Advertisement

Disorders of the Cerebral Circulation

  • A. G. Waltz

Abstract

The delivery of metabolic substrates to cerebral tissue depends on the flow of blood to and in the brain. To develop rational methods for treating patients with cerebral vascular disorders, including ischemic infarcts, subarachnoid and intracerebral hemorrhages, and other less common conditions, the mechanisms for the regulation of cerebral blood flow must be understood, and the ways in which the mechanisms are affected or modified by abnormal circumstances must be delineated. Complete interruption of the supply of blood to the brain, with cessation of delivery of oxygen, glucose, and other substrates, causes irreversible impairment of neuronal function and death of cells within 4–5 min. With the more ordinary kinds of ischemic cerebral vascular lesions, however, delivery of substrates to brain cells is decreased to a variable degree: in many regions of ischemic brain, blood flow is maintained (at a reduced level) through collateral channels. Although the time required for irreversible impairment of neuronal function under these circumstances is unknown, it may be as long as several hours. Thus therapeutic measures that can increase the delivery of metabolic substrates to cerebral tissue may prevent irreversible damage to neurons.

Keywords

Cerebral Blood Flow Cerebral Ischemia Middle Cerebral Artery Regional Cerebral Blood Flow Cerebral Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Krogh, The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion, J. Physiol (London) 52:391–408 (1918).Google Scholar
  2. 2.
    A. V. Hill, The diffusion of oxygen and lactic acid through tissues, Proc. Roy. Soc. Ser. B 104:39–96 (1928).Google Scholar
  3. 3.
    F. J. W. Roughton, Diffusion and chemical reaction velocity in cylindrical and spherical systems of physiological interest, Proc. Roy. Soc. Ser. B 140:203–229 (1952).Google Scholar
  4. 4.
    V. A. Levin, J. D. Fenstermacher, and C. S. Patlak, Sucrose and inulin space measurements of cerebral cortex in four mammalian species, Am. J. Physiol 219:1528–1533 (1970).Google Scholar
  5. 5.
    V. A. Levin, T. H. Milhorat, J. D. Fenstermacher, M. K. Hammock, and D. P. Rall, Physiological studies on the development of obstructive hydrocephalus in the monkey, Neurology 21:238–246 (1971).Google Scholar
  6. 6.
    W. Lierse and E. Horstmann, Quantitative anatomy of the cerebral vascular bed with especial emphasis on homogeneity and inhomogeneity in small parts of the gray and white matter, Acta Neurol. Scand. Suppl 14:15–19 (1965).Google Scholar
  7. 7.
    R. L. de C. H. Saunders and M. A. Bell, X-ray microscopy and histochemistry of the human cerebral blood vessels, J. Neurosurg 35:128–140 (1971).Google Scholar
  8. 8.
    A. G. Waltz and T. M. Sundt, Jr., The microvasculature and microcirculation of the cerebral cortex after arterial occlusion, Brain 90:681–696 (1967).Google Scholar
  9. 9.
    A. Ames, III, R. L. Wright, M. Kowada, J. M. Thurston, and G. Majno, Cerebral ischemia. II. The no-reflow phenomenon, Am. J. Pathol 52:437–453 (1968).Google Scholar
  10. 10.
    K. A. Hossmann and K. Sato, Effect of ischemia on the function of the sensorimotor cortex in cat, Electroencephalog. Clin. Neurophysiol 30:535–545 (1971).Google Scholar
  11. 11.
    N. R. Clendenon, N. Allen, T. Kamatsu, L. Liss, W. A. Gordon, and K. Heimberger, Biochemical alterations in the anoxic-ischemic lesion of rat brain, Arch. Neurol. (Chicago) 25:432–448 (1971).Google Scholar
  12. 12.
    R. M. Crowell and Y. Olsson, Impaired microvascular filling after focal cerebral ischemia in monkeys, J. Neurosurg 36:303–309 (1972).Google Scholar
  13. 13.
    S. S. Kety and C. F. Schmidt, The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations, Am. J. Physiol 143:53–66 (1945).Google Scholar
  14. 14.
    S. S. Kety and C. F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values, J. Clin. Invest 27: 47–484 (1948).Google Scholar
  15. 15.
    S. S. Kety, Quantitative determination of cerebral blood flow in man, Methods Med. Res 1:204–217 (1948).Google Scholar
  16. 16.
    J. S. Meyer and Y. Shinohara, A method for measuring cerebral hemisphere blood flow and metabolism, Stroke 1:419–431 (1970).Google Scholar
  17. 17.
    N. A. Lassen and O. Munck, The cerebral blood flow in man determined by the use of radioactive krypton, Acta Physiol. Scand 33:30–49 (1955).Google Scholar
  18. 18.
    L. C. McHenry, Jr., Quantitative cerebral blood flow determination: Application of a krypton85 desaturation technique in man, Neurology 14:785–793 (1964).Google Scholar
  19. 19.
    O. M. Reinmuth, P. Scheinberg, and B. Bourne, Total cerebral blood flow and metabolism, Arch. Neurol. (Chicago) 12:49–66 (1965).Google Scholar
  20. 20.
    K. L. Zierler, Equations for measuring blood flow by external monitoring of radioisotopes, Circ. Res 16:309–321 (1965).Google Scholar
  21. 21.
    K. Hoedt-Rasmussen, Regional cerebral blood flow: The intra-arterial injection method, Acta Neurol. Scand. Suppl 27:1–81 (1967).Google Scholar
  22. 22.
    M. M. Ter-Pogossian, J. O. Eichung, D. O. Davis, M. J. Welch, and J. M. Metzger, The determination of regional cerebral blood flow by means of water labeled with radioactive oxygen 15, Radiology 93:31–40 (1969).Google Scholar
  23. 23.
    O. B. Paulson, S. Cronqvist, J. Risberg, and F. I. Jeppesen, Regional cerebral blood flow: A comparison of 8-detector and 16-detector instrumentation, J. Nucl. Med 10:164–173 (1969).Google Scholar
  24. 24.
    A. G. Waltz, A. R. Wanek, and R. E. Anderson, Comparison of analytic methods for calculation of cerebral blood flow after intracarotid injection of 133Xe, J. Nucl. Med 13: 66–72 (1972).Google Scholar
  25. 25.
