Advertisement

Pathophysiology of Central Nervous System Regulation of Anterior Pituitary Function

  • Dorothy T. Krieger

Abstract

Central nervous system (CNS) regulation of anterior pituitary function involves the interaction of two major bodily systems — the nervous and endocrine systems. A discussion of both the role of the CNS in hormonal regulation and of hormonal effects on CNS function is outside the scope of this chapter, which will focus mainly on selected aspects of the role of the CNS in hormonal regulation.

Keywords

Growth Hormone Corticotrophin Release Factor Thyrotropin Release Hormone Median Eminence Precocious Puberty 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. A. Marshall, Sexual periodicity and the causes which determine it, Phil. Trans B226:423–456 (1936).Google Scholar
  2. 2.
    G. W. Harris, The induction of ovulation in the rabbit by electrical stimulation of the hypothalamo-hypophyseal mechanism, Proc. Roy. Soc. Lond. Ser. B 122:374–394 (1937).Google Scholar
  3. 3.
    J. DeGroot and G. W. Harris, Hypothalamic control of the anterior pituitary gland and blood lymphocytes, J. Physiol 111:335–346 (1950).Google Scholar
  4. 4.
    R. Burgus and R. Guillemin, Hypothalamic releasing factors, Ann. Rev. Biochem 39:499–526 (1970).Google Scholar
  5. 5.
    J. Meites, “Hypothalamic Hormones of the Hypophysis,” Williams Wilkins, Baltimore (1970).Google Scholar
  6. 6.
    B. Donovan, “Mammalian Neuroendocrinology,” McGraw-Hill, New York, (1970).Google Scholar
  7. 7.
    S. M. McCann and J. C Porter, Hypothalamic-pituitary stimulating and inhibiting hormones, Physiol. Rev 49:240–284 (1969).Google Scholar
  8. 8.
    L. Martini and W. F. Ganong, “Neuroendocrinology,” Vols. I and II, Academic Press, New York and London (1966).Google Scholar
  9. 9.
    G. W. Harris and B. T. Donovan, “The Pituitary Gland,” University of California Press, Berkeley and Los Angeles (1966).Google Scholar
  10. 10.
    S. Reichlin, J. B. Martin, M. Mitnick, R. L. Boshans, V. Grimm, J. Bollinger, J. Gordon, and J. Malacars, The hypothalamus in pituitary-thyroid regulation, Rec. Progr. Hormone Res 28:229–286 (1972).Google Scholar
  11. 11.
    B. Halasz, L. Pupp, and S. Uhlarin, Hypophysiotropic area in the hypothalamus, J. Endocrinol 25:147–15(1962).Google Scholar
  12. 12.
    L. Krulich, P. Illner, C. P. Fawcett, M. Quijada, and S. M. McCann, in “Growth and Growth Hormone” (I. A. Pecile and E. Muller, eds.) pp. 306–316, Excerpta Medica, Amsterdam (1972).Google Scholar
  13. 13.
    R. Guillemin, E. Sakiz, and D. N. Ward, Further purification of TSH releasing factor (TRF) from sheep hypothalamic tissues, with observations on the amino acid composition, Proc. Soc. Exptl. Biol. Med 118:1132–1137 (1965).Google Scholar
  14. 14.
    K. M. Knigge and D. E. Scott, Structure and function of the median eminence, Am. J. Anat 129:223–244 (1970).Google Scholar
  15. 15.
    H. Kobayashi and T. Matsui, in “Frontiers in Neuroendocrinology” (W. F. Ganong and L. Martini, eds.) pp. 3–46, Oxford University Press, New York (1969).Google Scholar
  16. 16.
    B. Folck and C. Owman, A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic amines, Acta Univ. Lond. Sect. II 7:1–23 (1965).Google Scholar
  17. 17.
    R. S. Piezzi, F. Larin, and R. J. Wurtman, Serotonin, 5-hydroxyindoleacetic acid (5HIAA) and monoamine oxidase in the bovine median eminence and pituitary gland, Endocrinology 86:1460–1462 (1970).Google Scholar
  18. 18.
    G. B. Wislocki and L. S. King, The permeability of the hypophysis and hypothalamus to vital dyes with a study of the hypophyseal vascular supply, Am. J. Anat 58:421–472 (1936).Google Scholar
  19. 19.
    J. C. Porter, I. A. Kamberi, and Y. A. Grazia, in “Frontiers in Neuroendocrinology” (W. F. Ganong and L. Martini, eds.) pp. 145–177, Oxford University Press, New York (1971).Google Scholar
  20. 20.
    A. V. Schally, T. W. Redding, J. F. Barrett, and C. Y. Bowers, Purification of porcine thyrotropin releasing factor (TRF), Fed. Proc 25:348 (1966).Google Scholar
  21. 21.
    R. Burgus, T. F. Dunn, D. Desiderio, and R. Guillemin, Derives polypeptididiques de synthese doues d’activite hypophysiotrope TRF nouvelles observations, Compt. Rend. Acad. Sci 269:1870–1873 (1969).Google Scholar
  22. 22.
    K. Folkers, F. Enzmann, J. Boler, C. Y. Bowers, and A. V. Schally, Discovery of modification of the synthetic tripeptide-sequence of the thyrotropin releasing hormone having activity, Biochem. Biophys. Res. Commun 37:123–126 (1969).Google Scholar
  23. 23.
    R. Burgus, T. F. Dunn, D. Desiderio, D. N. Ward, W. Vale, R. Guillemin, A. M. Felix, D. Gillessen, and R. C. Studes, Biological activity of synthetic Polypeptide derivatives related to the structure of hypothalamic TRF, Endocrinology 86:573–589 (1970).Google Scholar
  24. 24.
    J. Boler, F. Enzmann, K. Folkers, C. Y. Bowers, and A. V. Schally, The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline-amide. Biochem. Biophys. Res. Commun 37:705–710 (1969).Google Scholar
  25. 25.
    J. A. Pittman, Jr., E. D. Haigler, Jr., J. M. Hershman, and C. S. Pittman, Hypothalamic hypothyroidism, New Engl. J. Med 284:844–845 (1971).Google Scholar
  26. 26.
    N. Fleischer, M. Lorente, J. Kirkland, R. Kirkland, G. Clayton, and M. Calderon, Increased secretion of prolactin after administration of synthetic thyrotropin releasing hormone (TRH) in man, J. Clin. Endocrinol 34:617–624 (1972).Google Scholar
  27. 27.
