β-galactosidase, Proc. Natl. Acad. Sci 66: 302–309 (1970).Google Scholar
  97. 97.
    Y. Suzuki and K. Suzuki, Krabbe’s globoid cell leucodystrophy: Deficiency of galacto cerebrosidase in serum, leucocytes and fibroblasts, Science 171:73–75 (1971).Google Scholar
  98. 98.
    N. R. Brander and B. Palludan, Leucoencephalopathy in mink, Acta Vet. Scand 6:41–51 (1965).Google Scholar
  99. 99.
    H. A. Andersen, Leucodystrophy in mink, Acta Neuropathol 7:297–304 (1967).Google Scholar
  100. 100.
    H. A. Andersen and B. Palludan, Leucodystrophy in mink, Acta Neuropathol 11:347–360 (1968).Google Scholar
  101. 101.
    N. S. Radin, F. Martin, and J. R. Brown, Galactolipid metabolism, J. Biol. Chem 224: 499–507, (1957).Google Scholar
  102. 102.
    J. Austin, D. McAfee, D. Armstrong, M. O’Rouske, L. Shearer, and B. Bacchawat, Abnormal sulphatase activities in two human diseases, Biochem. J 93:15c (1964).Google Scholar
  103. 103.
    E. Mehl and H. Jatzkewitz, Evidence for the genetic block in metachromatic leucodystrophy, Biochem. Biophys. Res. Commun 19:407–411 (1965).Google Scholar
  104. 104.
    E. Karbe and B. Schiefer, Familial amaurotic idiocy in male German shorthair pointers, Pathol. Vet 4:223–232 (1967).Google Scholar
  105. 105.
    H. Bernheimer and E. Karbe, Morphologische und neurochemische Untersuchungen von zwei Formen der amaurotischen Idiotie des Hundes: Nachweis einer GM2-Gangliosidose, Acta Neuropathol 16:243–261 (1970).Google Scholar
  106. 106.
    A. E. Lorincz, Heritable disorders of acid mucopolysaccharide metabolism in humans and snorter dwarf cattle, Ann. NY. Acad. Sci 91:644–658 (1960/61).Google Scholar
  107. 107.
    E. F. Neufeld and J. C. Fratantoni, Inborn errors of mucopolysaccharide metabolism, Science 169:141–146 (1970).Google Scholar
  108. 108.
    D. Rabovsky, Gene insertion into mammalian cells, Science 174:933–934 (1971).Google Scholar
  109. 109.
    W. Mumyon, E. Kraiselbrud, D. Davis, and J. Mann, Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet irradiated herpes simplex virus, J. Virol 7: 813–820 (1971).Google Scholar
  110. 110.
    C. E. Merill, M. R. Geier, and J. C. Petricciani, Bacterial virus gene expression in human cells, Nature 233:398–400 (1971).Google Scholar
  111. 111.
    I. M. Arias, L. M. Gartner, M. Cohen, J. B. Ezzer, and A. J. Levi, Chronic nonhaemolytic unconjugated hyperbilirubinaemia with glucuronyl transferase deficiency, Am. J. Med 47:395–409 (1969).Google Scholar
  112. 112.
    G. M. Tomkins, T. D. Gelehrter, D. Gramer, D. Martin, H.H. Samuels, and E.B. Thompson, Control of specific gene expression in higher organisms, Science 166:1474–1480 (1969).Google Scholar
  113. 113.
    U. Wiesmann, E. Rossi, and N. Herschkowitz, Treatment of metachromatic leuco-dystrophy in fibroblasts by enzyme replacement, New Engl. J. Med 284:672 (1971).Google Scholar
  114. 114.
    H. Bickel, Recent advances in the early detection and treatment of inborn errors with brain damage, Neuropaediatrie 1:1–11 (1969).Google Scholar
  115. 115.
    A. Milunski, J. W. Littlefield, J. N. Kanfer, E. H. Kolodny, V. E. Shih, and L. Atkins, Prenatal genetic diagnosis, New Engl. J. Med 283:1370–1381 (1970).Google Scholar
  116. 116.
    L. Arey, “Developmental Anatomy,” Saunders, hiladelphia (1946).Google Scholar
  117. 117.
    M. Jacobson, “Developmental Neurology,” Holt, Rinehart and Winston, New York (1970).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Norbert N. Herschkowitz
    • 1
  1. 1.Department of PediatricsUniversity of BerneBerneSwitzerland

Personalised recommendations