    E. J. Potchen, D. O. Davis, T. Wharton, R. Hill, and J. M. Taveras, Regional cerebral blood flow in man. I. A study of the xenon-133 washout method, Arch. Neurol. (Chicago) 20:378–383 (1969).Google Scholar
  26. 26.
    D. H. Ingvar and N. A. Lassen, Regional blood flow of the cerebral cortex determined by krypton85, Acta Physiol. Scand 54:325–338 (1962).Google Scholar
  27. 27.
    A. G. Waltz, T. M. Sundt, Jr., and C. A. Owen, Jr., Effect of middle cerebral artery occlusion on cortical blood flow in animals, Neurology 16:1185–1190 (1966).Google Scholar
  28. 28.
    A. G. Waltz, Effect of Paco, on blood flow and microvasculature of ischemic and nonischemic cerebral cortex, Stroke 1:27–37 (1970).Google Scholar
  29. 29.
    M. Reivich, J. Jehle, L. Sokoloff, and S. S. Kety, Measurement of regional cerebral blood flow with antipyrine-14C in awake cats, J. Appl. Physiol 27:296–300 (1969).Google Scholar
  30. 30.
    M. Reivich, R. Slater, and N. Sano, Further studies on experimental models of cerebral clearance curves, in “Cerebral Blood Flow: Clinical and Experimental Results” (M. Brock, C. Fieschi, D. H. Ingvar, N. A. Lassen, and K. Schürmann, eds.) pp. 8–10, Springer-Verlag, Berlin (1969).Google Scholar
  31. 31.
    R. D. G. Blair and A. G. Waltz, Regional cerebral blood flow during acute ischemia: Correlation of autoradiographic measurements with observations of cortical microcirculation, Neurology 20:802–808 (1970).Google Scholar
  32. 32.
    T. Yamaguchi, A. G. Waltz, and H. Okazaki, Hyperemia and ischemia in experimental cerebral infarction: Correlation of histopathology and regional blood flow, Neurology 21: 565–578 (1971).Google Scholar
  33. 33.
    T. Yamaguchi, F. Regli, and A. G. Waltz, Effect of Paco, on hyperemia and ischemia in experimental cerebral infarction, Stroke 2:139–147 (1971).Google Scholar
  34. 34.
    J. E. Rees, J. W. D. Bull, G. H. DuBoulay, J. Marshall, R. W. Ross Russell, and L. Symon, The comparative analysis of isotope clearance curves in normal and ischemic brain, Stroke 2:444–451 (1971).Google Scholar
  35. 35.
    C. Fieschi, L. Bozzao, A. Agnoli, M. Nardini, and A. Bartolini, The hydrogen method of measuring local blood flow in subcortical structures of the brain: Including a comparative study with the 14C antipyrine method, Exptl. Brain Res. (Berlin) 7:111–119 (1969).Google Scholar
  36. 36.
    R. Cooper, Local changes of intra-cerebral blood flow and oxygen in humans, Med. Electron. Biol. Eng 1:529–536 (1963).Google Scholar
  37. 37.
    E. Betz, D. H. Ingvar, N. A. Lassen, and F. W. Schmahl, Regional blood flow in the cerebral cortex, measured simultaneously by heat and inert gas clearance, Acta Physiol. Scand 67:1–9 (1966).Google Scholar
  38. 38.
    J. N. Hayward and M. A. Baker, A comparative study of the role of the cerebral arterial blood in the regulation of brain temperature in five mammals, Brain Res 16:417–440 (1969).Google Scholar
  39. 39.
    R. E. Anderson, A. G. Waltz, T. Yamaguchi, and R. D. Ostrom, Assessment of cerebral circulation (cortical blood flow) with an infrared microscope, Stroke 1:100–103 (1970).Google Scholar
  40. 40.
    B. L. Mallett and N. Veall, The measurement of regional cerebral clearance rates in man using xenon-133 inhalation and extracranial recording, Clin. Sci 29:179–191 (1965).Google Scholar
  41. 41.
    K. B. Jensen, K. Høedt-Rasmussen, E. Sveinsdottir, B. M. Stewart, and N. A. Lassen, Cerebral blood flow evaluated by inhalation of 133Xe and extracranial recording: A methodological study, Clin. Sci 30:485–494 (1966).Google Scholar
  42. 42.
    W. D. Obrist, H. K. Thompson, Jr., C. H. King, and H. S. Wang, Determination of regional cerebral blood flow by inhalation of 133-xenon, Circ. Res 20:124–135 (1967).Google Scholar
  43. 43.
    W. D. Obrist, H. K. Thompson, H. S. Wang, and S. Cronqvist, A simplified procedure for determining fast compartment rCBFs by 133xenon inhalation, in “Brain and Blood Flow: Proceedings of the Fourth International Symposium on the Regulation of Cerebral Bood Flow” (R. W. Ross Russell, ed.) pp. 11–15, Pitman, London (1971).Google Scholar
  44. 44.
    W. H. Oldendorf and M. Kitano, Isotope study of brain blood turnover in vascular disease. Arch. Neurol. (Chicago) 12:30–35 (1965).Google Scholar
  45. 45.
    J. O. Rowan, J. N. Cross, G. M. Tedeschi, and W. B. Jennett, Limitations of circulation time in the diagnosis of intracranial disease, J. Neurol. Neurosurg. Psychiat 33:739–744 (1970).Google Scholar
  46. 46.
    G. Burke and A. Halko, Cerebral blood flow studies with sodium pertechnetate Tc99m and the scintillation camera, J. Am. Med. Ass 204:319–324 (1968).Google Scholar
  47. 47.
    R. Janeway, G. Schweitzer, D. Addario, R. L. Witcofski, and C. D. Maynard, Precision analysis of intravenous rapid sequence scintiphotography: Further experience with the gamma camera, in “Brain and Blood Flow: Proceedings of the Fourth International Symposium on the Regulation of Cerebral Blood Flow” (R. W. Ross Russell, ed.) pp. 48–53, Pitman, London (1971).Google Scholar
  48. 48.
    D. C. Moses, A. E. James, Jr., H. W. Strauss, and H. N. Wagner, Jr., Regional cerebral blood flow estimation in the diagnosis of cerebrovascular disease, J. Nucl. Med 13:135–141 (1972).Google Scholar
  49. 49.