    W. Vale, R. Burgus, and R. Guillemin, Competition between thyroxine and TRF at the pituitary level in release of TSH, Proc. Soc. Exptl. Biol. Med 125:210–213 (1967).Google Scholar
  28. 28.
    C. Y. Bowers, A. V. Schally, G. A. Reynolds, and W. D. Hawley, Interactions of l-thyroxine or l-triiodothyronine and thyrotropin-releasing factor on the release and synthesis of thyrotropin from the anterior pituitary gland of mice, Endocrinology 81:741–747 (1967).Google Scholar
  29. 29.
    C. Y. Bowers, K. L. Lee, and A. V. Schally, A study on the interaction of the thyrotropinreleasing factor and l-triiodothyronin: Effects of puromycin and cyclohexamide, Endocrinology 82:75–82 (1968).Google Scholar
  30. 30.
    W. Vale, R. Burgus, and R. Guillemin, On the mechanism of action of TRF: Effects of cycloheximide and actinomycin on the release of TSH stimulated in vitro by TRF and its inhibition by thyroxine, Neuroendocrinology 3:34–46 (1968).Google Scholar
  31. 31.
    J. P. Wilber and R D. Utiger, The effect of glucocorticoids on thyrotropin secretion, J. Clin. Invest 48:2096–2103 (1969).Google Scholar
  32. 32.
    L. S. Jacobs, P. J. Snyder, J. F. Wilber, R. D. Utiger, and W. H. Daughaday, Increased serum prolactin after administration of synthetic thyrotropin releasing hormone (TRH) in man, J. Clin. Endocrinol 33:996–998 (1971).Google Scholar
  33. 33.
    C. Y. Bowers, H. G. Friesen, P. Hwang, H. J. Guyda, and K. Folkers, Prolactin and thyrotropin release in man by synthetic pyroglytamyl-histidyl-prolinamide, Biochem. Biophys. Res. Commun 45:1033–1041 (1971).Google Scholar
  34. 34.
    A. Arimura and A. V. Schally, Progesterone suppression of LH releasing hormoneinduced stimulation of LH release in rats, Endocrinology 87:653–657 (1970).Google Scholar
  35. 35.
    A. Arimura and A. V. Schally, Augmentation of pituitary responsiveness to LH-releasing hormone (LH-RH) by estrogen, Proc. Soc. Exptl. Biol. Med 136:290–293 (1971).Google Scholar
  36. 36.
    V. Hillard, A. V. Schally, and C. H. Sawyer, Progesterone blockade of the ovulatory response to intrapituitary infusion of LH-RH in rats, Endocrinology 88:730–736 (1971).Google Scholar
  37. 37.
    A. V. Schally, A. Arimura, Y. Baba, R. M. G. Nair, H. Matsuo, T. W. Redding, and L. Debeljuk, Isolation and properties of the FSH and LH-releasing hormone, Biochem. Biophys. Res. Commun 43:393–399 (1971).Google Scholar
  38. 38.
    H. Matsuo, Y. Baba, R. M. G. Nair, A. Arimura, and A. V. Schally, Structure of the porcine LH-and FSH-releasing hormone in the proposed amino acid sequence, Biochem. Biophys. Res. Commun 43:1334–1339 (1971).Google Scholar
  39. 39.
    S. S. C. Yen, R. Rebar, G. Vandenberg, and H. Judd, Hypothalamic amenorrhea and hypogonadotropism: Responses to synthetic LRH, New Engl. J. Med (in press).Google Scholar
  40. 40.
    R. M. G. Nair, A. J. Kastin, and A. V. Schally, Isolation and structure of hypothalamic MSH release-inhibiting hormone, Biochem. Biophys. Res. Commun 43:1376–1381 (1971).Google Scholar
  41. 41.
    M. E. Celis, S. Taleisnik, I. L. Schwartz, and R. Walter, Proposed structure of melanocyte stimulating hormone release inhibitory factor, Biophys. Soc. Abst 11:98a (1971).Google Scholar
  42. 42.
    A. P. Dhariwal, C. E. Grosvenor, J. Antunes-Rodrigues, and S. M. McCann, Studies on the purification of ovine prolactin-inhibing factor, Endocrinology 82:1236–1241 (1968).Google Scholar
  43. 43.
    A. V. Schally, Y. Baba, and R. M. G. Nair, The amino acid sequence of a peptide with growth hormone-releasing activity isolated from porcine hypothalamus, J. Biol. Chem 246:6647–6650 (1971).Google Scholar
  44. 44.
    A. J. Kastin, A. V. Schally, C. Gual, S. Glick, and A. Arimura, Clinical evaluation in man of a substance with growth hormone releasing activity in rats, J. Clin. Endocrinol 35:326–329 (1972).Google Scholar
  45. 45.
    L. A. Frohman, J. W. Maran, and A. P. S. Dhariwal, Plasma growth hormone responses to intrapituitary injections of growth hormone releasing factor (GRF) in the rat, Endocrinology 88:1483–1488 (1971).Google Scholar
  46. 46.
    D. F. Veber, R. D. Bennett, J. D. Milkowski, G. Gal, R. G. Denkewalter, and R. Hirschmann, Synthesis of a proposed growth hormone releasing factor, Biochem. Biophys. Res. Commun 45:235–239 (1971).Google Scholar
  47. 47.
    A. P. S. Dhariwal, L. Krulich, and S. M. McCann, Purification of a growth hormoneinhibitory factor (GIF) from sheep hypothalamus, Neuroendocrinology 4:282–288 (1969).Google Scholar
  48. 48.
    A. V. Schally, S. Sawano, A. Arimua, J. F. Barrett, I. Wakabayashi, and C. Y. Bowers, Isolation of growth hormone-releasing hormone (GRH) from porcine hypothalami, Endocrinology 84:1493–1506 (1969).Google Scholar
  49. 49.
    R. Guillemin, Hypothalamic factors releasing pituitary hormones, Rec. Progr. Hormone Res 20:89–121 (1964).Google Scholar
  50. 50.
    E. Scharrer and B. Scharrer, “Neuroendocrinology,” Columbia University Press, New York (1963).Google Scholar
  51. 51.
    I. I. Geschwind, in “Hypophysiotropic Hormones of the Hypothalamus” (J. Meites, ed.) pp. 298–319, Williams and Wilkins, Baltimore (1970).Google Scholar
  52. 52.