    G. Nylin, B. P. Silfverskiold, S. Löfstedt, O. Regnström, and S. Hedlund, Studies on cerebral blood flow in man, using radioactive-labeled erythrocytes, Brain 83:293–335 (1960).Google Scholar
  50. 50.
    F. R. Hellinger, B. M. Bloor, and J. J. McCutcheon, Total cerebral blood flow and oxygen consumption using the dye-dilution method, J. Neurosurg 19:964–969 (1962).Google Scholar
  51. 51.
    H. C. Smith, R. L. Frye, D. E. Donald, G. D. Davis, J. R. Pluth, R. E. Sturm, and E. H. Wood, Roentgen videodensitometric measure of coronary blood flow, Mayo Clin. Proc 46:800–806 (1971).Google Scholar
  52. 52.
    Y. L. Yamamoto, K. M. Phillips, C. P. Hodge, and W. Feindel, Microregional blood flow changes in experimental cerebral ischemia: Effects of arterial carbon dioxide studied by fluorescein angiography and xenon133 clearance, J. Neurosurg 35:155–166 (1971).Google Scholar
  53. 53.
    W. I. Rosenblum, Erythrocyte velocity and a velocity pulse in minute blood vessels on the surface of the mouse brain, Circ. Res 24:887–892 (1969).Google Scholar
  54. 54.
    E. Nelson and M. Rennels, Neuromuscular contacts in intracranial arteries of the cat, Science 167:301–302 (1970).Google Scholar
  55. 55.
    E. Nelson and M. Rennels, Innervation of intracranial arteries, Brain 93:475–490 (1970).Google Scholar
  56. 56.
    T. Iwayama, J. B. Furness, and G. Burnstock, Dual adrenergic and cholinergic innervation of the cerebral arteries of the rat, Circ. Res 26:635–646 (1970).Google Scholar
  57. 57.
    K. C. Nielsen and C. Owman, Adrenergic innervation of pial arteries related to the circle of Willis in the cat, Brain Res 6:773–776, (1967).Google Scholar
  58. 58.
    R. A. R. Fraser, B. M. Stein, R. E. Barrett, and J. L. Pool, Noradrenergic mediation of experimental cerebrovascular spasm, Stroke 1:356–362 (1970).Google Scholar
  59. 59.
    L. Alexander and T. J. Putnam, Pathological alterations of cerebral vascular patterns, Res. Publ. Ass. Res. Nerv. Ment. Dis 18:471–543 (1938).Google Scholar
  60. 60.
    S. Kobayashi, A. G. Waltz, and A. L. Rhoton, Effects of Stimulation of cervical sympathetic nerves on cortical blood flow and vascular reactivity, Neurology 21:297–302 (1971).Google Scholar
  61. 61.
    F. Regli, T. Yamaguchi, and A. G. Waltz, Responses of surface arteries and blood flow of ischemic and nonischemic cerebral cortex to aminophylline, ergotamine tartrate, and acetazolamide, Stroke 2:461–470 (1971).Google Scholar
  62. 62.
    P. C. Johnson, Review of previous studies and current theories of autoregulation, Circ. Res. 15, Suppl. 1, 2–9 (1964).Google Scholar
  63. 63.
    I. M. James, R. A. Millar, and M. J. Purves, Observations on the extrinsic neural control of cerebral blood flow in the baboon, Circ. Res 25:77–93 (1969).Google Scholar
  64. 64.
    J. S. Meyer, T. Teraura, K. Sakamoto, and A. Kondo, Central neurogenic control of cerebral blood flow, Neurology 21:247–262 (1971).Google Scholar
  65. 65.
    T. Yamaguchi and A. G. Waltz, Non-uniform response of regional cerebral blood flow to stimulation of cervical sympathetic nerve, J. Neurol. Neurosurg. Psychiat 34:602–606 (1971).Google Scholar
  66. 66.
    W. I. Rosenblum, Neurogenic control of cerebral circulation, Stroke 2:429–439 (1971).Google Scholar
  67. 67.
    E. S. Gabrielyan and A. M. Harper, Effect of noradrenalin on regional cerebral blood flow depending on initial state of the mean arterial pressure, Byull. Eksp. Biol. Med 69(6): 9–11 (1970).Google Scholar
  68. 68.
    W. D. Anderson and W. G. Kubicek, Effects of betahistine HCl, nicotinic acid, and histamine on basilar flow in anesthetized dogs, Stroke 2:409–415 (1971).Google Scholar
  69. 69.
    I. C. Denton, Jr., R. P. White, and J. T. Robertson, The effects of Prostaglandins E1, A1, and F on the cerebral circulation of dogs and monkeys, J. Neurosurg 36:34–42 (1972).Google Scholar
  70. 70.
    N. A. Lassen, Autoregulation of cerebral blood flow, Circ. Res. 15, Suppl. 1, 201–204 (1964).Google Scholar
  71. 71.
    A. M. Harper, Autoregulation of cerebral blood flow: Influence of the arterial blood pressure on the blood flow through the cerebral cortex, J. Neurol. Neurosurg. Psychiat 29: 398–403 (1966).Google Scholar
  72. 72.
    C. E. Rapela, H. D. Green, and A. B. Denison, Baroreceptor reflexes and autoregulation of cerebral blood flow in the dog, Circ. Res 21:559–568 (1967).Google Scholar
  73. 73.
    A. G. Waltz, Effect of blood pressure on blood flow in ischemic and in nonischemic cerebral cortex: The phenomena of autoregulation and luxury perfusion, Neurology 18: 613–621 (1968).Google Scholar
  74. 74.
    N. N. Zwetnow, Effects of increased cerebrospinal fluid pressure on the blood flow and on the energy metabolism of the brain: An experimental study, Acta Physiol. Scand. Suppl 339:1–31 (1969).Google Scholar
  75. 75.
    B. Ekström-Jodal, Effect of increased venous pressure on cerebral blood flow in dogs, Acta Physiol. Scand. Suppl 350:51–61 (1970).Google Scholar
  76. 76.
    M. Fog, Cerebral circulation: II. Reaction of pial arteries to increase in blood pressure, AMA Arch. Neurol. Psychiat 41:260–268 (1939).Google Scholar
  77. 77.