    B. S. McEwen, J. M. Weiss, and L. Schwartz, Uptake of corticosterone by rat brain and its concentration by certain limbic structures, Brain Res 6:227–241 (1969).Google Scholar
  53. 53.
    J. L. Gerlach and B. S. McEwen, Rat brain binds adrenal steroid hormone — Radioautography of hippocampus with corticosterone, Science 175:1133–1136 (1972).Google Scholar
  54. 54.
    W. E. Stumpf, Estradiol-concentrating neurons: Topography in the hypothalamus by dry-mount autoradiography, Science 159:1001–1003 (1968).Google Scholar
  55. 55.
    H. P. Krieger and D. T. Krieger, Chemical Stimulation of the brain: Effect on adrenal corticoid release, Am. J. Physiol 218:1632–1641 (1970).Google Scholar
  56. 56.
    N. E. Miller, Chemical coding of behavior in the brain, Science 148:328–338 (1965).Google Scholar
  57. 57.
    W. G. Blackard and S. A. Heidingsfelder, Adrenergic receptor control mechanism for growth hormone secretion, J. Clin. Invest 47:1407–1414 (1968).Google Scholar
  58. 58.
    C. Lucke and S. M. Glick, Experimental modification of the sleep induced peak of growth hormone secretion, J. Clin. Endocrinol 32:729–736 (1971).Google Scholar
  59. 59.
    Y. Takahashi, D. M. Kipnis, and W. H. Daughaday, Growth hormone secretion during sleep, J. Clin. Invest 47:2079–2090 (1968).Google Scholar
  60. 60.
    A. E. Boyd, III, H. E. Levobitz, and J. B. Pfeiffer, Stimulation of human growth hormone secretion by l-DOPA, New Engl. J. Med 283:1425–1429 (1970).Google Scholar
  61. 61.
    P. C. Kansal, J. Buse, O. R. Talbert, and M. G. Buse, The effect of l-DOPA on plasma growth hormone, insulin and thyroxine, J. Clin. Endocrinol 34:99–105 (1972).Google Scholar
  62. 62.
    P. T. K. Toivolia and C. C. Gale, Stimulation of growth hormone release by microinjection of norepinephrine into hypothalamus of baboons, Endocrinology 90:895–902 (1972).Google Scholar
  63. 63.
    W. G. Blackard and C. C. Waddell, Cholinergic blockade and growth hormone responsiveness to insulin hypoglycemia, Proc. Soc. Exptl. Biol. Med 131:192–196 (1969).Google Scholar
  64. 64.
    H. P. G. Schneider and S. M. McCann, Mono-and indolamines and control of LH secretion, Endocrinology 86:1127–1133 (1970).Google Scholar
  65. 65.
    I. A. Kamberi, R. S. Mical, and J. C. Porter, Effect of anterior pituitary perfusion and intraventricular injection of catecholamines and indoleamines on LH release, Endocrinology 87:1–12 (1970).Google Scholar
  66. 66.
    I. A. Kamberi, R. S. Mical, and J. C. Porter, Effect of anterior pituitary perfusion and intraventricular injection of catecholamines on prolactin release, Endocrinology 88:1012–1020 (1971).Google Scholar
  67. 67.
    C. Kordon and J. Glowinski, Selective inhibition of superovulation by blockade of dopamine synthesis during the “critical period” in the immature rat, Endocrinology 85: 924–931 (1969).Google Scholar
  68. 68.
    K. H. Lu, Y. Amenomori, C. L. Chen, and J. Meites, Effects of central acting drugs on serum and pituitary prolactin levels in rats, Endocrinology 87:667–672 (1970).Google Scholar
  69. 69.
    R. W. Turkington and J. H. Mclndoe, Stimulation of human prolactin secretion by intravenous infusion of l-tryptophan, Am. Soc. Clin. Invest, p. 98a (1972) (abst.).Google Scholar
  70. 70.
    J. W. Everett, C. H. Sawyer, and J. E. Markee, A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat, Endocrinology 44:234–250 (1949).Google Scholar
  71. 71.
    D. T. Krieger, A. I. Silverberg, F. Rizzo, and H. P. Krieger, Abolition of circadian periodicity of plasma 17-OHCS levels in the cat, Am. J. Physiol 215:959–967 (1968).Google Scholar
  72. 72.
    D. T. Krieger and F. Rizzo, Circadian periodicity of plasma 17-OHCS: Mediation by serotonin dependent pathways, Am. J. Physiol 217:1703–1707 (1969).Google Scholar
  73. 73.
    G. R. VanLoon, W. Nicholson, and R. Brown, Drug-induced hypersecretion of ACTH in rats and its treatment with l-DOPA, in “Fifty-third Meeting of the Endocrine Society,” San Francisco, p. A-129 (1971). (abst.).Google Scholar
  74. 74.
    E. V. Naumenko, Hypothalamic chemoreactive structures and the regulation of pituitaryadrenal function, Brain Res 11:1–10 (1968).Google Scholar
  75. 75.
    E. Endroczi, G. Schreiberg, and K. Lissak, The role of central nervous activating and inhibitory structures in the control of pituitary-adrenocortical function. Effects of intracerebral cholinergic and adrenergic stimulation, Acta. Physiol. Acad. Sci. Hung 24:211–221 (1963).Google Scholar
  76. 76.
    G. R. VanLoon, L. Hilger, A. B. King, A. T. Boryczka, and W. F. Ganong, Inhibitory effect of L-dihydroxyphenylalanine on the adrenal venous 17-hydroxycorticosteroid response to surgical stress in dogs, Endocrinology 88:1404–1414 (1971).Google Scholar
  77. 77.
    G. R. VanLoon, U. Scapagnini, G. P. Moberg, and W. F. Ganong, Evidence for central adrenergic neural inhibition of ACTH secretion in the rat, Endocrinology 89:1464–1469 (1971).Google Scholar
  78. 78.
    G. A. Hedge and P. G. Smelik, Corticotropin release: Inhibition by intrahypothalamic implantation of atropine, Science 159:891–892 (1968).Google Scholar
  79. 79.
    K. Fuxe, H. Corrodi, T. Hokfelt, and G. Jonsson, Central monoamine neurons and pituitary-adrenal activity, Progs. Brain Res 32:42–56 (1970).Google Scholar
  80. 80.