    W. I. Rosenblum, Cerebral microcirculation: A review emphasizing the interrelationships of local blood flow and neuronal function, Angiology 16:485–507 (1965).Google Scholar
  78. 78.
    R. W. Ross Russell, J. P. Simcock, I. M. S. Wilkinson, and C. C. Frears, The effect of blood pressure changes on the leptomeningeal circulation of the rabbit, Brain 93:491–504 (1970).Google Scholar
  79. 79.
    L. Symon, Regional vascular reactivity in the middle cerebral arterial distribution: An experimental study in baboons, J. Neurosurg 33:532–541 (1970).Google Scholar
  80. 80.
    W. H. Bell, T. M. Sundt, Jr., and J. D. Nofzinger, The response of cortical vessels to serotonin in experimental cerebral infarction, J. Neurosurg 26:203–212 (1967).Google Scholar
  81. 81.
    I. A. Sulg, S. Cronqvist, H. Schüller, and D. H. Ingvar, The effect of intracardial pacemaker therapy on cerebral blood flow and electroencephalogram in patients with complete atrioventricular block, Circulation 39:487–494 (1969).Google Scholar
  82. 82.
    W. Shapiro and N. P. S. Chawla, Observations on the regulation of cerebral blood flow in complete heart block, Circulation 40:863–870 (1969).Google Scholar
  83. 83.
    L. Sokoloff, Local cerebral circulation at rest and during altered cerebral activity induced by anesthesia or visual stimulation, in “Regional Neurochemistry” (S. S. Kety and J. Elkes, eds.) pp. 107–117, Pergamon Press, New York (1961).Google Scholar
  84. 84.
    J. Risberg and D. H. Ingvar, Regional changes in cerebral blood volume during mental activity, Exptl. Brain Res. (Berlin) 5:72–78 (1968).Google Scholar
  85. 85.
    J. Olesen, Contralateral focal increase of cerebral blood flow in man during arm work, Brain 94:635–646 (1971).Google Scholar
  86. 86.
    N. A. Lassen, Cerebral blood flow and oxygen consumption in man, Physiol. Rev 39: 183–238 (1959).Google Scholar
  87. 87.
    M. Reivich, G. Isaacs, E. Evarts, and S. Kety, The effect of slow wave sleep and REM sleep on regional cerebral blood flow in cats, J. Neurochem 15:301–306 (1968).Google Scholar
  88. 88.
    J. D. Michenfelder, G. A. Gronert, and K. Render, Neuroanesthesia, Anesthesiology 30: 65–100 (1969).Google Scholar
  89. 89.
    M. D. O’Brien and B. L. Mallett, Cerebral cortex perfusion rates in dementia, J. Neurol. Neurosurg. Psychiat 33:497–500 (1970).Google Scholar
  90. 90.
    W. D. Obrist, E. Chivian, S. Cronqvist, and D. H. Ingvar, Regional cerebral blood flow in senile and presenile dementia, Neurology 20:315–322 (1970).Google Scholar
  91. 91.
    D. Simard, J. Olesen, O. B. Paulson, N. A. Lassen, and E. Skinhøj, Regional cerebral blood flow and its regulation in dementia, Brain 94: 273–288 (1971).Google Scholar
  92. 92.
    T. W. Langfitt and N. F. Kassell, Cerebral vasodilatation produced by brain-stem stimulation: Neurogenic control vs. autoregulation, Am. J. Physiol 215:90–97 (1968).Google Scholar
  93. 93.
    M. Baldy-Moulinier and D. H. Ingvar, EEG frequency content related to regional blood flow of cerebral cortex in cat, Exptl. Brain Res. (Berlin) 5:55–60 (1968).Google Scholar
  94. 94.
    J. W. Bean and N. E. Leatherman, Cerebral blood flow during convulsions, Arch. Neurol. (Chicago) 20:396–405 (1969).Google Scholar
  95. 95.
    J. S. Meyer, F. Nomura, K. Sakamoto, and A. Kondo, Effect of stimulation of the brainstem reticular formation on cerebral blood flow and oxygen consumption, Electroencephalog. Clin. Neurophysiol 26:125–132 (1969).Google Scholar
  96. 96.
    G. I. Mchedlishvili, D. H. Ingvar, D. G. Barmidze, and R. Ekberg, Blood flow and vascular behavior in the cerebral cortex related to strychnine-induced spike activity, Exptl. Neurol 26:411–423 (1970).Google Scholar
  97. 97.
    M. Reivich, Arterial pCO2 and cerebral hemodynamics, Am. J. Physiol 206:25–35 (1964).Google Scholar
  98. 98.
    A. M. Harper and H. I. Glass, Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures, J. Neurol. Neurosurg. Psychiat 28:449–452 (1965).Google Scholar
  99. 99.
    W. Shapiro, A. J. Wasserman, and J. L. Patterson, Mechanism and pattern of human cerebrovascular regulation after rapid changes in blood CO2 tension, J. Clin. Invest 45: 913–922 (1966).Google Scholar
  100. 100.
    J. Olesen, O. B. Paulson, and N. A. Lassen, Regional cerebral blood flow in man determined by the initial slope of the clearance of intra-arterially injected 133Xe, Stroke 2: 519–540 (1971).Google Scholar
  101. 101.
    S. C. Alexander, T. C. Smith, G. Strobel, G. W. Stephen, and H. Wollman, Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis, J. Appl. Physiol 24:66–72 (1968).Google Scholar
  102. 102.
    J. W. Severinghaus and N. Lassen, Step hypocapnia to separate arterial from tissue PCO2 in the regulation of cerebral blood flow, Circ. Res 20:272–278 (1967).Google Scholar
  103. 103.
    V. Fencl, J. R. Vale, and A. Brock, Respiration and cerebral blood flow in metabolic acidosis and alkalosis in humans, J. Appl. Physiol 27:67–76 (1969).Google Scholar
  104. 104.
    E. Skinhøj and O. B. Paulson, Carbon dioxide and cerebral circulatory control, Arch. Neurol. (Chicago) 20:249–252 (1969).Google Scholar
  105. 105.
    M. Wahl, P. Deetjen, and K. Thurau, Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface, Pflügers Arch 316: 152–163 (1970).Google Scholar
  106. 106.
    J. W. Severinghaus, H. Chiodi, E. I. Eger, II, B. Brandstater, and T. F. Hornbein, Cerebral blood flow in man at high altitude: Role of cerebrospinal fluid pH in normalization of flow in chronic hypocapnia, Circ. Res 19:274–282 (1966).Google Scholar
  107. 107.
    A. M. Harper and R. A. Bell, The effect of metabolic acidosis and alkalosis on the blood flow through the cerebral cortex, J. Neurol. Neurosurg. Psychiat 26:341–344 (1963).Google Scholar
  108. 108.
    E. Betz and D. Heuser, Cerebral cortical blood flow during changes of acid-base equilibrium of the brain, J. Appl. Physiol 23:726–733 (1967).Google Scholar
  109. 109.
    S. Cotev, J. Lee, and J. W. Severinghaus, Effects of acetazolamide on cerebral blood flow and cerebral tissue PO2, Anesthesiology 29:471–477 (1968).Google Scholar
  110. 110.
    K. Kogure, P. Scheinberg, O. M. Reinmuth, M. Fujishima, and R. Busto, Mechanisms of cerebral vasodilatation in hypoxia, J. Appl. Physiol 29:223–229 (1970).Google Scholar
  111. 111.
    S. Shimojyo, P. Scheinberg, K. Kogure, and O. M. Reinmuth, The effects of graded hypoxia upon transient cerebral blood flow and oxygen consumption, Neurology 18:127–133 (1968).Google Scholar
  112. 112.
    K. Kogure, P. Scheinberg, M. Fujishima, R. Busto, and O. M. Reinmuth, Effect of hypoxia on cerebral autoregulation, Am. J. Physiol 219:1393–1396 (1970).Google Scholar
  113. 113.
    F. Regli, T. Yamaguchi, and A. G. Waltz, Effects of inhalation of oxygen on blood flow and microvasculature of ischemic and nonischemic cerebral cortex, Stroke 1:314–319 (1970).Google Scholar
  114. 114.
    J. W. Bean, J. Lignell, and J. Coulson, Regional cerebral blood flow, O2, and EEG in exposures to O2 at high pressures, J. Appl. Physiol 31:235–242 (1971).Google Scholar
  115. 115.
    E. Kanzow and D. Dieckhoff, On the location of the vascular resistance in the cerebral circulation, in “Cerebral Blood Flow: Clinical and Experimental Results” (M. Brock, C. Fieschi, D. H. Ingvar, N. A. Lassen, and K. Schürmann, eds.) pp. 96–97, Springer-Verlag, Berlin (1969).Google Scholar
  116. 116.
    H. M. Shapiro, D. D. Stromberg, D. R. Lee, and C. A. Wiedershielm, Dynamic pressures in the pial arterial microcirculation, Am. J. Physiol 221:279–283 (1971).Google Scholar
  117. 117.
    V. D. Salanga and A. G. Waltz, Regional cerebral blood flow during stimulation of seventh cranial nerve, Stroke 4:213–217 (1973).Google Scholar
  118. 118.
    M. N. Shalit, O. M. Reinmuth, S. Shimojyo, and P. Scheinberg, Carbon dioxide and cerebral circulatory control. III. The effects of brain stem lesions, Arch. Neurol. (Chicago) 17:342–353 (1967).Google Scholar
  119. 119.
    A. M. Harper, V. D. Deshmukh, J. O. Rowan, and W. B. Jennett, Studies on possible neurogenic influences on the cerebral circulation, in “Brain and Blood Flow: Proceedings of the Fourth International Symposium on the Regulation of Cerebral Blood Flow” (R. W. Ross Russell, ed.) pp. 182–186, Pitman, ondon (1971).Google Scholar
  120. 120.
    W. I. Rosenblum, Cerebral arteriolar spasm inhibited by β-adrenergic blocking agents, Arch. Neurol. (Chicago) 21:296–302 (1969).Google Scholar
  121. 121.
    R. A. R. Fraser, B. M. Stein, and J. L. Pool, Adrenergic blockade of hypocapnic cerebral arterial constriction, Stroke 2:219–231 (1971).Google Scholar
  122. 122.
    A. G. Waltz and T. Yamaguchi, Pressure-flow relationships of the cerebral vasculature: Autoregulatory responses to changes of perfusion pressure produced without drugs or hemorrhage, Trans. Am. Neurol. Ass 95:326–327 (1970).Google Scholar
  123. 123.
    G. I. Mchedlishvili and L. S. Nikolaishvili, Evidence of a cholinergic nervous mechanism mediating the autoregulatory dilatation of the cerebral blood vessels, Pflügers Arch 315:27–37 (1970).Google Scholar
  124. 124.
    A. G. Waltz, T. Yamaguchi, and F. Regli, Regulatory responses of the cerebral vasculature after sympathetic denervation, Am. J. Physiol 221:298–302 (1971).Google Scholar
  125. 125.
    M. J. Hernandez, M. E. Raichle, and H. L. Stone, The role of sympathetic innervation in cerebral blood flow autoregulation, Panminerva Med 13:173 (1971).Google Scholar
  126. 126.
    T. M. Sundt, Jr., and A. G. Waltz, Experimental cerebral infarction: Retro-orbital, extradural approach for occluding the middle cerebral artery, Mayo Clin. Proc 41: 159–168 (1966).Google Scholar
  127. 127.
    K. Kogure, M. Fujishima, P. Scheinberg, and O. M. Reinmuth, Effects of changes in carbon dioxide pressure and arterial pressure on blood flow in ischemic regions of the brain in dogs, Circ. Res 24:557–565 (1969).Google Scholar
  128. 128.
    G. F. Molinari, Experimental cerebral infarction. I. Selective segmental occlusion of intracranial arteries in the dog. II. Clinicopathological model of deep cerebral infarction, Stroke 1:224–244 (1970).Google Scholar
  129. 129.
    R. W. Ross Russell, The reactivity of the pial circulation of the rabbit to hypercapnia and the effect of vascular occlusion, Brain 94:623–634 (1971).Google Scholar
  130. 130.
    J. H. Halsey and N. F. Capra, Physiological modification of immediate ischemia due to experimental middle cerebral occlusion — Its relevance to cerebral infarction, Stroke 2: 239–246 (1970).Google Scholar
  131. 131.