    P. G. Smelik, ACTH secretion after depletion of hypothalamic monoamines by reserpine implants, Neuroendocrinology 2:247–254 (1967).Google Scholar
  81. 81.
    E. M. Bogdanove, Direct gonad-pituitary feedback: An analysis of effects of intracranial estrogenic depots on gonadotropin secretion, Endocrinology 73:696–712 (1963).Google Scholar
  82. 82.
    J. W. Kendall, in “Frontiers in Neuroendocrinology” (W. F. Ganong and L. Martini, eds.) pp. 177–207, Oxford University Press, New York 1969).Google Scholar
  83. 83.
    S. Reichlin, in “Neuroendocrinology” (W. F. Ganong and L. Martini, eds.) Vol. 1, pp. 445–536, Academic Press, New York (1967).Google Scholar
  84. 84.
    R. L. Van deWiele, J. Bogumil, I. Dyrenfurth, M. Ferin, R. Jewelewicz, M. Warren, and G. M. Khali, Mechanisms regulating the menstrual cycle in women, Rec. Progr. Hormone Res 26:63–94 (1970).Google Scholar
  85. 85.
    E. E. Muller, S. Sawano. A. Arimura, and A. V. Schally, Mechanism of action of growth hormone altering its own secretion rate: Comparison with the action of dexamethasone, Acta Endocrinol 56:499–509 (1967).Google Scholar
  86. 86.
    M. Motta, F. Fraschini, F. Piva, and L. Martini, in “Frontiers in Neuroendocrinology” (W. F. Ganong and L. Martini, eds.) pp. 211–253, Oxford University Press, New York (1969).Google Scholar
  87. 87.
    F. E. Yates, in “The Adrenal Cortex.” (A. B. Eisenstein, ed.) pp. 133–183, Little Brown, Boston (1967).Google Scholar
  88. 88.
    B. Bohus, C. Nyakas, and K. Lissak, Involvement of suprahypothalamic structures in the hormonal feedback of corticosteroids, Acta Physiol. Hung 34:1–8 (1968).Google Scholar
  89. 89.
    B. Donovan, in “Mammalian Endocrinology,” p. 71, McGraw-Hill, New York (1970).Google Scholar
  90. 90.
    D. M. Woodbury and A. Vernadakis, in “Methods in Hormone Research” (R. I. Dorfman ed.) Vol. 5, pp. 1–57, Academic Press, New York (1966).Google Scholar
  91. 91.
    K. Ruf and F. A. Steiner, Steroid sensitive single neurons in rat hypothalamus and midbrain; identification by microelectrophoresis, Science 156:667–669 (1967).Google Scholar
  92. 92.
    C. H. Sawyer, M. Kawakami, B. Myerson, D. J. Whitmayer, and J. J. Lilley, Effects of ACTH, dexamethasone and asphyxia on electrical activity of rat hypothalamus, Brain Res 10:213–226 (1968).Google Scholar
  93. 93.
    A. R. Green and G. Curzon, Decrease of 5-hydroxytryptamine in the brain provoked by hydrocortisone and its prevention by allopurinol, Nature 22:1095–1097 (1968).Google Scholar
  94. 94.
    S. Blanco, D. S. Schalch, and S. Reichlin, Control of growth hormone secretion by glucoreceptors in the hypothalamic-pituitary unit. Fed. Proc 25:191 (1966).Google Scholar
  95. 95.
    L. Krulich and S. M. McCann, Influence of stress on the growth hormone content of the pituitary of the rat, Proc. Soc. Exptl. Biol. Med 121:1114–1119 (1966).Google Scholar
  96. 96.
    B. Flerko and J. Szentagothai, Oestrogen sensitive nervous structures in the hypothalamus, Acta Endocrinol 26:121–127 (1957).Google Scholar
  97. 97.
    J. Szentagothai, B. Flerko, B. Mess, and B. Halasz, “Hypothalamic Control of the Anterior Pituitary,” pp. 192–265, Publ. House Hung. Acad. Sci, Budapest (1962).Google Scholar
  98. 98.
    D. W. Pfaff, Uptake of 3H-estradiol by the female rat brain. An autoradiographic study, Endocrinology 82:1149–1155 (1968).Google Scholar
  99. 99.
    V. D. Ramirez, B. R. Komisaruk, D. I. Whitmayer, and C. H. Sawyer, Effects of hormones and vaginal stimulation on the EEG and hypothalamic units in rats, Am. J. Physiol 212: 1376–1384 (1967).Google Scholar
  100. 100.
    Y. Palka, V. D. Ramirez, and C. H. Sawyer, Distribution and biological effects of tritiated estradiol implanted in the hypothalamo-hypophyseal region of female rats, Endocrinology 78:487–499 (1966).Google Scholar
  101. 101.
    J. Davidson, in “Frontiers in Neuroendocrinology” (W. F. Ganong and L. Martini, eds.) pp. 343–388, Oxford University Press, New York (1969).Google Scholar
  102. 102.
    M. Igarashi, Y. Ibuki, H. Kubu, J. Kumioka, N. Yokota, Y. Ebara, and S. Matsumoto, Mode and site of action of clomiphene, Am. J. Obstet. Gynecol 97:120–123 (1967).Google Scholar
  103. 103.
    S. Kannematsu and C. H. Sawyer, Blockade of ovulation in rabbits by hypothalamic implants of norethindrone, Endocrinology 76:691–699 (1965).Google Scholar
  104. 104.
    K. Seiki, M. Miyamota, A. Yamashita, and M. Kotani, Further studies on the uptake of labelled progesterone by the hypothalamus and pituitary of rats, J. Endocrinol 43:129–130(1969).Google Scholar
  105. 105.
    C. H. Sawyer, M. Kawakami, and S. Kannematsu, Neuroendocrine aspects of reproduction, Proc. Assc. Res. Nerv. Ment. Dis 43:59–84 (1966).Google Scholar
  106. 106.
    B. S. McEwen, D. W. Pfaff, and R. E. Zigmond, Factors influencing sex hormone uptake by rat brain regions. III. Effects of competing steroids on testosterone uptake, Brain Res 21:29–38(1970).Google Scholar
  107. 107.
    S. Reichlin, in “Neuroendocrinology” (L. Martini and W. Ganong, eds.) Vol. I, pp. 445–536, Academic Press, New York (1966).Google Scholar
  108. 108.