    J. H. Halsey, Jr., and L. C. Clark, Jr., Some regional circulatory abnormalities following experimental cerebral infarction, Neurology 20:238–246 (1970).Google Scholar
  132. 132.
    B. W. Brawley, D. E. Strandness, and W. A. Kelly, The physiologic response to therapy in experimental cerebral ischemia, Arch. Neurol. (Chicago) 17:180–187 (1967).Google Scholar
  133. 133.
    R. W. Brennan and F. Plum, Dissociation of autoregulation and chemical regulation in cerebral circulation following seizures, in “Cerebral Blood Flow: Clinical and Experimental Results” (M. Brock, C. Fieschi, D. H. Ingvar, N. A. Lassen, and K. Shürmann, eds.) pp. 218–222, Springer-Verlag, Berlin (1969).Google Scholar
  134. 134.
    J. F. Fogelson and R. W. Alman, Maximal dilatation of cerebral vessels, Arch. Neurol. (Chicago) 11:303–309 (1964).Google Scholar
  135. 135.
    M. Brock, J. Beck, E. Markakis, and H. Dietz, Intracranial pressure gradients associated with experimental cerebral embolism, Stroke 3:123–130 (1972).Google Scholar
  136. 136.
    N. A. Lassen and R. Palvölgyi, Cerebral steal during hypercapnia and the inverse reaction during hypocapnia observed by the 133xenon technique in man, Scand. J. Clin. Lab. Invest. Suppl 102:XIII, D (1968).Google Scholar
  137. 137.
    F. Regli, T. Yamaguchi, and A. G. Waltz, Cerebral circulation: Effects of vasodilating drugs on blood flow and the microvasculature of ischemic and nonischemic cerebral cortex, Arch. Neurol. (Chicago) 24:467–474 (1971).Google Scholar
  138. 138.
    J. Olesen and O. B. Paulson, The effect of intra-arterial papaverine on the regional cerebral blood flow in patients with stroke or intracranial tumor, Stroke 2:148–159 (1971).Google Scholar
  139. 139.
    K. Høedt-Rasmussen, E. Skinhøj, O. Paulson, J. Ewald, J. K. Bjerrum, A. Fahrenkrug, and N. A. Lassen, Regional cerebral blood flow in acute apoplexy, Arch. Neurol. (Chicago) 17:271–281 (1967).Google Scholar
  140. 140.
    C. Fieschi, A. Agnoli, N. Battistini, L. Bozzao, and M. Prencipe, Derangement of regional cerebral blood flow and of its regulatory mechanisms in acute cerebrovascular lesions, Neurology 18:1166–1179 (1968).Google Scholar
  141. 141.
    O. B. Paulson, Regional cerebral blood flow in apoplexy due to occulsion of the middle cerebral artery, Neurology 20:63–77 (1970).Google Scholar
  142. 142.
    O. B. Paulson, N. A. Lassen, and F. Skinhøj, Regional cerebral blood flow in apoplexy without arterial occlusion, Neurology 20:125–138 (1970).Google Scholar
  143. 143.
    E. Skinhoj, K. Heedt-Rasmussen, O. B. Paulson, and N. A. Lassen, Regional cerebral blood flow and its autoregulation in patients with transient focal cerebral ischemic attacks, Neurology 20:485–493 (1970).Google Scholar
  144. 144.
    M. L. Dyken, R. L. Campbell, and R. Frayser, Cerebral blood flow, oxygen utilization, and vascular reactivity: Internal carotid artery complete occlusion versus incomplete occlusion with infarction, Neurology 20:1127–1132 (1970).Google Scholar
  145. 145.
    J. E. Rees, G. H. du Boulay, J. W. D. Bull, and J. Marshall, Regional cerebral blood flow in transient ischemie attacks, Lancet 2:1210–1212 (1970).Google Scholar
  146. 146.
    G. Boysen, H. J. Ladegaard-Pedersen, H. Henriksen, J. Olesen, O. B. Paulson, and H. C. Engell, The effects of PaCO2 on regional cerebral blood flow and internal carotid arterial pressure during carotid clamping, Anesthesiology 35:286–300 (1971).Google Scholar
  147. 147.
    J. S. Meyer, Y. Fukuuchi, K. Shimazo, T. Ohuchi, and A. D. Ericsson, Effect of intravenous infusion of glycerol on hemispheric blood flow and metabolism in patients with acute cerebral infarction, Stroke 3:168–180 (1972).Google Scholar
  148. 148.
    A. G. Waltz, T. M. Sundt, Jr., and J. D. Michenfelder, Cerebral blood flow during carotid endarterectomy, Circulation 45:1091–1096 (1972).Google Scholar
  149. 149.
    N. A. Lassen, The luxury-perfusion syndrome and its possible relation to acute metabolic acidosis localized within the brain, Lancet 2:1113–1115 (1966).Google Scholar
  150. 150.
    O. B. Paulson, J. Olesen, and M. S. Christensen, Restoration of autoregulation of cerebral blood flow by hypocapnia, Neurology 22:286–293 (1972).Google Scholar
  151. 151.
    O. B. Paulson, Cerebral apoplexy (stroke): Pathogenesis, pathophysiology and therapy as illustrated by regional blood flow measurements in the brain, Stroke 2:327–360 (1971).Google Scholar
  152. 152.
    M. Soloway, W. Nadel, M. S. Albin, and R. J. White, The effect of hyperventilation on subsequent cerebral infarction, Anesthesiology 29:975–980 (1968).Google Scholar
  153. 153.
    M. Soloway, G. Moriarty, J. Fraser, and R. J. White, Effect of delayed hyperventilation on experimental cerebral infarction, Neurology 21:479–485 (1971).Google Scholar
  154. 154.
    T. Yamaguchi, F. Regli, and A. G. Waltz, Effects of hyperventilation with and without carbon dioxide on experimental cerebral ischemia and infarction: Studies of regional cerebral blood flow and histopathology after occlusion of a middle cerebral artery in cats, Brain 95:123–132 (1972).Google Scholar
  155. 155.
    M. S. Christensen, Stroke treated with prolonged hyperventilation, in “Brain and Blood Flow: Proceedings of the Fourth International Symposium on the Regulation of Cerebral Blood Flow” (R. W. Ross Russell, ed.) pp. 358–364, Pitman, London (1971).Google Scholar
  156. 156.