    K. M. Knigge, in “Major Problems in Neuroendocrinology” (E. Bajusz and G. Jasmin, eds.) pp. 261–285, Karger, Basel (1964).Google Scholar
  109. 109.
    J. W. Kendall, S. I. Shimoda, and M. Greer, Brain dependent TSH secretion from heterotopic pituitaries, Neuroendocrinology 2:76–87 (1967).Google Scholar
  110. 110.
    H. Halberg, Chronobiology, Ann. Rev. Physiol 31:675–725 (1969).Google Scholar
  111. 111.
    J. Aschoff, Exogenous and endogenous components in circadian rhythms, Cold Spring Harbor Symp. Quant. Biol 25:11–28 (1960).Google Scholar
  112. 112.
    J. Benoit, The role of the eye and of the hypothalamus in the photostimulation of gonads in the dark, Ann. N.Y. Acad. Sci 117:204–216 (1964).Google Scholar
  113. 113.
    W. F. Ganong, M. D. Shepherd, J. R. Wall, E. T. Van Brunt, and M. T. Clegg, Penetration of light into the brain of mammals, Endocrinology 72:962–963 (1963).Google Scholar
  114. 114.
    V. Critchlow, in “Advances in Neuroendocrinology” (A. Nalbandov, ed.) pp. 377–402, University of Illinois Press, Urbana, Ill. (1963).Google Scholar
  115. 115.
    R. Y. Moore, A. Heller, R. K. Bhatnager, R. J. Wurtman, and J. Axelrod, Central control of the pineal gland — Visual pathways, Arch. Neurol 18:208–218 (1968).Google Scholar
  116. 116.
    L. G. Wesson, Jr., Electrolyte excretion in relation to diurnal cycles of renal function, Medicine 43:547–592 (1964).Google Scholar
  117. 117.
    D. T. Krieger, J. Kreuzer, and F. Rizzo, Constant light: Effect on circadian pattern and phase reversal of steroid and electrolyte levels in man, J. Clin. Endocrinol 29:1634–1638 (1969).Google Scholar
  118. 118.
    R. Franks, Diurnal variation of plasma 17-OHCS in children, J. Clin. Endocrinol 27:75–78 (1967).Google Scholar
  119. 119.
    D. J. Reis, A. Corvelli, and J. Conners, Circadian and ultradian rhythms of serotonin regionally in cat brain, J. Pharmacol. Exptl. Therap 167:328–333 (1969).Google Scholar
  120. 120.
    F. Hery, E. Rouer, and J. Glowinski, Daily variations of serotonin metabolism in the rat brain, Brain Res 43:445–465 (1972).Google Scholar
  121. 121.
    C. J. Migeon, F. H. Tyler, J. P. Mahoney, A. A. Florentin, H. Castle, E. K. Bliss, and L. T. Samuels, The diurnal variation of plasma levels and urinary excretion of 17-hydroxycorticosteroids in normal subjects, night workers and blind subjects in man, J. Clin. Endocrinol 16:622–633 (1956).Google Scholar
  122. 122.
    G. T. Perkoff, K. Eik-Nes, C. A. Nugent, H. L. Fred, R. A. Nimer, L. Rush, L. T. Samuels, and F. H. Tyler, Studies of the diurnal variation of plasma 17-hydroxycorticosteroids, J. Clin. Endocrinol 16:432–443 (1959).Google Scholar
  123. 123.
    D. T. Krieger, W. Allen, F. Rizzo, and H. P. Krieger, Characterization of the normal pattern of plasma corticosteroid levels, J. Clin. Endocrinol 32:266–284 (1971).Google Scholar
  124. 124.
    C. T. Nichols and F. H. Tyler, Diurnal variation in adrenal cortical function, Ann. Rev. Med 18:313–324 (1967).Google Scholar
  125. 125.
    K. Takebe, M. Sakakura, and K Mashimo, Continuance of diurnal rhythmicity of CRF activity in hypophysectomized rats, Endocrinology 90:1515–1520 (1972).Google Scholar
  126. 126.
    T. Hiroshige and M. Sakakura, Circadian rhythm of corticotropin releasing activity in the hypothalamus of normal and adrenalectomized rats, Neuroendocrinology 7:25–36 (1971).Google Scholar
  127. 127.
    G. Seiden and A. Brodish, Presence of a diurnal rhythm in hypothalamic corticotrophin releasing factor (CRF) in the absence of hormone feedback Endocrinology 90:1401–1403 (1972).Google Scholar
  128. 128.
    M. A. Slusher, Effect of chronic hypothalamic lesions on diurnal and stress corticosteroid levels, Am. J. Physiol 206:1161–1164 (1964).Google Scholar
  129. 129.
    G. P. Moberg, U. Scapagnini, J. DeGroot, and W. F. Ganong, Effect of sectioning the fornix on diurnal fluctuation in plasma corticosterone levels in the rat, Neuroendocrinology 7:11–15(1971).Google Scholar
  130. 130.
    D. T. Krieger and H. P. Krieger, Circadian variation of the plasma 17-hydroxycorticosteroids in central nervous disease, J. Clin. Endocrinol 26:929–940 (1966).Google Scholar
  131. 131.
    P. Chiefetz, N. Garrud, and J. F. Dingman, Effect of bilateral adrenalectomy and continuous light on the circadian rhythm of corticotropin in female rats, Endocrinology 82: 1117–1124(1967).Google Scholar
  132. 132.
    D. T. Krieger and F. Rizzo, Circadian periodicity of plasma 11-hydroxycorticosteroid levels in subjects with partial and absent light perception, Neuroendocrinology 8:165–179 (1971).Google Scholar
  133. 133.
    D. T. Krieger and H. P. Krieger, Effect of neo-and postnatal alteration of light environment on circadian periodicity of plasma cortiocosteroid levels (11-OHCS) in the rat, in “Proc. Internat. Union Physiol. Sci.” (1971), (Abst.).Google Scholar
  134. 134.
    D. N. Orth and D. P. Island, Light synchronization of the circadian rhythm in plasma Cortisol (17-OHCS) concentration in man, J. Clin. Endocrinol 29:479–486 (1969).Google Scholar
  135. 135.
    C. Lucke, N. Adelman, and S. M. Glick, The effect of elevated free fatty acids (FFA) on the sleep-induced human growth hormone peak, J. Clin. Endocrionol 35:407–412 (1972).Google Scholar
  136. 136.
    D. T. Krieger, J. Albin, S. Paget, and S. Glick, Failure of suppression of nocturnal growth hormone rise by acute corticosteroid administration, Horm. Metab. Dis (1972) (in press).Google Scholar
  137. 137.
    D. T. Krieger, in “Biorhythms and Human Reproduction,” Wiley, New York (1972).Google Scholar
  138. 138.
    J. W. Finkelstein, J. Kream, A. Ludan, and L. Hellman, Sulfation factor (somatomedin): An explanation for continued growth in the absence of immunoassayable growth hormone in patients with hypothalamic tumors, J. Clin. Endocrinol 35:13–17 (1972).Google Scholar
  139. 139.
    D. T. Krieger and S. Glick, Absent sleep peak of growth hormone release in blind subjects, J. Clin. Endocrinol 33:847–850 (1971).Google Scholar
  140. 140.
    E. D. Weitzman, M. Perlow, J. F. Sassin, D. Fukushima, B. Burack, and L. Hellman, Persistence of the twenty-four hour pattern of episodic cortisol secretion and growth hormone release in blind subjects, in “Proc. 97th Meeting Am. Neurol. Ass.,” p. 52 (1972).Google Scholar
  141. 141.
    C. Faiman and J. S. Winter, Diurnal cycles in plasma FSH, testosterone and cortisol in men, J. Clin. Endocrinol 33:186–192 (1971).Google Scholar
  142. 142.
    B. B. Saxena, H. Demura, H. M. Gandy, and R. E. Peterson, Radioimmunoassay of human follicle stimulating and luteinizing hormones in plasma, J. Clin. Endocrinol 28:519–534 (1968).Google Scholar
  143. 143.
    D. T. Krieger, R. Ossowski, M. Fogel, and W. Allen, Lack of circadian periodicity of human serum FSH and LH levels, J. Clin. Endocrinol 35:619–632 (1972).Google Scholar
  144. 144.
    R. T. Rubin, A. Kales, R. Adler, T. Fagan, and W. Odell, Gonadotropin secretion during sleep in normal adult men, Science 175:196–198 (1972).Google Scholar
  145. 145.
    M. A. Kirshner, M. B. Lipsett, and D. R. Collins, Plasma ketosteroids and testosterone in man: A study of the pituitary-testicular axis, J. Clin. Invest 44:657–665 (1965).Google Scholar
  146. 146.
    J. A. Resko and K. B. Eik-Nes, Diurnal testosterone levels in peripheral plasma of human male subjects, J. Clin. Endocrinol 26:573–576 (1966).Google Scholar
  147. 147.
    J. L. Evans, A. M. MacLean, A. A. Ismail, and D. Love, Circulating levels of plasma testosterone during sleep, Proc. Royal Soc. Med 64:841–842 (1971).Google Scholar
  148. 148.
    J. F. Sassin, A. G. Frantz, S. Kapen, and E. D. Weitzman, Human prolactin: 24 hour pattern with increased release during sleep, Science 75:1205–1207 (1972).Google Scholar
  149. 149.
    L. Vanhaelst, E. VanGauter, J. P. Degaute, and J. Goldstein, Circadian variations of serum thyrotropin levels in man, J. Clin. Endocrinol 35:479–482 (1972).Google Scholar
  150. 150.
    R. A. Gorski, in “Frontiers in Neuroendocrinology” (L. Martini and W. F. Ganong, eds.) pp. 237–290, Oxford University Press, New York (1971).Google Scholar
  151. 151.
    K. Milkovic and S. Milkovic, Functioning of the pituitary-adrenocortical axis in rats at and after birth, Endocrinology 73:535–539 (1963).Google Scholar
  152. 152.
    C. Allen and J. W. Kendall, Maturation of the circadian rhythm of plasma corticosterone in the rat, Endocrinology 80:926–930 (1967).Google Scholar
  153. 153.
    R. Ader, Early experiences accelerate maturation of the 24-hour adrenocortical rhythm, Science 163:1225–1226 (1969).Google Scholar
  154. 154.
    S. Schapiro, Neonatal cortisol administration: Effect on growth, the adrenal gland and pituitary-adrenal response to stress, Proc. Soc. Exptl. Biol. Med 120:771–774 (1965).Google Scholar
  155. 155.
    D. T. Krieger, Circadian corticosteroid periodicity: “Critical period” for abolition by neonatal corticosteroids, Science 178:1205–1207 (1972).Google Scholar
  156. 156.
    J. L. Bakke, N. Lawrence, and S. Robinson, Late effects of thyroxine injected into the hypothalamus of the neonatal rat, Neuroendocrinology 10:183–195 (1972).Google Scholar
  157. 157.
    H. G. Bauer, Endocrine and metabolic conditions related to pathology in the hypothalamus: A review, J. Neur. Ment. Dis 128:323–338 (1959).Google Scholar
  158. 158.
    R. W. Turkington, Secretion of prolactin by patients with hypothalamic tumors, J. Clin. Endocrinol 34:159–164 (1972).Google Scholar
  159. 159.
    M. Apostolakis, S. Kapetanakis, G. Lazos, and A. Madena-Pyrgaki, in “Lactogenic Hormones” (G. E. W. Wolstenhome and J. Knight, eds.) pp. 349–354, Churchill Livingston, Edinburgh (1972).Google Scholar
  160. 160.
    D. T. Krieger, S. Glick, A. Silverberg, and H. P. Krieger, A comparative study of endocrine tests in hypothalamic disease, J. Clin. Endocrinol 28:1589–1598 (1967).Google Scholar
  161. 161.
    D. T. Krieger, F. R. Ross, and H. P. Krieger, Response to dexamethasone suppression in central nervous system disease, J. Clin. Endocrinol 26:227–230 (1966).Google Scholar
  162. 162.
    S. A. Berson and R. Yalow, Immunoassay of ACTH in plasma, J. Clin. Invest 47:2725–2751 (1968).Google Scholar
  163. 163.
    D. T. Krieger, H. P. Kolodny, and H. P. Krieger, Metopirone studies in hypothalamicpituitary disease, J. Clin. Endocrinol 24:1169–1177 (1964).Google Scholar
  164. 164.
    P. Franchimont, in “Frontiers in Neuroendocrinology” (L. Martini and W. F. Ganong, eds.) pp. 331–359, Oxford University Press, New York (1971).Google Scholar
  165. 165.
    H. A. Selenkow, H. R. Tyler, D. D. Matson, and D. H. Nelson, Hypopituitarism due to hypothalamic sarcoidosis, Am. J. Med. Sci 238:456–463 (1959).Google Scholar
  166. 166.
    S. D. Gailani, A. L. Rogue, P. Band, and C. Ross, Hypopituitarism due to localized hypothalamic lesions, Arch. Int. Med 126:284–286 (1970).Google Scholar
  167. 167.
    F. A. Killeffer and W. E. Stern, Chronic effects of hypothalamic injury, Arch. Neurol 22:419–428 (1970).Google Scholar
  168. 168.
    L. Kahana, M. Lebovitz, W. Lusk, H. T. McPherson, E. T. Davidson, J. H. Oppenheimer, F. L. Engel, B. Woodhall, and G. Odon, Endocrine manifestations of intracranial extrasellar lesions, J. Clin. Endocrinol 21:304–324 (1962).Google Scholar
  169. 169.
    J. H. Oppenheimer, L. V. Fisher, and J. W. Jailer, Disturbance of the pituitary-adrenal interrelationship in diseases of the central nervous system, J. Clin. Endocrinol 21:1023–1036 (1961).Google Scholar
  170. 170.
    D. T. Krieger, The effect of diphenylhydantoin on pituitary-adrenal interrelations, J. Clin. Endocrinol 22:490–493 (1962).Google Scholar
  171. 171.
    V. H. Asfeldt and J. Buhl, Inhibitory effect of diphenylhydantoin on the feedback control of corticotrophin release, Acta Endocrinol 61:551–560 (1969).Google Scholar
  172. 172.
    M. T. Rabkin and A. G. Frantz, Hypopituitarism: A study of growth hormone and other endocrine functions, Ann. Int. Med 64:1197–1207 (1966).Google Scholar
  173. 173.
    J. Drewry, R. Unger, N. Kaplan, and J. Sanford, The pituitary-adrenal axis in encephalitis, in “Proc. 49th Meeting Endocrine Soc.” (1967) (abst. 126).Google Scholar
  174. 174.
    R. P. Sherwin, J. E. Grassi, and S. C. Sommers, Hamartomatous malformation of the posterolateral hypothalamus, Lab. Invest 11:89–97 (1962).Google Scholar
  175. 175.
    J. Gilroy and J. S. Meyer, in “An Introduction to Clinical Neuroendocrinology” (E. Bajusz, ed.) pp. 340–355, Karger, Basel (1967).Google Scholar
  176. 176.
    I. Gamstorp, B. Kjellman, and B. Palmgren, Diencephalic syndromes of infancy, J. Pediat 70:383–390 (1967).Google Scholar
  177. 177.
    G. T. Peake and W. H. Daughaday, Disturbance of pituitary function in central nervous system-disease, Med. Clin. N. Am 52:357–369 (1968).Google Scholar
  178. 178.
    J. F. Sotos, P. R. Dodge, D. Muirhead, J. D. Crawford, and N. B. Talbot, Cerebral gigantism in childhood, New Engl. J. Med 271:109–116 (1964).Google Scholar
  179. 179.
    B. Kjellman, Cerebral gigantism, Acta Paediat. Scand 54:603–609 (1965).Google Scholar
  180. 180.
    F. R. Ford, in “Diseases of the Nervous System,” p. 156, Thomas, Springfield, Ill. (1966).Google Scholar
  181. 181.
    R. A. Fefferman, G. Costin, and M. D. Kogut, Hypothalamic gigantism, Clin. Res 20:253 (1972).Google Scholar
  182. 182.
    G. E. Powell, J. A. Brasel, S. Raiti, and R. M. Blizzard, Emotional deprivation and growth retardation simulating idiopathic hypopituitarism. II. Endocrinologic evaluation of the syndrome, New Engl. J. Med 276:1279–1283 (1967).Google Scholar
  183. 183.
    F. Kalimann, W. A. Schonfeld, and S. E. Barrera, The genetic aspects of primary eunuchoidism, Am. J. Ment. Defic 48:203–236 (1944).Google Scholar
  184. 184.
    S. Gauthier, La dyplasie olfacto-genetale (agenesis des lobes olfactifs avec absence de developpment gonadique a la puberte), Neuroveg 21:345–394 (1961).Google Scholar
  185. 185.
    H. M. Bruce, Pheromones, Brit. Med. Bull 26:10–13 (1970).Google Scholar
  186. 186.
    R. P. Michael and E. B. Keverne, Pheromones in the communication of sexual status in primates, Nature (London) 218:746–749 (1968).Google Scholar
  187. 187.
    J. I. Kitay and M. D. Altschule, “The Pineal Gland,” Harvard University Press, Cambridge, Mass. (1954).Google Scholar
  188. 188.
    R. J. Wurtman, J. Axelrod, and D. E. Kelly, “The Pineal,” Academic Press, New York (1968).Google Scholar
  189. 189.
    D. W. Cheesman and B. L. Fariss, Isolation and structure elucidation of a gonadotropin inhibiting peptide from the beef pineal gland, Clin. Res 17:167 (1970).Google Scholar
  190. 190.
    B. Landau, H. S. Schwartz, and L. J. Soffer, Presence of a gonadotropin-inhibiting factor in urine of young children, Metabolism 9:85–87 (1960).Google Scholar
  191. 191.
    J. F. Bing, J. M. Globus, and H. Simon, Pubertas praecox: A survey of the reported cases and verified anatomical findings, J. Mt. Sinai Hosp 4:935–965 (1964).Google Scholar
  192. 192.
    F. Albright, A. M. Butler, A. Hampton, and P. Smith, Syndrome characterized by osteitis fibrosa disseminata, areas of pigmentation and endocrine dysfunction with precocious puberty in females, New Engl. J. Med 216:724–726 (1937).Google Scholar
  193. 193.
    J. J. Van Wyck and M. Grumbach, Syndrome of precocious menstruation and galactorrhea in juvenile hypothyroidism: An example of hormonal overlap in pituitary feedback. J. Pediat 57:416–435 (1960).Google Scholar
  194. 194.
    N. Liu, M. M. Grumbach, R. A. DeNapoli, and A. Morishima, Prevalence of electroencephalographic abnormalities in idiopathic precocious puberty and premature pubarche: Bearing on pathogenesis and neuroendocrine regulation of puberty, J. Clin. Endocrinol 25:1296–1308 (1965).Google Scholar
  195. 195.
    D. G. Barturka, B. A. Eskin, E. M. Smith, C. Dacou, and M. B. Dratman, Brain damage, hypertrichosis and polycystic ovaries, Am. J. Obstet. Gynecol 99:387–389 (1967).Google Scholar
  196. 196.
    I. A. Kamberi, R. S. Mical, and J. C. Porter, Prolactin inhibiting activity in hypophyseal stalk blood and elevation by dopamine, Experientia 26:1150–1151 (1970).Google Scholar
  197. 197.
    W. B. Malarky, L. S. Jacobs, and W. H. Daughaday, Levo-Dopa suppression of prolactin in nonpuerperal galactorrhea, New Engl. J. Med 285:1160–1163 (1971).Google Scholar
  198. 198.
    V. Marks, in “An Introduction to Clinical Neuroendocrinology” (E. Bajusz, ed.) pp. 328–339, Karger, Basel (1967).Google Scholar
  199. 199.
    T. Hart, Jr., N. Kase, and C. P. Kimball, Induction of ovulation and pregnancy in patients with anorexia nervosa, Am. J. Obstet. Gynecol 108:580–584 (1970).Google Scholar
  200. 200.
    J. Landon, F. C. Greenwood, T. C. B. Stamp, and V. Wynn, The plasma sugars, free fatty acid, cortisol, and growth hormone response to insulin and the comparison of this procedure with other tests of pituitary and adrenal function. II. In patients with hypothalamic or pituitary dysfunction or anorexia nervosa, J. Clin. Invest 45:437–449 (1966).Google Scholar
  201. 201.
    L. Shenkman, T. Mitsuma, A. Suphavai, and C. S. Hollander, Hypothalamic hypothyroidism, J. Am. Med. Ass 222:480–481 (1972).Google Scholar
  202. 202.
    C. R. Hamilton, L. C. Adams, and F. Maloof, Hyperthyroidism due to thyrotropin-producing pituitary chromophobe adenoma, New Engl. J. Med 283:1077–1080 (1970).Google Scholar
  203. 203.
    G. Faglia, C. Ferrari, V. Neri, P. Beck-Peccoz, B. Ambrosi, and F. Valentini, High plasma thyrotropin levels in two patients with pituitary tumor, Acta Endocrinol. Copen 69:649–658 (1972).Google Scholar
  204. 204.
    C. E. Emerson and R. D. Utiger, Hyperthyroidism and excessive thyrotropin secretion, New Engl. J. Med 287:328–333 (1972).Google Scholar
  205. 205.
    D. T. Krieger, The central nervous system and Cushing’s syndrome, Mount Sinai J. Med 39:416–428 (1972).Google Scholar
  206. 206.
    D. T. Krieger and S. Glick, Growth hormone and cortisol responsiveness in Cushing’s syndrome: Relation to a possible central nervous system etiology, Am. J. Med 52:25–40 (1972).Google Scholar
  207. 207.
    P. Heinbecker, Pathogenesis of Cushing’s syndrome, Medicine 23:225–247 (1944).Google Scholar
  208. 208.
    K. R. Crispell and W. Parson, Coexistence of Cushing’s syndrome and internal hydrocephalus produced by a cerebellar tumor, Am. J. Med 13:247–250 (1952).Google Scholar
  209. 209.
    S. M. Wolf, R. C. Adler, E. R. Buskirk, and R. H. Thompson, A syndrome of periodic hypothalamic discharge, Am. J. Med 36:956–967 (1964).Google Scholar
  210. 210.
    M. Seip, in “An Introduction to Clinical Neuroendocrinology” (E. Bajusz, ed.) pp. 414–427, Karger, Basel (1967).Google Scholar
  211. 211.
    W. Vale, G. Grant, J. Rivier, M. Monahan, M. Amors, R. Blackwell, R. Burgus, and R. Guillemin, Synthetic Polypeptide antagonists of the hypothalamus luteinizing releasing factor, Science 176:933–934 (1972).Google Scholar
  212. 212.
    D. T. Krieger, The hypothalamus and Hosp. Practice neuroendoerinology. 6:87–99 (1971).Google Scholar
  213. 213.
    D. T. Krieger, Hosp. Practice (6:127–138 1971).Google Scholar
  214. 214.
    P. D. Maclean, Am. J. Med 25:611–626 (1958).Google Scholar
  215. 215.
    E. Scharrer, Arch. Anat. Microscop. Morphol. Exptl 54:364–365 (1965).Google Scholar
  216. 216.
    J. P. Schadé, in “Pituitary, Adrenal, and The Brain.” Progress in Brain Research (D. de Wied and J. A. W. M. Weijaen, eds.) pp. 2–10, Elsevier, Amsterdam (1970).Google Scholar
  217. 217.
    J. C. Porter, R. C. Mical, I. Kamberi, and Y. R. Grazia, Endocrinology 87:197–200 (1970).Google Scholar
  218. 218.
    W. Vale, P. Brazeau, C. Rivier. J. Rivier, G. Grant, R. Burgus, and R. Guillemin, Biological activities of somatostatin, Program 55th Annual Meeting Endocrine Society, A-118 (1973).Google Scholar
  219. 219.
    R. M. MacLeod and J. E. Lehmeyer, Pituitary gland alpha-adrenergic receptors and their function in prolactin secretion, Program 55th Annual Meeting Endocrine Society, A-50 (1973).Google Scholar
  220. 220.
    E. A. Zimmerman, K. C. Hsu, L. Cote, M. Tannenbaum, L. S. Freedman, M. Roffman, and M. Goldstein, Studies of dopamine-B-hydroxylase in bovine pituitary and adrenal glands using an immunoperoxidase technique, Fed. Proc 32:296 (1973).Google Scholar
  221. 221.
    F. J. Karsch, D. J. Dierschke, and E. Knobil, Sexual differentiation of pituitary function: apparent difference between primates and rodents, Science 179:484–486 (1973).Google Scholar
  222. 222.
    G. Tolis, E. del Pozo, and M. S. Goldstein, Dopamine and ergocryptine effects on hyperprolactinemic states, Program 55th Annual Meeting Endocrine Society, A-50 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Dorothy T. Krieger
    • 1
  1. 1.Neuroendocrinology Laboratory Division of Endocrinology, Department of MedicineMount Sinai School of Medicine of the City University of New YorkNew YorkUSA

Personalised recommendations