    F. B. Byrom, The pathogenesis of hypertensive encephalopathy and its relation to the malignant phase of hypertension: Experimental evidence from the hypertensive rat, Lancet 2:201–211 (1954).Google Scholar
  157. 157.
    J. S. Meyer, A. G. Waltz, and F. Gotoh, Pathogenesis of cerebral vasospasm in hypertensive encephalopathy. II. The nature of increased irritability of smooth muscle of pial arterioles in renal hypertension, Neurology 10:859–867 (1960).Google Scholar
  158. 158.
    R. Rodda and D. Denny-Brown, The cerebral arterioles in experimental hypertension. II. The development of arteriolonecrosis, Am. J. Pathol 49:365–371 (1966).Google Scholar
  159. 159.
    F. B. Byrom, “The Hypertensive Vascular Crisis,” Grune and Stratton, New York (1969).Google Scholar
  160. 160.
    K. A. Hossmann and Y. Olsson, Influence of ischemia on the passage of protein tracers across capillaries in certain blood-brain barrier injuries, Acta Neuropathol 18:113–122 (1971).Google Scholar
  161. 161.
    A. G. Waltz, Regional cerebral blood flow: Responses to changes in arterial blood pressure and CO2 tension, in “Cerebral Vascular Diseases: Transactions of the Sixth Conference” (J. F. Toole, R. G. Siekert, and J. P. Whisnant, eds.) pp. 66–70, Grune and Stratton, New York (1968).Google Scholar
  162. 162.
    T. Yamaguchi and A. G. Waltz, Effects of subarachnoid hemorrhage from puncture of the middle cerebral artery on blood flow and vasculature of the cerebral cortex in the cat, J. Neurosurg 35:664–671 (1971).Google Scholar
  163. 163.
    R. Palvölgyi, Regional cerebral blood flow in patients with intracranial tumors, J. Neurosurg 31:149–163 (1969).Google Scholar
  164. 164.
    E. Gordon, The effect of controlled ventilation on the clinical course of patients with severe traumatic brain injury, in “Brain and Blood Flow: Proceedings of the Fourth International Symposium on the Regulation of Cerebral Blood Flow” (R. W. Ross Russell ed.) pp. 365–369, Pitman, London (1971).Google Scholar
  165. 165.
    W. R. Hudgins and J. H. Garcia, The effect of electrocautery, atmospheric exposure, and surgical retraction on the permeability of the blood-brain barrier, Stroke 1:375–380 (1970).Google Scholar
  166. 166.
    W. I. Rosenblum, Effect of blood pressure and blood viscosity on fluorescein transit time in the cerebral microcirculation in the mouse, Circ. Res 27:825–833 (1970).Google Scholar
  167. 167.
    W. I. Rosenblum, The differential effect of elevated blood viscosity on plasma and erythrocyte flow in the cerebral microcirculation of the mouse, Microvasc. Res 2:399–408 (1970).Google Scholar
  168. 168.
    T. Hasegawa, J. R. Ravens, and J. F. Toole, Precapillary arteriovenous anastamoses, Arch. Neurol. (Chicago) 16:217–224 (1967).Google Scholar
  169. 169.
    O. A. Larsen and N. A. Lassen, Cerebral hematocrit in normal man, J. Appl. Physiol 19: 571–574 (1964).Google Scholar
  170. 170.
    V. A. Levin and J. I. Ausman, Relationship of peripheral venous hematocrit to brain hematocrit, J. Appl. Physiol 26:433–437 (1969).Google Scholar
  171. 171.
    W. I. Rosenblum, Ratio of red cell velocities near the vessel wall to velocities at the vessel center in cerebral microcirculation, and an apparent effect of blood viscosity on this ratio, Microvasc. Res 4:98–101 (1972).Google Scholar
  172. 172.
    D. Denny-Brown and J. S. Meyer, The cerebral collateral circulation. II. Production of cerebral infarction by ischemic anoxia and its reversibility in early stages, Neurology 7: 567–579 (1957).Google Scholar
  173. 173.
    E. S. Gurdjian and L. M. Thomas, Human pial circulation, Arch. Neurol. (Chicago) 5: 111–118(1961).Google Scholar
  174. 174.
    F. C. A. Romanul and A. Abramowicz, Changes in brain and pial vessels in arterial border zones, Arch. Neurol. (Chicago) 11:40–65 (1964).Google Scholar
  175. 175.
    P. Huber, H. Mogun, and R. Rivoir, The effect of pharmacologically increased blood pressure on the brain circulation: Angiographic investigation of arterial diameter and blood flow in patients with normal and pathologic arteriograms (preliminary report), Neuroradiology 3:68–74 (1971).Google Scholar
  176. 176.
    L. Symon, An experimental study of traumatic cerebral vascular spasm, J. Neurol. Neurosurg. Psychiat 30:497–505 (1967).Google Scholar
  177. 177.
    J. Kapp, M. S. Mahaley, and G. L. Odom, Cerebral arterial spasm, J. Neurosurg 29: 331–356 (1968).Google Scholar
  178. 178.
    D. R. Smith, T. B. Ducker, and L. G. Kempe, Experimental in vivo microcirculatory dynamics in brain trauma, J. Neurosurg 30:664–672 (1969).Google Scholar
  179. 179.
    M. Brock, J. Risberg, and D. H. Ingvar, Effects of local trauma on cortical CBF studied by infrared thermography, Brain Res 12:238–241 (1969).Google Scholar
  180. 180.
    A. G. Waltz, Red venous blood: Occurrence and significance in ischemic and nonischemic cerebral cortex, J. Neurosurg 31:141–148 (1969).Google Scholar
  181. 181.
    R. H. Wilkins and P. Levitt, Intracranial arterial spasm in the dog: A chronic experimental model, J. Neurosurg 33:260–269 (1970).Google Scholar
  182. 182.
    F. Echlin, Experimental vasospasm, acute and chronic, due to blood in the subarachnoid space, J. Neurosurg 35:646–656 (1971).Google Scholar
  183. 183.
    A. G. Waltz and J. S. Meyer, Effects of changes in composition of plasma on pial blood flow. II. High molecular weight substances, blood constituents, and tonicity, Neurology 9: 815–825 (1959).Google Scholar
  184. 184.
    W. I. Rosenblum and R. M. Asofsky, Malfunction of cerebral microcirculation in macroglobulinemic mice, Arch. Neurol. (Chicago) 18:151–159 (1968).Google Scholar
  185. 185.
    W. I. Rosenblum, Erythrocyte velocity and fluorescein transit time through the cerebral microcirculation in experimental polycythemia, J. Neuropathol. Exptl. Neurol 31:126–131 (1972).Google Scholar
  186. 186.
    V. A. Levin and D. D. Gilboe, Blood volume, hematocrit and pressure relationships in the isolated perfused dog brain, Stroke 1:270–277 (1970).Google Scholar
  187. 187.
    W. I. Rosenblum, Effect of reduced hematocrit on erythrocyte velocity and fluorescein transit time in the cerebral microcirculation of the mouse, Circ. Res 29:96–103 (1971).Google Scholar
  188. 188.
    R. M. Crowell, Y. Olsson, I. Klatzo, and A. Ommaya, Temporary occlusion of the middle cerebral artery in the monkey: Clinical and pathological observations, Stroke 1: 439–448 (1970).Google Scholar
  189. 189.
    T. M. Sundt, Jr., and A. G. Waltz, Cerebral ischemia and reactive hyperemia: Studies of cortical blood flow and microcirculation before, during and after temporary occlusion of the middle cerebral artery of squirrel monkeys, Circ. Res 28:426–433 (1971).Google Scholar
  190. 190.
    J. Chiang, M. Kowada, A. Ames, III, R. L. Wright, and G. Majno, Cerebral ischemia. IV. Vascular changes, Am. J. Pathol 52:455–476 (1968).Google Scholar
  191. 191.
    K. A. Hossmann, Cortical steady potential, impedance and excitability changes during and after total ischemia of cat brain, Exptl. Neurol 32:163–175 (1971).Google Scholar
  192. 192.
    J. H. Garcia, J. V. Cox, and W. R. Hudgins, Ultrastructure of the microvasculature in experimental cerebral infarction, Acta Neuropathol 18:273–285 (1971).Google Scholar
  193. 193.
    T. M. Sundt, Jr., A. G. Waltz, and G. P. Sayre, Experimental cerebral infarction: Modification by treatment with hemodiluting, hemoconcentrating, and dehydrating agents, J. Neurosurg 26:46–56 (1967).Google Scholar
  194. 194.
    R. C. Cantu, A. Ames, III, G. DiGiacinto, and J. Dixon, Hypotension: A major factor limiting recovery from cerebral ischemia, J. Surg. Res 9:525–529 (1969).Google Scholar
  195. 195.
    R. C. Cantu, A. Ames, J. Dixon, and G. DiGiacinto, Reversibility of experimental cerebrovascular obstruction induced by complete ischemia, J. Neurosurg 31:429–431 (1969).Google Scholar
  196. 196.
    Y. Olsson and K. A. Hossmann, The effect of intravascular saline perfusion on the sequelae of transient cerebral ischemia: Light and electron microscopical observations Acta Neuropathol 17:68–79 (1971).Google Scholar
  197. 197.
    C. Fieschi, N. Battistini, and M. Nardini, Experimental cerebral infarction: Focal or perifocal reactive hyperemia and its relationship to red softening, in “Research on the Cerebral Circulation: Fourth International Salzburg Conference,” (J. S. Meyer, M. Reivich, H. Lechner, and O. Eichhorn, eds.) pp. 17–23, Charles C. Thomas, Springfield, Ill. (1970).Google Scholar
  198. 198.
    M. E. Jaffe, L. C. McHenry, Jr., and H. I. Goldberg, Regional cerebral blood flow measurement with small probes. II. Application of the method, Neurology 20:225–237 (1970).Google Scholar
  199. 199.
    S. Cronqvist and F. Laroche, Transitory hyperemia in focal cerebral vascular lesions studied by angiography and regional cerebral blood flow measurements, Brit. J. Radiol 40:270–274 (1967).Google Scholar
  200. 200.
    S. Cronqvist, Regional cerebral blood flow and angiography in apoplexy, Acta Radiol. Diagn 7:521–534 (1968).Google Scholar
  201. 201.
    J. M. Taveras, J. M. Gilson, D. O. Davis, B. Kilgore, and C. L. Rumbaugh, Angiography in cerebral infarction, Radiology 93:549–558 (1969).Google Scholar
  202. 202.
    R. M. Crowell, Y. Olsson, and A. K. Ommaya, Angiographic and microangiographic observations in experimental cerebral infarction, Neurology 21:710–719 (1971).Google Scholar
  203. 203.
    W. Feindel and P. Perot, Red cerebral veins: A report on arteriovenous shunts in tumors and cerebral scars, J. Neurosurg 22:315–325 (1965).Google Scholar
  204. 204.
    H. M. Shapiro, R. E. Myers, J. Segarra, and S. Sotsky, Posthypoxic jugular venous hyperoxia, Neurology 20:791–801 (1970).Google Scholar
  205. 205.
    W. Feindel, Y. L. Yamamoto, and C. P. Hodge, Red cerebral veins and the cerebral steal syndrome: Evidence from fluorescein angiography and microregional blood flow by radioisotopes during excision of an angioma, J. Neurosurg 35:167–179 (1971).Google Scholar
  206. 206.
    F. Regli, T. Yamaguchi, and A. G. Waltz, Effects of acetazolamide on cerebral ischemia and infarction after experimental occlusion of middle cerebral artery, Stroke 2:456–460 (1971).Google Scholar
  207. 207.
    F. Plum, J. B. Posner, and E. C. Alvord, Edema and necrosis in experimental cerebral infarction; effect of steroids in experimental cerebral infarction, Arch. Neurol. (Chicago) 9:563–573 (1963).Google Scholar
  208. 208.
    J. S. Meyer, Y. Shinohara, T. Kanda, Y. Fukuuchi, A. D. Ericsson, and N. K. Kok, Diaschisis resulting from acute unilateral cerebral infarction: Quantitative evidence for man, Arch. Neurol. (Chicago) 23:240–247 (1970).Google Scholar
  209. 209.
    A. G. Waltz, Cortical blood flow of opposite hemisphere after occlusion of middle cerebral artery, Trans. Am. Neurol. Ass 92:293 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • A. G. Waltz
    • 1
  1. 1.Department of NeurologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations