Disorders of Sphingolipid Metabolism

  • Kunihiko Suzuki
  • Kinuko Suzuki

Abstract

The last 10 years have witnessed dramatic and accelerating progress in investigations of the group of genetic disorders commonly categorized as lipid storage diseases. Except for a few diseases, including Refsum’s disease and Wolman’s disease, most of the lipid storage diseases involve inborn errors of metabolism of a particular type of complex lipids that are characterized by acylsphingosine as the common building block, hence the name sphingolipidoses. Clinical delineation of individual sphingolipidoses dates back to 1881, when Warren Tay, a British ophthalmologist, first described the characteristic retinal finding of what was to become known later as Tay-Sachs disease.

Keywords

Cholesterol Lactose Lecithin Dermatol Purpura 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Tay, Symmetrical changes in the region of the yellow spot in each eye of an infant, Trans. Ophthalmol. Soc. United Kingdom 1:55–57 (1881).Google Scholar
  2. 2.
    B. Sachs, On arrested cerebral development, with special reference to its cortical pathology, J. Nerv. Ment. Dis 14:541–553 (1887).Google Scholar
  3. 3.
    C. P. E. Gaucher, De l’epithelioma primitif de la rate, Thèse de Paris (1882).Google Scholar
  4. 4.
    J. Fabry, Ein Beitrag zur Kenntnis der Purpura haemorrhagica nodularis (purpura papulosa hemorrhagica hebrae), Arch. Dermatol. Syphilol 43:187–200 (1898).Google Scholar
  5. 5.
    A. Niemann, Ein unbekanntes Krankheitsbild, Jahrb. Kinderheilk 79:1–10 (1914).Google Scholar
  6. 6.
    L. Pick, Über die lipoidzellige Splenohepatomegalie Typus Niemann-Pick als Stoffwechselerkrankung, Med. Klin 23:1483–1488 (1927).Google Scholar
  7. 7.
    K. Krabbe, A new familial, infantile form of diffuse brain sclerosis, Brain 39:74–114 (1916).Google Scholar
  8. 8.
    W. Scholtz, Klinische, pathologisch-anatomische und erbbiologische Untersuchungen bei familiarer diffuser Hirnsklerose im Kindesalter, Z. Ges. Neurol. Psychiat 99:651–717 (1925).Google Scholar
  9. 9.
    R. M. Norman, H. Urich, A. H. Tingey, and R. A. Goodbody, Tay-Sachs disease with visceral involvement and its relationship to Niemann-Pick’s disease, J. Pathol. Bacteriol 78:409–421 (1959).Google Scholar
  10. 10.
    B. H. Landing, F. N. Silverman, J. M. Craig, M. D. Jacoby, M. E. Lahey, and D. L. Chadwick, Familial neurovisceral lipidosis, Am. J. Dis. Child 108:503–522 (1964).Google Scholar
  11. 11.
    A. Aghion, La maladie de Gaucher dans l’enfance, Thèse de Paris (1934).Google Scholar
  12. 12.
    E. Klenk, Über die Natur der Phosphatide der Milz bei der Niemann-Pickschen Krankheit, Z. Physiol. Chem 229: 151–156 (1934).Google Scholar
  13. 13.
    Q. B. DeMarsh and J. Kautz, The submicroscopic morphology of Gaucher cells, Blood 12:324–335 (1957).Google Scholar
  14. 14.
    R. D. Terry and S. R. Korey, Membranous cytoplasmic granules in infantile amaurotic idiocy, Nature 188:1000–1002 (1960).Google Scholar
  15. 15.
    R. O. Brady, in “Lipid Storage Diseases: Enzymatic Defects and Clinical Implications” (J. Bernsohn and H. J. Grossman, eds.) pp. 275–289, Academic Press, New York (1971).Google Scholar
  16. 16.
    A. Lajtha (ed.), “Handbook of Neurochemistry,” Vols. 1-7, Plenum Press, New York (1969–1971). (Appropriate chapters.)Google Scholar
  17. 17.
    G. Schettler (ed.), “Lipids and Lipidoses,” Springer-Verlag, New York (1967).Google Scholar
  18. 18.
    J. Eichberg, G. Hauser, and M. L; Karnovsky, in “The Structure and Function of Nervous Tissue” (G. H. Bourne, ed.) Vol. 3, pp. 185–287, Academic Press, New York (1969).Google Scholar
  19. 19.
    R. O. Brady, in “Neurosciences Research” (S. Ehrenpreis and O. C. Solnitzky, eds.) Vol. 2, pp. 301–315, Academic Press, New York (1969).Google Scholar
  20. 20.
    A. N. Davison, in “Applied Neurochemistry” (A. N. Davison and J. Dobbing, eds.) pp. 178–221, F. A. Davis, Philadelphia (1968).Google Scholar
  21. 21.
    W. Stoffel, Sphingolipids, Ann. Rev. Biochem 40:57–82 (1971).Google Scholar
  22. 22.
    P. Morell and P. Braun, Sphingolipid metabolism: Biosynthesis and metabolic degradation of sphingolipids not containing sialic acid, J. Lipid Res 13:293–310 (1972).Google Scholar
  23. 23.
    R. Ledeen and R. Yu, Structure and enzymatic degradation of sphingolipids, in “Lysosomes and Lysosomal Diseases” (H. G. Hers and F. van Hoof, eds.) Academic Press, New York (in press).Google Scholar
  24. 24.
    R. O. Brady and G. J. Koval, The enzymic synthesis of sphingosine, J. Biol. Chem 233: 26–31 (1958).Google Scholar
  25. 25.
    M. Sribney, Enzymatic synthesis of ceramide, Biochim. Biophys. Acta 125:542–547 (1966).Google Scholar
  26. 26.
    S. Gatt, Enzymatic hydrolysis of sphingolipids, I. Hydrolysis and synthesis of ceramides by an enzyme from rat brain, J. Biol. Chem 241:3724–3730 (1966).Google Scholar
  27. 27.
    M. Sribney and E. P. Kennedy, The enzymatic synthesis of sphingomyelin, J. Biol. Chem 233:1315–1322 (1958).Google Scholar
  28. 28.
    R. O. Brady, R. M. Bradley, O. M. Young, and H. Kaller, An alternative pathway for the enzymatic synthesis of sphingomyelin, J. Biol. Chem 240:PC 3693–3694 (1965).Google Scholar
  29. 29.
    W. W. Cleland and E. P. Kennedy, The enzymatic synthesis of psychosine, J. Biol. Chem 235:45–51 (1960).Google Scholar
  30. 30.
    R. O. Brady, Studies on the total enzymatic synthesis of cerebrosides, J. Biol. Chem 237: PC 2416–2417 (1962).Google Scholar
  31. 31.
    R. O. Brady, in “Metabolism and Physiological Significance of Lipids” (R. M. C. Dawson and D. N. Rhodes, eds.) pp. 95–109, John Wiley, London (1964).Google Scholar
  32. 32.
    P. Morell and N. S. Radin, Synthesis of cerebroside by brain from undine diphosphate galactose and ceramide containing hydroxy fatty acid, Biochemistry 8:506–512 (1969).Google Scholar
  33. 33.
    P. Morell, E. Costantino-Ceccarini, and N. S. Radin, The biosynthesis by brain microsomes of cerebrosides containing nonhydroxy fatty acids, Arch. Biochem. Biophys 141: 738–748 (1970).Google Scholar
  34. 34.
    S. Hammarström, On the biosynthesis of cerebrosides containing nonhydroxy acids. 1. Mass spectrometric evidence for the psychosine pathway, Biochem. Biophys. Res. Commun 45:459–467 (1971).Google Scholar
  35. 35.
    S. Hammarström, On the biosynthesis of cerebrosides containing nonhydroxy acids. 2. Mass spectrometric evidence for the ceramide pathway, Biochem. Biophys. Res. Commun 45:468–475 (1971).Google Scholar
  36. 36.
    J. B. Hay and G. M. Gray, Glycosphingolipid biosynthesis in kidneys of normal C3H/He mice and of those with BP8 ascites tumours, Biochem. Biophys. Res. Commun 38:527–532 (1970).Google Scholar
  37. 37.
    L. Coles and G. M. Gray, The biosynthesis of digalactosylceramide in the kidney of the C57/B1 mouse, Biochem. Biophys. Res. Commun 38:520–526 (1970).Google Scholar
  38. 38.
    S. Basu, B. Kaufman, and S. Roseman, Enzymatic synthesis of ceramide-glucose and ceramide lactose by glycosyltransferases from embryonic chicken brain, J. Biol. Chem 243:5802–5804 (1968).Google Scholar
  39. 39.
    G. Hauser, The enzymatic synthesis of ceramide lactoside from ceramide glucoside and UDP-galactose, Biochem. Biophys. Res. Commun 28:502–509 (1967).Google Scholar
  40. 40.
    J. Hildebrand and G. Hauser, Biosynthesis of lactosylceramide and triglycosylceramide by galactosyltransferases from rat spleen, J. Biol. Chem 244:5170–5179 (1969).Google Scholar
  41. 41.
    B. Kaufman, S. Basu, and S. Roseman, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds.) pp. 193–213, Pergamon Press, Oxford (1967).Google Scholar
  42. 42.
    S. Handa and R. M. Burton, Biosynthesis of glycolipids: Incorporation of JV-acetyl galactosamine by a rat brain paniculate preparation, Lipids 4:589–598 (1969).Google Scholar
  43. 43.
    M. C. M. Yip and J. A. Dain, The enzymic synthesis of ganglioside: I. Brain uridine diphosphate D-galactose: TV-acetyl-galactosaminyl-galactosyl-glucosyl-ceramide galactosyl transferase, Lipids 4:270–277 (1969).Google Scholar
  44. 44.
    S. Gatt, in “Chemistry and Metabolism of Sphingolipids” (C. C. Sweeley, ed.) pp. 235–249, North Holland, Amsterdam (1970).Google Scholar
  45. 45.
    E. Yavin and S. Gatt, Enzymatic hydrolysis of sphingolipids. VIII. Further purification and properties of rat brain ceramidase, Biochemistry 8:1692–1698 (1969).Google Scholar
  46. 46.
    M. Heller and B. Shapiro, Enzymic hydrolysis of sphingomyelin by rat liver, Biochem. J 98:763–769 (1966).Google Scholar
  47. 47.
    J. N. Kanfer, O. M. Young, D. Shapiro, and R. O. Brady, The metabolism of sphingomyelin. I. Purification and properties of a sphingomyelin-cleaving enzyme from rat liver tissue, J. Biol. Chem 241:1081–1084 (1966).Google Scholar
  48. 48.
    Y. Barnholz, A. Roitman, and S. Gatt, Enzymatic hydrolysis of sphingolipids. II. Hydrolysis of sphingomyelin by an enzyme from rat brain, J. Biol. Chem 241:3731–3737 (1966).Google Scholar
  49. 49.
    P. B. Schneider and E. P. Kennedy, Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease, J. Lipid Res 8:202–209 (1967).Google Scholar
  50. 50.
    N. J. Weinreb, R. O. Brady, and A. L. Tappel, The lysosomal localization of sphingolipid hydrolases, Biochim. Biophys. Acta 159:141–146 (1968).Google Scholar
  51. 51.
    E. Mehl and H. Jatzkewitz, Eine Cerebrosidsulfatase aus Schweineniere, Hoppe-Seylers Z. Physiol. Chem 339:260–276 (1964).Google Scholar
  52. 52.
    E. Mehl and H. Jatzkewitz, Cerebroside 3-sulfate as a physiological substrate of arylsulfatase A, Biochim. Biophys. Acta 151:619–627 (1968).Google Scholar
  53. 53.
    A. A. Farooqui and B. K. Bachhawat, The regional distribution, age dependent variation and species differences of brain arylsulfatases, J. Neurochem 18:635–646 (1971).Google Scholar
  54. 54.
    A. K. Hajra, D. M. Bowen, Y. Kishimoto, and N. S. Radin, Cerebroside galactosidase of brain, J. Lipid Res 7:379–386 (1966).Google Scholar
  55. 55.
    D. M. Bowen and N. S. Radin, Purification of cerebroside galactosidase from rat brain, Biochim. Biophys. Acta 152:587–598 (1968).Google Scholar
  56. 56.
    D. M. Bowen and N. S. Radin, Properties of cerebroside galactosidase, Biochim. Biophys. Acta 152:599–610 (1968).Google Scholar
  57. 57.
    D. M. Bowen and N. S. Radin, Cerebroside galactosidase: A method for determination and a comparison with other lysosomal enzymes in developing rat brain, J. Neurochem 16:501–511 (1969).Google Scholar
  58. 58.
    L. Svennerholm, Chromatographic separation of human brain gangliosides, J. Neurochem 10:613–623 (1963).Google Scholar
  59. 59.
    H. Wiegandt, Ganglioside, Ergeb. Physiol. Biol. Chem. Exptl. Pharmakol 57:190–222 (1966).Google Scholar
  60. 60.
    R. Öhman, A. Rosenberg, and L. Svennerholm, Human brain sialidase, Biochemistry 9: 3774–3782 (1970).Google Scholar
  61. 61.
    C. L. Schengrund and A. Rosenberg, Intracellular location and properties of bovine brain sialidase, J. Biol. Chem 245:6196–6200 (1970).Google Scholar
  62. 62.
    R. Öhman, Subcellular fractionation of ganglioside sialidase from human brain, J. Neurochem 18:89–95 (1971).Google Scholar
  63. 63.
    S. Mahadevan, J. C. Nduaguba, and A. L. Tappel, Sialidase of rat liver and kidney, J. Biol. Chem 242:4409–4413 (1967).Google Scholar
  64. 64.
    S. Gatt and M. M. Rapport, Isolation of β-galactosidase and β-glucosidase from brain, Biochim. Biophys. Acta 113:567–576 (1966).Google Scholar
  65. 65.
    S. Gatt, Enzymatic hydrolysis of sphingolipids. V. Hydrolysis of monosialoganglioside and hexosylceramides by rat brain β-galactosidase, Biochim. Biophys. Acta 137:192–195 (1967).Google Scholar
  66. 66.
    Y. Z. Frohwein and S. Gatt, Enzymatic hydrolysis of sphingolipids. VI. Hydrolysis of ceramide glycosides by calf brain β-N-acetylhexosaminidase, Biochemistry 6:2783–2787 (1967).Google Scholar
  67. 67.
    K. Sandhoff and W. Wässle, Anreicherung und Charakterisierung zweir Formen der menschlichen N-Acetyl-β-D-hexosaminidase, Z. Physiol. Chem 352:1119–1133 (1971).Google Scholar
  68. 68.
    K. Sandhoff and H. Jatzkewitz, A particle-bound sialyl lactosidoceramide splitting mammalian sialidase, Biochim. Biophys. Acta 141:442–444 (1967).Google Scholar
  69. 69.
    Z. Leibowitz and S. Gatt, Enzymatic hydrolysis of sphingolipids. VII. Hydrolysis of gangliosides by a neuraminidase from calf brain, Biochim. Biophys. Acta 152:136–143 (1968).Google Scholar
  70. 70.
    E. H. Kolodny, J. Kanfer, J. M. Quirk, and R. O. Brady, Properties of a particle-bound enzyme from rat intestine that cleaves sialic acid from Tay-Sachs ganglioside, J. Biol. Chem 246:1426–1431 (1971).Google Scholar
  71. 71.
    K. Sandhoff, H. Pilz, and H. Jatzkewitz, Über den enzymatischen Abbau von N-acetylneuraminsäurefreien Gangliosidresten (Ceramidoligosacchariden), Z. Physiol. Chem 338: 281–293 (1964).Google Scholar
  72. 72.
    R. O. Brady, R. M. Bradley, and E. Martensson, The metabolism of ceramide trihexosides. I. Purification and properties of an enzyme that cleaves the terminal galactose molecule of galactosylgalactosylglucosylceramide, J. Biol. Chem 242:1021–1026 (1967).Google Scholar
  73. 73.
    S. Gatt and M. M. Rapport, Enzymic hydrolysis of sphingolipids. Hydrolysis of ceramide lactoside by an enzyme from rat brain, Biochem. J 101:680–686 (1966).Google Scholar
  74. 74.
    N. S. Radin, L. Hof, R. M. Bradley, and R. O. Brady, Lactosylceramide galactosidase: Comparison with other sphingolipid hydrolases in developing rat brain, Brain Res 14: 497–505 (1969).Google Scholar
  75. 75.
    R. O. Brady, J. Kanfer, and D. Shapiro, The metabolism of glucocerebroside. I. Purification and properties of glucocerebroside-cleaving enzyme from spleen tissue, J. Biol. Chem 240:39–43 (1965).Google Scholar
  76. 76.
    S. Gatt, Enzymatic hydrolysis of sphingolipids. Hydrolysis of ceramide glucoside by an enzyme from ox brain, Biochem. J 101:687–691 (1966).Google Scholar
  77. 77.
    E. G. Lapetina, E. F. Soto, and E. deRobertis, Gangliosides and acetylcholinesterase in isolated membranes of the rat brain cortex, Biochim. Biophys. Acta 135:33–43 (1967).Google Scholar
  78. 78.
    H. Wiegandt, The subcellular localization of gangliosides in the brain, J. Neurochem 14: 671–674 (1967).Google Scholar
  79. 79.
    L. Svennerholm, The distribution of lipids in the human nervous system — 1. Analytical procedure, lipids of foetal and newborn brain, J. Neurochem 11:839–853 (1964).Google Scholar
  80. 80.
    T. Yamakawa and S. Suzuki, The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. III. Globoside, the sugar containing lipid of human blood stroma, J. Biochem 39:393–399 (1952).Google Scholar
  81. 81.
    A. C. Crocker, The cerebral defect in Tay-Sachs disease and Niemann-Pick disease, J. Neurochem 7:69–80 (1961).Google Scholar
  82. 82.
    A. C. Crocker and S. Farber, Niemann-Pick disease: A review of eighteen patients, Medicine 37:1–95 (1958).Google Scholar
  83. 83.
    R. Lynn and R. D. Terry, Lipid histochemistry and electron microscopy in adult Niemann-Pick disease, Am. J. Med 37:987–994 (1964).Google Scholar
  84. 84.
    Y. Tanaka, G. Brecher, and D. S. Frederickson, Cellules de la maladie de Niemann-Pick et de quelques autres lipoidoses, Nouv. Rev. Franc. Hematol 3:5–12 (1963).Google Scholar
  85. 85.
    B. J. Wallace, L. Schneck, H. Kaplan, and B. W. Volk, Fine structure of cerebellum of children with lipidoses, Arch. Pathol 80:466–486 (1965).Google Scholar
  86. 86.
    S. Luse, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds.) pp. 93–105, Pergamon Press, Oxford (1966).Google Scholar
  87. 87.
    E. Klenk, Über die Natur der Phosphatide und anderer Lipoide des Gehirns und der Leber bei der Niemann-Pickschen Krankheit, Z. Physiol. Chem 235:24–36 (1937).Google Scholar
  88. 88.
    C. Tropp and B. Eckardt, Gehirn-Sphingomyelin bei Niemann-Pickscher Krankheit, Z. Physiol. Chem 245:163–174 (1936).Google Scholar
  89. 89.
    P. H. Teunissen and A. den Ouden, Nachtrag der Mitteilung: Beitrag zur Kenntnis der Chemie der Lipoidosis phosphatidica, Z. Physiol. Chem 252:271–279 (1938).Google Scholar
  90. 90.
    E. Chargaff, A study of the spleen in a case of Niemann-Pick disease, J. Biol. Chem 130: 503–511 (1939).Google Scholar
  91. 91.
    J. N. Cumings, in “Cerebral Sphingolipidoses” (S. M. Aronson and B. W. Volk, eds.) pp. 171–178, Academic Press, New York (1962).Google Scholar
  92. 92.
    L. van Bogaert, F. Seitelberger, and G. W. F. Edgar, Études neuropathologiques et neurochimiques sur un cas de Niemann-Pick chez un jeune enfant, Acta Neuropathol 3:57–73 (1963).Google Scholar
  93. 93.
    S. Kamoshita, A. M. Aron, K. Suzuki, and K. Suzuki, Infantile Niemann-Pick disease: A chemical study with isolation and characterization of membranous cytoplasmic bodies and myelin, Am. J. Dis. Child 117:379–394 (1969).Google Scholar
  94. 94.
    M. Philippart L. Martin, J. J. Martin, and J. H. Menkes, Niemann-Pick disease: Morphologic and biochemical studies in the visceral form with late central nervous system involvement (Crocker’s group C), Arch. Neurol 20:227–238 (1969).Google Scholar
  95. 95.
    H. Sobotka, E. Epstein, and L. Lichtenstein, The distribution of lipoid in a case of Niemann-Pick disease associated with amaurotic idiocy, Arch. Pathol 10:677–686 (1930).Google Scholar
  96. 96.
    H. Sobotka, D. Glick, M. Reiner, and L. R. Tuchman, The lipoids of spleen and liver in various types of lipoidoses, Biochem. J 27:2031–2034 (1933).Google Scholar
  97. 97.
    L. L. Uzman, The significance of the increase of nonspecific lipid components in primary lipoid-storage diseases, Arch. Pathol 65:331–339 (1958).Google Scholar
  98. 98.
    B. I. Ivemark, L. Svennerholm, C. Thorén, and R. Tunell, Niemann-Pick disease in infancy. Report of two siblings with clinical, histologic and chemical studies, Acta Paediat 52:391–404 (1963).Google Scholar
  99. 99.
    D. S. Frederickson, in “The Metabolic Basis of Inherited Disease,” 2nd ed., (J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.) pp. 586–617, McGraw-Hill, New York (1966).Google Scholar
  100. 100.
    R. M. Norman, R. M. Forrester, and A. H. Tingey, The juvenile form of Niemann-Pick disease, Arch. Dis. Childh 42:91–96. (1967).Google Scholar
  101. 101.
    G. Rouser, G. Kritchevsky, A. Yamamoto, A. G. Knudson, Jr., and G. Simon, Accumulation of a glycerophospholipid in classical Niemann-Pick disease, Lipids 3:287–290 (1968).Google Scholar
  102. 102.
    P. N. Seng, H. Debuch, B. Witter, and H.-R. Wiedemann, Bis (monoacylglycerin) phosphosäure-Vermehrung bei Sphingomyelinose (M. Niemann-Pick?), Z. Physiol. Chem 352:280–288 (1971).Google Scholar
  103. 103.
    C. W. Seiter and R. H. McCluer, Analysis of the structure of two gangliosides which accumulate in the brain in Niemann-Pick disease, J. Neurochem 17:1525–1526 (1970).Google Scholar
  104. 104.
    A. C. Crocker and V. B. Mays, Sphingomyelin synthesis in Niemann-Pick disease, Am. J. Clin. Nutr 9:63–67 (1961).Google Scholar
  105. 105.
    R. O. Brady, J. N. Kanfer, M. B. Nock, and D. S. Frederickson, The metabolism of sphingomyelin, II. Evidence of an enzymatic deficiency in Niemann-Pick disease, Proc. Natl. Acad. Sci 55:366–369 (1966).Google Scholar
  106. 106.
    P. B. Schneider and E. P. Kennedy, Sphingomyelinase in normal human spleens and in spleens from subjects with Niemann-Pick disease, J. Lipid Res 8:202–209 (1967).Google Scholar
  107. 107.
    J. P. Kampine, R. O. Brady, J. N. Kanfer, M. Feld, and D. Shapiro, Diagnosis of Gaucher’s disease and Niemann-Pick disease with small samples of venous blood, Science 155: 86–88 (1967).Google Scholar
  108. 108.
    H. R. Sloan, B. W. Uhlendorf, J. N. Kanfer, R. O. Brady, and D. S. Frederickson, Deficiency of sphingomyelin-cleaving enzyme activity in tissue cultures derived from patients with Niemann-Pick disease, Biochem. Biophys. Res. Commun 34:582–588 (1969).Google Scholar
  109. 109.
    R. A. Snyder and R. O. Brady, The use of white cells as a source of diagnostic material for lipid storage diseases, Clin. Chim. Acta 25:331–338 (1969).Google Scholar
  110. 110.
    C. J. Epstein, R. O. Brady, E. L. Schneider, R. M. Bradley, and D. Shapiro, In utero diagnosis of Niemann-Pick disease, Am. J. Hum. Genet 23: 533–535 (1971).Google Scholar
  111. 111.
    J. W. Callahan and M. Philippart, Phosphodiesterases (including sphingomyelinase) in Niemann-Pick disease types A and C, Neurology 21:442 (1971).Google Scholar
  112. 112.
    D. S. Frederickson and H. R. Sloan, in “The Metabolic Basis of Inherited Disease,” 3rd ed., (J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.) pp. 730–759. McGraw-Hill, New York (1972).Google Scholar
  113. 113.
    R. G. Hibbs, V. J. Ferrans, P. R. Cipriano, and K. J. Tardiff, A histochemical and electron microscopic study of Gaucher cells, Arch. Pathol 89:137–153 (1970).Google Scholar
  114. 114.
    R. E. Lee, The fine structure of the cerebroside occurring in Gaucher’s disease, Proc. Natl. Acad. Sci 61:484–489 (1968).Google Scholar
  115. 115.
    E. R. Fisher and R. Reidbord, Gaucher’s disease: Pathogenetic considerations based on electron microscopic and histochemical observations, Am. J. Pathol 41:679–693 (1962).Google Scholar
  116. 116.
    B. W. Volk and B. J. Wallace, The liver in lipidoses; an electron microscopic and histochemical study, Am. J. Pathol 49:203–225 (1966).Google Scholar
  117. 117.
    S. W. Jordan, Electron microscopy of Gaucher cells, Exptl. Molec. Pathol 3:76–85 (1964).Google Scholar
  118. 118.
    B. Q. Banker, J. Q. Miller, and A. C. Crocker, in “Cerebral Sphingolipidoses” (S. M. Aronson and B. W. Volk, eds.) pp. 73–99. Academic Press, New York (1962).Google Scholar
  119. 119.
    R. M. Norman, H. Urich, and O. C. Lloyd, The neuropathology of infantile Gaucher’s disease, J. Pathol. Bacteriol 72:121–131 (1956).Google Scholar
  120. 120.
    M. Adachi, B. J. Wallace, L. Schneck, and B. W. Volk, Fine structure of central nervous system in early infantile Gaucher’s disease, Arch. Pathol 83:513–526 (1967).Google Scholar
  121. 121.
    K. Wakutani, H. Nakamura, H. Mori, H. Morihisa, and G. Ando, A case of infantile Gaucher’s disease — Neuropathologic and electron microscopic observation, Clin. Neurol 9:261–270 (1969).Google Scholar
  122. 122.
    L. Svennerholm, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds.) pp. 169–186, Pergamon Press, Oxford (1967).Google Scholar
  123. 123.
    A. F. J. Maloney and J. N. Cumings, A case of juvenile Gaucher’s disease with intraneuronal lipid storage, J. Neurol. Neurosurg. Psychiat 23:207–213 (1960).Google Scholar
  124. 124.
    J. Montreuil, P. Bowanger, and E. Houcke, Chromatographie sur papier des constituants glucidiques des cérébrosides d’une rate de Gaucher, Bull. Soc. Chim. Biol 35:1125–1127 (1953).Google Scholar
  125. 125.
    L. Svennerholm, in “Brain Lipids and Lipoproteins, and the Leukodystrophies” (J. Folch-Pi and H. Bauer, eds.) pp. 104–119, Elsevier, Amsterdam (1963).Google Scholar
  126. 126.
    M Philippart and J. H. Menkes, Isolation and characterization of the principal cerebral glycolipids in the infantile and adult forms of Gaucher’s disease, J. Neuropathol. Exptl. Neurol 24:389–400 (1967).Google Scholar
  127. 127.
    J. H. French, M. Brotz, and C. M. Poser, Lipid composition of the brain in infantile Gaucher’s disease, Neurology 19:81–86 (1969).Google Scholar
  128. 128.
    M. Philippart, B. Rosenstein, and J. H. Menkes, Isolation and characterization of the main splenic glycolipids in the normal organ and in Gaucher’s disease: Evidence for the site of metabolic block, J. NeuropathoL Exptl. Neurol 24:290–303 (1965).Google Scholar
  129. 129.
    A Makita, C. Suzuki, and Z. Yosizawa, Glycol pids isolated from the spleen of Gaucher’s disease, Tohoku J. Exptl. Med 88:277–288 (1966).Google Scholar
  130. 130.
    E. G. Trams and R. O. Brady, Cerebroside synthesis in Gaucher’s disease, J. Clin. Invest 39:1546–1550 (1960).Google Scholar
  131. 131.
    R. O. Brady, J. N. Kanfer, and D. Shapiro, Metabolism of glucocerebrosides. II. Evidence of an enzymatic deficiency in Gaucher’s disease, Biochem. Biophys. Res. Commun 18: 221–225 (1965).Google Scholar
  132. 132.
    R. O. Brady, J. N. Kanfer, R. M. Bradley, and D. Shapiro, Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher’s disease, J. Clin. Invest 45:1112–1115 (1966).Google Scholar
  133. 133.
    A. D. Patrick, A deficiency of glucocerebrosidase in Gaucher’s disease, Biochem. J 97: 17C–18C (1965).Google Scholar
  134. 134.
    E. Beutler and W. Kühl, The diagnosis of the adult type of Gaucher’s disease and its carrier state by demonstration of deficiency of β-glucosidase activity in peripheral blood leukocytes, J. Lab. Clin. Med 76:747–755 (1970).Google Scholar
  135. 135.
    R. O. Brady, Cerebral lipidoses, Ann. Rev. Med 21:317–334 (1970).Google Scholar
  136. 136.
    E. Beutler, W. Kühl, F. Trinidad, R. Teplitz, and H. Nadler, β-Glucosidase activity in fibroblasts from homozygotes and heterozygotes for Gaucher’s disease, Am. J. Hum. Genet 23:62–66 (1971).Google Scholar
  137. 137.
    C. J. Epstein and R. O. Brady, personal communication.Google Scholar
  138. 138.
    P. A. Öckerman and P. Köhlin, Tissue acid hydrolase activities in Gaucher’s disease, Scand. J. Clin. Lab. Invest 22:62–64 (1968).Google Scholar
  139. 139.
    B. Hagberg, H. Kolberg, P. Sourander, and H. O. Akesson, Infantile globoid cell leukodystrophy (Krabbe’s disease). A clinical and genetic study of 32 Swedish cases 1953–1967, Neuropädiatrie 1:74–88 (1969).Google Scholar
  140. 140.
    H. G. Dunn, B. D. Lake, C. L. Dolman, and J. Wilson, The neuropathy of Krabbe’s infantile cerebral sclerosis (globoid cell leucodystrophy), Brain 92:329–344 (1969).Google Scholar
  141. 141.
    B. J. Wallace, S. W. Aronson, and B. W. Volk, Histochemical and biochemical studies of globoid cell leukodystrophy (Krabbe’s disease), J. Neurochem 11:367–376 (1963).Google Scholar
  142. 142.
    N. Allen and E. de Veyra, Microchemical and histochemical observations in a case of Krabbe’s leukodystrophy, J. NeuropathoL Exptl. Neurol 26:456–474 (1967).Google Scholar
  143. 143.
    K. Suzuki and Y. Suzuki, in “The Metabolic Basis of Inherited Disease,” 3rd ed., (J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.) pp. 760–782. McGraw-Hill, New York (1972).Google Scholar
  144. 144.
    K. Suzuki and W. D. Grover, Krabbe’s leukodystrophy (globoid cell leukodystrophy): An ultrastructural study, Arch. Neurol 22:385–396, (1970).Google Scholar
  145. 145.
    E. J. Yunis and R. E. Lee, The ultrastructure of globoid (Krabbe) leukodystrophy, Lab. Invest 21:415–419 (1969).Google Scholar
  146. 146.
    E. J. Yunis and R. E. Lee, Tubules of globoid leukodystrophy: A right-handed helix, Science 169:64–66 (1970).Google Scholar
  147. 147.
    A. Bischoff and J. Ulrich, Peripheral neurophathy in globoid cell leukodystrophy (Krabbe’s disease). Ultrastructural and histochemical findings, Brain 92:861–870 (1969).Google Scholar
  148. 148.
    G. Lyon, L. Jardin, and J. Aicardi, Étude au microscope electronique d’un nerf périphérique dans un cas de leucodystrophie de Krabbe, J. Neurol. Sci 12:263–274 (1971).Google Scholar
  149. 149.
    J. H. Austin, Studies in globoid (Krabbe) leukodystrophy. I. The significance of lipid abnormalities in white matter in eight globoid and thirteen control patients, Arch. Neurol 9:207–221 (1963).Google Scholar
  150. 150.
    K. Suzuki and K. Suzuki, in “Lysosomes and Storage Diseases” (H. G. Hers and F. van Hoof, eds.) Academic Press, New York (in press).Google Scholar
  151. 151.
    Y. Eto and K. Suzuki, Brain sphingoglycolipids in Krabbe’s globoid cell leukodystrophy, J. Neurochem 18:503–511 (1971).Google Scholar
  152. 152.
    J. M. Schibanoff, S. Kamoshita, and J. S. O’Brien, Tissue distribution of glycosphingolipids in a case of Fabry’s disease, J. Lipid Res 10:515–520 (1969).Google Scholar
  153. 153.
    Y. Eto, K. Suzuki, and K. Suzuki, Globoid cell leukodystrophy (Krabbe’s disease): Isolation of myelin with normal glycolipid composition, J. Lipid Res 11:473–479 (1970).Google Scholar
  154. 154.
    K. Suzuki and Y. Suzuki, Globoid cell leukodystrophy (Krabbe’s disease): Deficiency of galactocerebroside β-galactosidase, Proc. Natl. Acad. Sci 66:302–309 (1970).Google Scholar
  155. 155.
    K. Suzuki, Y. Suzuki, and Y. Eto, in “Lipid Storage Diseases: Enzymatic Defects and Clinical Implications” (J. Bernsohn and H. J. Grossman, eds.) pp. 111–136, Academic Press, New York (1971).Google Scholar
  156. 156.
    J. Austin, K. Suzuki, D. Armstrong, R. O. Brady, B. K. Bachhawat, J. Schlenker, and D. Stumpf, Studies in globoid (Krabbe) leukodystrophy (GLD). V. Controlled enzymatic studies in ten human eases, Arch. Neurol 23:502–512 (1970).Google Scholar
  157. 157.
    Y. Suzuki and K. Suzuki, Krabbe’s globoid cell leukodystrophy: Deficiency of galactocerebrosidase in serum, leukocytes and fibroblasts, Science 171:73–75 (1971).Google Scholar
  158. 158.
    M. J. Malone, Deficiency in a degradative enzyme system in globoid leueodystrophy, Abst. First Meeting Am. Soc. Neurochem., Albuquerque, N.M, p. 56 (1970).Google Scholar
  159. 159.
    K. Suzuki, E. Schneider, and C. J. Epstein, In utero diagnosis of globoid cell leukodystrophy (Krabbe’s disease), Biochem. Biophys. Res. Commun 45:1363–1366 (1971).Google Scholar
  160. 160.
    K. Suzuki, Y. Suzuki, and T. Fletcher, Further studies of galactocerebroside β-galactosidase in globoid cell leukodystrophy, in “Proceedings of the Fourth International Symposium on Sphingolipids, Sphingolipidoses, and Allied Disorders” (B. W. Volk and S. M. Aronson, eds.) pp. 487–498. Plenum Press, New York (1972).Google Scholar
  161. 161.
    B. K. Bachhawat, J. Austin, and D. Armstrong, A cerebroside sulfotransferase deficiency in a human disorder of myelin, Biochem. J 104:15C–17C (1967).Google Scholar
  162. 162.
    J. H. Austin and D. Lehfeldt, Studies in globoid (Krabbe) leukodystrophy. III. Significance of experimentally-produced globoid-like elements in rat white matter and spleen, J. Neuropathol. Exptl. Neurol 24:265–289 (1965).Google Scholar
  163. 163.
    K. Suzuki, Ultrastructural study of experimental globoid cells, Lab. Invest 23:612–619 (1970).Google Scholar
  164. 164.
    K. Suzuki, Renal cerebroside in globoid cell leukodystrophy (Krabbe’s disease), Lipids 6: 433–436 (1971).Google Scholar
  165. 165.
    B. Hagberg, in “Brain Lipids and Lipoproteins, and the Leukodystrophies” (J. Folch-Pi and H. Bauer, eds.) pp. 134–146, Elsevier, Amsterdam (1963).Google Scholar
  166. 166.
    T. von Hirsch and J. Peiffer, Über histologische Methoden in der Differentialdiagnose von Leucodystrophien und Lipidosen, Arch. Psychiat. Nervenkr 194:88–104 (1955).Google Scholar
  167. 167.
    R. D. Terry, in “Lipid Storage Diseases: Enzymatic Defects and Clinical Implications” (J. Bernsohn and H. J. Grossman, eds.) pp. 3–25, Academic Press, New York (1971).Google Scholar
  168. 168.
    G. Aurebeck, K. Osterberg, M. Blaw, S. Chou, and E. Nelson, Electron microscopic observations on metachromatic leueodystrophy, Arch. Neurol 11:273–288 (1964).Google Scholar
  169. 169.
    A. Grégoire, O. Périer, and P. Dustin, Jr., Metachromatic leueodystrophy, an electron microscopic study, J. Neuropathol. Exptl. Neurol 25:617–636 (1966).Google Scholar
  170. 170.
    A. Résibois-Grégoire, Electron microscopic studies of metachromatic leueodystrophy. II. Compound nature of the inclusions, Acta Neuropathol 9:244–253 (1967).Google Scholar
  171. 171.
    H. de Webster, Schwann cell alterations in metachromatic leueodystrophy. Preliminary phase and electron microscopic observations, J. Neuropathol. Exptl. Neurol 21:534–554 (1962).Google Scholar
  172. 172.
    A. Résibois, Electron microscopic study of metachromatic leueodystrophy. III. Lysosomal nature of the inclusions, Acta Neuropathol 13:149–156 (1969).Google Scholar
  173. 173.
    K. Suzuki and K. Suzuki, in “Handbook of Neurochemistry” (A. Lajtha, ed.) Vol. 7, pp. 131–142. Plenum Press, New York (1972).Google Scholar
  174. 174.
    H. Jatzkewitz, Zwei Typen von Cerebrosid-schwefelsäureestern als sog. “Prälipoide” und Speichersubstanzen bei der Leukodystrophie, Typ Scholtz (metachromatische Form der diffusen Sklerose), Z. Physiol. Chem 311:279–282 (1958).Google Scholar
  175. 175.
    J. H. Austin, Metachromatic sulfatides in cerebral white matter and kidney, Proc. Soc. Exptl. Biol 100:361–364 (1959).Google Scholar
  176. 176.
    M. Malone, P. Stoffyn, and H. Moser, Structural studies on sulfatide in metachromatic leucodystrophy, J. Neurochem 13:1033–1036 (1966).Google Scholar
  177. 177.
    B. Hagberg, P. Sourander, L. Svennerholm, and H. Voss, Late infantile metachromatic leucodystrophy of the genetic type, Acta Paediat 49:135–153 (1960).Google Scholar
  178. 178.
    B. Hagberg, P. Sourander, and L. Svennerholm, Sulfatide lipidosis in childhood. Report of a case investigated during life and at autopsy, Am. J. Dis. Child 104:644–656 (1962).Google Scholar
  179. 179.
    H. Jatzkewitz, H. Pilz, and H. Holländer, Biochemische und vergleichende histochemische Untersuchungen in umschriebenen Gebieten des Gehirns bei Fallen von adulter und infantiler metachromatischer Leukodystrophie, Acta Neuropathol 4:75–89 (1964).Google Scholar
  180. 180.
    J. S. O’Brien and E. L. Sampson, Myelin membrane: A molecular abnormality, Science 150:1613 (1965).Google Scholar
  181. 181.
    W. T. Norton, The variation in the chemical composition in myelin in disease and during development, Charing Cross Hosp. Gazette 8:3–8 (1967).Google Scholar
  182. 182.
    K. Suzuki, K. Suzuki, and G. C. Chen, Metachromatic leucodystrophy: Isolation and chemical analysis of metachromatic granules, Science 151:1231–1233 (1966).Google Scholar
  183. 183.
    K. Suzuki, K. Suzuki, and G. C. Chen, Isolation and chemical characterization of metachromatic granules from a brain with metachromatic leukodystrophy, J. Neuropathol. Exptl. Neurol 26:537–550 (1967).Google Scholar
  184. 184.
    J. Austin, D. Armstrong, S. Fouch, C. Mitchell, D. Stumpf, L. Shearer, and O. Briner, Metachromatic leukodystrophy. VIII. MLD in adults; diagnosis and pathogenesis, Arch. Neurol 18:225–240 (1968).Google Scholar
  185. 185.
    M. J. Malone and P. Stoffyn, Peripheral nerve glycolipids in metachromatic leukodystrophy, Neurology 17:1033–1040 (1967).Google Scholar
  186. 186.
    E. Martensson, A. Percy, and L. Svennerholm, Kidney glycolipids in late infantile metachromatic leucodystrophy, Acta Paediat. Scand 55:1–9 (1966).Google Scholar
  187. 187.
    J. H. Austin, A. S. Balasubramanian, T. N. Pattabiraman, S. Saraswathi, D. K. Basu, and B. K. Bachhawat, A controlled study of enzymic activities in three human disorders of glycolipid metabolism, J. Neurochem 10:805–816 (1963).Google Scholar
  188. 188.
    J. Austin, D. Armstrong, and L. Shearer, Metachromatic form of diffuse cerebral sclerosis. V. The nature and significance of low sulfatase activity: A controlled study of brain, liver and kidney in four patients with metachromatic leukodystrophy (MLD), Arch. Neurol 13:593–614 (1965).Google Scholar
  189. 189.
    E. Mehl and H. Jatzkewitz, Evidence for the genetic block in metachromatic leucodystrophy (ML), Biochem. Biophys. Res. Commun 19:407–411 (1965).Google Scholar
  190. 190.
    J. Austin, D. McAfee, and L. Shearer, Metachromatic form of diffuse cerebral sclerosis. IV. Low sulfatase activity in the urine of nine living patients with metachromatic leukodystrophy (MLD), Arch. Neurol 12:447–455 (1965).Google Scholar
  191. 191.
    A. L. Percy and R. O. Brady, Metachromatic leukodystrophy: Diagnosis with samples of venous blood, Science 161:594–595 (1968).Google Scholar
  192. 192.
    M. T. Porter, A. L. Fluharty, and H. Kihara, Metachromatic leukodystrophy: Arylsulfatase A deficiency in skin fibroblast cultures, Proc. Natl. Acad. Sci 62:887–891 (1969).Google Scholar
  193. 193.
    J. G. Leroy, J. Dumon, and J. Radermecker, Deficiency of arylsulfatase A in leucocytes and skin fibroblasts in juvenile metachromatic leucodystrophy, Nature 226:553–554 (1970).Google Scholar
  194. 194.
    N. H. Bass, E. J. Witmer, and F. E. Dreifuss, A pedigree study of metachromatic leukodystrophy. Biochemical identification of the carrier state, Neurology 20:52–62 (1970).Google Scholar
  195. 195.
    N. Taniguchi and I. Namba, Enzymatic abnormality of the carrier state in metachromatic leukodystrophy, Clin. Chim. Acta 29:375–379 (1970).Google Scholar
  196. 196.
    F. Gabreëls, K. Lamers, J. Kok, M. Loonen, and E. Lommen, The biochemical differentiation between heterozygote carriers of metachromatic leucodystrophy and normal persons, Neuropädiatrie 2:461–469 (1971).Google Scholar
  197. 197.
    D. Stumpf and J. Austin, Metachromatic leukodystrophy (MLD). IX. Qualitative and quantitative differences in urinary arylsulfatase A in different forms of MLD, Arch. Neurol 24:117–124 (1971).Google Scholar
  198. 198.
    M. Mossakowski, G. Mathieson, and J. N. Cumings, On the relationships of metachromatic leucodystrophy and amaurotic idiocy, Brain 84:585–604 (1961).Google Scholar
  199. 199.
    J. H. Austin, in “Medical Aspects of Mental Retardation” (C. H. Carter, ed.) pp. 768–812, Charles C. Thomas, Springfield, Ill. (1965).Google Scholar
  200. 200.
    M. Bischel, J. Austin, and M. Kemeny, Metachromatic leukodystrophy (MLD). VII. Elevated sulfated acid Polysaccharide levels in urine and postmortem tissues, Arch. Neurol 15:13–28 (1966).Google Scholar
  201. 201.
    F. Lüthy, J. Ulrich, F. Regli, and W. Isler, Amaurotic idiocy with metachromatic change in the white matter, Proc. Fifth Internat. Congr. Neuropathol, pp. 125–130, Excerpta Medica Foundation, Amsterdam (1966).Google Scholar
  202. 202.
    S. Thieffry, G. Lyon, and P. Maroteaux, Leucodystrophie metachromatique (sulfatidose) et mucopolysaccharidose associées chez un mmalade, Rev. Neurol 114:193–200 (1966).Google Scholar
  203. 203.
    S. Thieffry, G. Lyon, and P. Maroteaux, Encéphalopathie métabolique associant une mucopolysaccharidose et une sulfatidose, Arch. Franc. Pédiat 24:425–432 (1967).Google Scholar
  204. 204.
    S. Rampini, W. Isler, K. Baerlocher, A. Bischoff, J. Ulrich, and H. J. Plüss, Die Kombination von metachromatischer Leukodystrophie und Mukopolysaccharidose als selbständiges Krankheitzbild (Mukosulfatidose), Helv. Paediat. Acta 25:436–461 (1970).Google Scholar
  205. 205.
    J. V. Murphy, H. J. Wolfe, E. A. Balazs, and H. W. Moser, in “Lipid Storage Diseases: Enzymatic Defects and Clinical Implications” (J. Bernsohn and H. J. Grossman, eds.) pp. 67–110, Academic Press, New York (1971).Google Scholar
  206. 206.
    K. Suzuki, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds.) pp. 215–230, Pergamon Press, Oxford (1967).Google Scholar
  207. 207.
    K. Suzuki, in “Handbook of Neurochemistry” (A. Lajtha, ed.) pp. 17–32. Vol. 7, Plenum Press, New York (1972).Google Scholar
  208. 208.
    G. Dawson and A. O. Stein, Lactosyl ceramidosis: Catabolic enzyme defect of glycosphingolipid metabolism, Science 170:556–558 (1970).Google Scholar
  209. 209.
    G. Dawson and A. O. Stein, in “ve involvement in Fabry’s disease”, Arch. Neurol 22:81–88 (1970).Google Scholar
  210. 227.
    M. W. Hartley, R. E. Miller, H. J. Dempsy, and J. F. Caroll, Dysphospholipidosis in Fabry’s disease: A light and electron microscopic study, Ala. J. Med. Sci 1:361–367 (1964).Google Scholar
  211. 228.
    P. Frost, Y. Tanaka, and G. L. Spaeth, Fabry’s disease’ glycolipid lipidosis: Histochemical and electronmicroscopic studies of two cases, Am. J. Med 40:618–627 (1966).Google Scholar
  212. 229.
    A. I. Rae, J. C. Lee, and J. Hopper, Jr., Clinical and electron-microscopic studies of a case of glycolipid lipidosis (Fabry’s disease), J. Clin. Pathol 20:21–27 (1967).Google Scholar
  213. 230.
    J. D. Bagdade, F. Parker, P. O. Ways, T. E. Morgan, D. Lagunoff, and S. Eidelman, Fabry’s disease: A correlative clinical, morphologic and biochemical study, Lab. Invest 18:681–688 (1968).Google Scholar
  214. 231.
    M. Tondeur and A. Résibois, Fabry’s disease in children, an electron microscopic study, Virchows Arch. Abt. B, Zellpathol 2:239–254 (1969).Google Scholar
  215. 232.
    M. Ruiter, Histological investigation of the skin in angiokeratoma corporis diffusum with particular regard to the associated disturbance of Phosphatide metabolism, Dermatologia 109:272–286 (1954).Google Scholar
  216. 233.
    C. C. Sweeley and B. Klionsky, Fabry’s disease: Classification as a sphingolipidosis and partial characterization of a novel glycolipid, J. Biol. Chem 238:3148–3150 (1963).Google Scholar
  217. 234.
    C. C. Sweeley and B. Klionsky, in “The Metabolic Basis of Inherited Disease,” 2nd ed., (J. B. Stanbury, J. B. Wyngaarden, and D. S. Frederickson, eds.) pp. 618–632, McGraw-Hill, New York (1966).Google Scholar
  218. 235.
    H. O. Christensen Lou, A biochemical investigation of angiokeratoma corporis diffusum, Acta Pathol. Microbiol. Scand 68:332–342 (1966).Google Scholar
  219. 236.
    V. W. Steward and C. Hitschcock, Fabry’s disease, Pathol. Europ 3:377–386 (1968).Google Scholar
  220. 237.
    T. Miyatake, A study on glycolipids in Fabry’s disease, Jap. J. Exptl. Med 39:35–45 (1969).Google Scholar
  221. 238.
    S. Handa, T. Ariga, T. Miyatake, and T. Yamakawa, Presence of α-anomeric glycosidic configuration in the glycolipids accumulated in kidney with Fabry’s disease, J. Biochem 69:625–627 (1971).Google Scholar
  222. 239.
    I. Bensaude, J. Callahan, and M. Philippart, Fabry’s disease as an α-galactosidosis: Evidence for an a-configuration in trihexosyl ceramide, Biochem. Biophys. Res. Commun 43:913–918 (1971).Google Scholar
  223. 240.
    J. T. R. Clarke, L. S. Wolfe, and A. S. Perlin, Evidence for a terminal α-D-galactopyranosyl residue in galactosylgalactosylglucosylceramide from human kidney, J. Biol. Chem 246:5563–5569 (1971).Google Scholar
  224. 241.
    H. Loeb, G. Jonniaux, M. Tondeur, P. Danis, P. E. Gregoire, and P. Wolf, Étude clinique, biochimique et ultrastructurelle de la maladie de Fabry chez l’enfant, Helv. Paediat. Acta 23:269–286 (1968).Google Scholar
  225. 242.
    R. Matalon, A. Dorfman, G. Dawson, and C. C. Sweeley, Glycolipid and mucopolysaccharide abnormality in fibroblasts of Fabry’s disease, Science 164:1522–1523 (1969).Google Scholar
  226. 243.
    M. Philippart, L. Sarlieve, and A. Manacorda, Urinary glycolipids in Fabry’s disease, Pediatrics 43:201–206 (1969).Google Scholar
  227. 244.
    R. J. Desnick, G. Dawson, S. Desnick, C. C. Sweeley, and W. Krivit, Diagnosis of glycosphingolipidoses by urinary-sediment analysis, New Engl. J. Med 284:739–744 (1971).Google Scholar
  228. 245.
    R. O. Brady, A. E. Gal, R. M. Bradley, E. Martensson, A. L. Warshaw, and L. Loster, Enzymatic defect in Fabry’s disease. Ceramidetrihexosidase deficiency, New Engl. J. Med 276:1163–1167(1967).Google Scholar
  229. 246.
    J. A. Kint, Fabry’s disease: Alpha-galactosidase deficiency, Science 167:1268–1269 (1970).Google Scholar
  230. 247.
    G. Romeo and B. R. Migeon, Genetic inactivation of the α-galactosidase locus in carriers of Fabry’s disease, Science 170:180–181 (1970).Google Scholar
  231. 248.
    C. A. Mapes, R. L. Anderson, and C. C. Sweeley, Galactosylgalactosylglucosylceramide: Galactosyl hydrolase in normal human plasma and its absence in patients with Fabry’s disease, FEBS Letters 7:180–182 (1970).Google Scholar
  232. 249.
    R. O. Brady, B. W. Uhlendorf, and C. B. Jacobson, Fabry’s disease: Antenatal detection, Science 172:174–175 (1971).Google Scholar
  233. 250.
    L. A. Lockman, W. Krivit, and R. J. Desnick, Relief of the painful crises of Fabry’s disease by diphenylhydantoin, Neurology 21:423 (1971).Google Scholar
  234. 251.
    H. Jatzkewitz and K. Sandhoff, On a biochemically special form of infantile amaurotic idiocy, Biochim. Biophys. Acta 70:354–356 (1963).Google Scholar
  235. 252.
    J. S. O’Brien, M. B. Stern, B. H. Landing, J. K. O’Brien, and G. N. Donnell, Generalized gangliosidosis. Another inborn error of ganglioside metabolism? Am. J. Dis. Child 109: 338–346 (1965).Google Scholar
  236. 253.
    N. K. Gonatas and J. Gonatas, Ultrastructural and biochemical observations on a case of systemic late infantile lipidosis and its relationship to Tay-Sachs disease and gargoylism, J. Neuropathol. Exptl. Neurol 24:318–340 (1965).Google Scholar
  237. 254.
    B. H. Landing and J. H. Rubinstein, in “Cerebral Sphingolipidoses” (S. M. Aronson and B. W. Volk, eds.) pp. 1–13, Academic Press, New York (1962).Google Scholar
  238. 255.
    K. Suzuki, K. Suzuki, and G. C. Chen, Morphological, histochemical and biochemical studies on a case of systemic late infantile lipidosis (generalized gangliosidosis), J. Neuropathol. Exptl. Neurol 27:15–38 (1968).Google Scholar
  239. 256.
    K. Suzuki, K. Suzuki, and G. C. Chen, in “Cerebral Lipidoses II” (A. Nunes Vicente, P. Dustin, and A. Lowenthal, eds.) pp. 273–294, Présses Académiques Européenes, Brussels (1968).Google Scholar
  240. 257.
    R. Sacrez, J. G. Juif, J. M. Gigonnet, and J. E. Grüner, La maladie de Landing, ou idiotie amaurotique infantile précose avec gangliosidose généralisée de type Gmi, Pédiatrie 22: 143–162 (1967).Google Scholar
  241. 258.
    H. Roels, J. Quatacker, A. Kint, H. Vander Eecken, and L. Vrints, Generalized gangliosidosis-Gmi (Landing disease) II. Morphological study, Europ. Neurol 3:129–160 (1970).Google Scholar
  242. 259.
    C. R. Scott, D. Lagunoff, and B. F. Trump, Familial neurovisceral lipidosis, J. Pediat 71: 357–366 (1967).Google Scholar
  243. 260.
    S. Takebayashi, D. B. von Bassewitz, and H. Themann, Feinstrukturelle Veränderungen der Niere bei generalisierter Gangliosidose Gmi. Virchows Arch. Abt. B, Zellpathol 5: 301–313 (1970).Google Scholar
  244. 261.
    P. Hubain, E. Adam, A. Dewelle, G. Druez, J.-P. Farriaux, and A. Dupont, Étude d’une Observation de gangliosidose à Gmi, Helv. Paediat. Acta 24:337–351 (1969).Google Scholar
  245. 262.
    K. Suzuki, K. Suzuki, and S. Kamoshita, Chemical pathology of Gmi-gangliosidosis (generalized gangliosidosis), J. Neuropathol. Exptl. Neurol 28:25–73 (1969).Google Scholar
  246. 263.
    R. Ledeen, K. Salsman, J. Gonatas, and A. Taghavy, Structure comparison of the major monosialogangliosides from brains of normal human, gargoylism, and late infantile systemic lipidosis. Part I, J. Neuropathol. Exptl. Neurol 24:341–351 (1965).Google Scholar
  247. 264.
    K. Suzuki and G. C. Chen, Brain ceramide hexosides in Tay-Sachs disease and generalized gangliosidosis (Gmi-gangliosidosis), J. Lipid Res 8:105–113 (1967).Google Scholar
  248. 265.
    Y. Suzuki, A. C. Crocker, and K. Suzuki, Gmi-gangliosidosis: Correlation of clinical and biochemical data, Arch. Neurol 24:58–64 (1971).Google Scholar
  249. 266.
    K. Suzuki, Cerebral Gmi-gangliosidosis: Chemical pathology of visceral organs, Science 159:1471–1472 (1968).Google Scholar
  250. 267.
    L. S. Wolfe, J. Callahan, J. S. Fawcett, F. Andermann, and C. R. Scriver, Gmi-gangliosidosis without chondrodystrophy or visceromegaly, Neurology 20:23–44 (1970).Google Scholar
  251. 268.
    J. W. Callahan and L. S. Wolfe, Isolation and characterization of keratan sulfates from the liver of a patient with Gmi-gangliosidosis type I, Biochim. Biophys. Acta 215:527–543 (1970).Google Scholar
  252. 269.
    P. Seringe, B. Plainfosse, E. Mautmann, J. Lorilloux, G. Calamy, J.-P. Berry, and J.-M. Watchi, Gangliosidose généralisée, du type Norman-Landing, à Gmi, Ann. Pédiat 44: 685–704 (1968).Google Scholar
  253. 270.
    S. Okada and J. S. O’Brien, Generalized gangliosidosis: Beta-galactosidase deficiency, Science 160:1002–1004 (1968).Google Scholar
  254. 271.
    G. Dacremont and J. A. Kint, Gmi-ganglioside accumulation and β-galactosidase deficiency in a case of Gmi-gangliosidosis (Landing disease), Clin. Chim. Acta 21:421–425 (1968).Google Scholar
  255. 272.
    F. van Hoof and H. G. Hers, The abnormalities of lysosomal enzymes in mucopolysaccharidoses, Europ. J. Biochem 7:34–44 (1968).Google Scholar
  256. 273.
    R. O. Brady, J. S. O’Brien, R. M. Bradley, and A. E. Gal, Sphingolipid hydrolases in brain tissue of patients with generalized gangliosidosis, Biochim. Biophys. Acta 210:193–195 (1970).Google Scholar
  257. 274.
    M. C. MacBrinn, S. Okada, M. W. Ho, C. C. Hu, and J. S. O’Brien, Generalized gangliosidosis: Impaired cleavage of galactose from a mucopolysaccharide and a glycoprotein, Science 163:946–947 (1969).Google Scholar
  258. 275.
    C. Hooft, R. F. Vlietinck, G. Dacremont, and J. A. Kint, Gmi-gangliosidosis type II, Europ. Neurol 4:1–21 (1970).Google Scholar
  259. 276.
    H. S. Singer and I. A. Schafer, White cell β-galactosidase activity, New Engl. J. Med 282: 571 (1970).Google Scholar
  260. 277.
    G. H. Thomas, β-D-Galactosidase in human urine: Deficiency in generalized gangliosidosis, J. Lab. Clin. Med 74:725–731 (1969).Google Scholar
  261. 278.
    H. R. Sloan, B. W. Uhlendorf, C. B. Jacobson, and D. S. Frederickson, β-Galactosidase in tissue culture derived from human skin and bone marrow: Enzyme defect in Gmi-gangliosidosis, Pediat. Res 3:532–537 (1969).Google Scholar
  262. 279.
    J. W. Callahan, L. Pinsky, and L. S. Wolfe, Gmi-gangliosidosis (type II): Studies on a fibroblast cell strain, Biochem. Med 4:295–316 (1970).Google Scholar
  263. 280.
    D. M. Derry, J. S. Fawcett, F. Andermann, and L. S. Wolfe, Late infantile systemic lipidosis, major monosialogangliosidosis, delineation of two types, Neurology 18:340–348 (1968).Google Scholar
  264. 281.
    J. S. O’Brien, S. Okada, M. W. Ho, D. L. Fillerup, M. L. Veath, and K. Adams, Ganglioside storage diseases, Fed. Proc 30:956–969 (1971).Google Scholar
  265. 282.
    I. A. Schafer, Personal communication.Google Scholar
  266. 283.
    L. Pinsky, E. Powell, and J. Callahan, Gmi-gangliosidosis types 1 and 2: Enzymatic differences in cultured fibroblasts, Nature 228:1093–1095 (1970).Google Scholar
  267. 284.
    S. M. Aronson, in “Tay-Sachs Disease” (B. W. Volk, ed.) pp. 118–153, Grune and Stratton, New York (1964).Google Scholar
  268. 285.
    B. W. Volk, in “Tay-Sachs Disease” (B. W. Volk, ed.) pp. 36–67, Grune and Stratton, New York (1964).Google Scholar
  269. 286.
    S. S. Lazarus, B. J. Wallace, and B. W. Volk, Neuronal enzyme alterations in Tay-Sachs disease, Am. J. Pathol 41:579–591 (1962).Google Scholar
  270. 287.
    R. D. Terry and M. Weiss, Studies in Tay-Sachs disease: II. Ultrastructure of cerebrum, J. Neuropathol. Exptl. Neurol 22:18–55 (1963).Google Scholar
  271. 288.
    B. J. Wallace, B. W. Volk, L. Schneck, and H. Kaplan, Fine structural localization of two hydrolytic enzymes in the cerebellum of children with lipidoses, J. Neuropathol. Exptl. Neurol 25:76–96 (1966).Google Scholar
  272. 289.
    M. Adachi, J. Torii, L. Schneck, and B. W. Volk, The fine structure of fetal Tay-Sachs disease, Arch. Pathol 91:48–54 (1971).Google Scholar
  273. 290.
    E. Klenk, Beiträge zur Chemie der Lipoidosen, Niemann-Picksche Krankheit und amaurotische Idiotie, Z. Physiol. Chem 262:128–143 (1939).Google Scholar
  274. 291.
    E. Klenk, Über die Ganglioside des Gehirns bei der infantilen amaurotischen Idiotie vom Typ Tay-Sachs, Ber. Deutsch. Chem. Ges 75:1632–1636 (1942).Google Scholar
  275. 292.
    L. Svennerholm, The chemical structure of normal brain and Tay-Sachs gangliosides, Biochem. Biophys. Res. Commun 9:436–441 (1962).Google Scholar
  276. 293.
    R. Ledeen and K. Salsman, Structure of the Tay-Sachs’ ganglioside, I. Biochemistry 4: 2225–2232 (1965).Google Scholar
  277. 294.
    O. Eeg-Olofsson, K. Kristensson, P. Sourander, and L. Svennerholm, Tay-Sachs disease. A generalized metabolic disorder, Acta Paediat. Scand 55:546–562 (1966).Google Scholar
  278. 295.
    K. Sandhoff, Variation of β-N-acetylhexosaminidase pattern in Tay-Sachs disease, FEBS Letters 4:351–354 (1969).Google Scholar
  279. 296.
    S. Okada and J. S. O’Brien, Tay-Sachs disease: Generalized absence of a β-d-N-acetylhexosaminidase component, Science 165:698–700 (1969).Google Scholar
  280. 297.
    D. Robinson and J. L. Stirling, N-acetyl-β-glucosaminidases in human spleen, Biochem. J 107:321–327 (1968).Google Scholar
  281. 298.
    E. H. Kolodny, R. O. Brady, and B. W. Volk, Demonstration of an alteration of ganglioside metabolism in Tay-Sachs disease, Biochem. Biophys. Res. Commun 37:526–531 (1969).Google Scholar
  282. 299.
    J. S. O’Brien, S. Okada, A. Chen, and D. L. Fillerup, Tay-Sachs disease: Detection of heterozygotes and homozygotes by serum hexosaminidase assay, New Engl. J. Med 283: 15–20(1970).Google Scholar
  283. 300.
    Y. Suzuki, P. H. Berman, and K. Suzuki, Detection of Tay-Sachs disease heterozygotes by assay of hexosaminidase A in serum and leucocytes, J. Pediat 78:643–647 (1971).Google Scholar
  284. 301.
    L. Schneck, J. Friedland, C. Valenti, M. Adachi, D. Amsterdam, and B. W. Volk, Prenatal diagnosis of Tay-Sachs disease, Lancet 1:582–584 (1970).Google Scholar
  285. 302.
    J. S. O’Brien, S. Okada, D. L. Fillerup, M. L. Veath, B. Adornato, P. H. Brenner, and J. G. Leroy, Tay-Sachs disease: Prenatal diagnosis, Science 172:61–64 (1971).Google Scholar
  286. 303.
    K. Sandhoff, U. Andreae, and H. Jatzkewitz, Deficient hexosaminidase activity in an exceptional case of Tay-Sachs disease with additional storage of kidney globoside in visceral organs, Life Sci 7:283–288 (1968).Google Scholar
  287. 304.
    H. Bernheimer and F. Seitelberger, Über das Verhalten der Ganglioside im Gehirn bei 2 Fällen von spatinfantiler amaurotischer Idiotie, Wiener. Klin. Wschr 80:163–169 (1968).Google Scholar
  288. 305.
    B. W. Volk, M. Adachi, L. Schneck, A. Saifer, and W. Kleinberg, G5-ganglioside variant of systemic late infantile lipidosis, Arch. Pathol 87:393–403 (1969).Google Scholar
  289. 306.
    K. Suzuki, K. Suzuki, I. Rapin, Y. Suzuki, and N. Ishii, Juvenile Gm2-gangliosidosis. Clinical variant of Tay-Sachs disease or a new disease, Neurology 20:190–204 (1970).Google Scholar
  290. 307.
    J. H. Menkes, J. S. O’Brien, S. Okada, J. Grippo, J. M. Andrews, and P. A. Cancilla, Juvenile Gm2-gangliosidosis. Biochemical and ultrastructural studies on a new variant of Tay-Sachs disease, Arch. Neurol 25:14–22 (1971).Google Scholar
  291. 308.
    C. Klibansky, A. Saifer, N. I. Feldman, L. Schneck, and B. W. Volk, Cerebral lipids in a case of systemic Gm2-gangliosidosis of a late infantile type, J. Neurochem 17:339–346 (1970).Google Scholar
  292. 309.
    Y. Suzuki and K. Suzuki, Partial deficiency of hexosaminidase component A in juvenile GM2-gangliosidosis, Neurology 20:848–851 (1970).Google Scholar
  293. 310.
    L. Schneck, J. Friedland, M. Pourfar, A. Saifer, and B. W. Volk, Hexosaminidase activities in a case of systemic Gm2-gangliosidosis of late infantile type, Proc. Soc. Exptl. Biol. Med 133:997–998 (1970).Google Scholar
  294. 311.
    E. P. Young, R. B. Ellis, B. D. Lake, and A. D. Patrick, Tay-Sachs disease and related disorders: Fractionation of brain N-acetyl-β-hexosaminidase on DEAE-cellulose, FEBS Letters 9:1–4 (1970).Google Scholar
  295. 312.
    S. Okada, M. L. Veath, and J. S. O’Brien, Juvenile GM2-gangliosidosis: Partial deficiency of hexosaminidase A, J. Pediat 77:1063–1065 (1970).Google Scholar
  296. 313.
    K. Sandhoff, U. Andreae, and H. Jatzkewitz, in “Cerebral Lipidoses II” (A. Nunes Vicente, P. Dustin, and A. Lowenthal, eds.) pp. 164–171, Presses Académiques Européennes, Brussels (1968).Google Scholar
  297. 314.
    H. Pilz, D. Müller, K. Sandhoff, and V. ter Meulen, Tay-Sachssche Krankheit mit Hex-osaminidase-Defekt, Deutsch. Med. Wschr 39:1833–1839 (1968).Google Scholar
  298. 315.
    Y. Suzuki, J. C. Jacob, K. Suzuki, K. M. Kutty, and K. Suzuki, Gm2-gangliosidosis with total hexosaminidase deficiency, Neurology 21:313–328 (1971).Google Scholar
  299. 316.
    K. Sandhoff and H. Jatzkewitz, The chemical pathology of Tay-Sachs disease, in “Proceedings of the Fourth International Symposium on Sphingolipids, Sphingolipidoses, and Allied Disorders” (B. W. Volk and S. M. Aronson, eds.) pp. 305–319. Plenum Press, New York (1972).Google Scholar
  300. 317.
    S. Farber, A lipid metabolic disorder — disseminated “lipogranulomatosis” — a syndrome with similarity to, and important differences from, Niemann-Pick and Hand-Schuller-Christian disease, Am. J. Dis. Child 84:499–500 (1952).Google Scholar
  301. 318.
    S. Farber, J. Cohen, and L. Uzman, Lipogranulomatosis; a new lipo-glycoprotein storage disease, J. Mount Sinai Hosp 24:816–837 (1957).Google Scholar
  302. 319.
    H. W. Moser, A. L. Prensky, H. J. Wolfe, and N. P. Rosman, Farber’s lipogranulomatosis. Report of a case and demonstration of an excess of free ceramide and ganglioside, Am. J. Med 47:869–890 (1969).Google Scholar
  303. 320.
    A. L. Prensky, G. Ferreira, S. Carr, and H. W. Moser, Ceramide and ganglioside accumulation in Farber’s lipogranulomatosis, Proc. Soc. Exptl. Biol. Med 126:725–728 (1967).Google Scholar
  304. 321.
    K. Samuelsson and R. Zetterström, Ceramides in a patient with lipogranulomatosis (Farber’s disease) with chronic course, Scand. J. Clin. Lab. Invest 27:393–405 (1971).Google Scholar
  305. 322.
    K. Samuelsson, R. Zetterström, and B. I. Ivemark, Studies on a case of lipogranulomatosis (Farber’s disease) with protracted course, in “Proceedings of the Fourth International Symposium on Sphingolipids, Sphingolipidoses, and Allied Disorders” (B. W. Volk and S. M. Aronson, eds.) pp.533–548, Plenum Press, New York (1972).Google Scholar
  306. 323.
    P. Durand, C. Borrone, and G. Delia Cella, Fucosidosis, J. Pediat 75:665–674 (1969).Google Scholar
  307. 324.
    H. Loeb, M. Tondeur, G. Jonniaux, S. Mockel-Pohl, and E. Vamos-Hurwitz, Biochemical and ultrastructural studies in a case of mucopolysaccharidosis “F” (fucosidosis), Helv. Paediat. Acta 24:519–537 (1969).Google Scholar
  308. 325.
    G. Dawson and J. W. Spranger, Fucosidosis: A glycosphingolipidosis, New Engl. J. Med 285:122 (1971).Google Scholar
  309. 326.
    W. Zeman and P. Dyken, Neuronal ceroid-lipofuscinosis (Batten’s disease): Relationship to amaurotic family idiocy? Pediatrics 44:570–583 (1969).Google Scholar
  310. 327.
    H. G. Hers, Inborn lysosomal diseases, Gastroenterology 48:625–633 (1965).Google Scholar
  311. 328.
    S. R. Korey and J. Gonatas, Separation of human brain gangliosides, Life Sci 2:296–302 (1963).Google Scholar
  312. 329.
    S. Hammarström, On the biosynthesis of cerebrosides: nonenzymatic N-acylation of psychosine by stearoyl coenzyme A, FEBS Letters 21:259–263 (1972).Google Scholar
  313. 330.
    M. Sugita, J. T. Dulaney, and H. W. Moser, Ceramidase deficiency in Farber’s disease (lipogranulomatosis), Science 178:110–1102 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Kunihiko Suzuki
    • 1
  • Kinuko Suzuki
    • 1
  1. 1.The Saul R. Korey Department of Neurology and Department of Pathology Rose F. Kennedy Center for Research in Mental Retardation and Human DevelopmentAlbert Einstein College of MedicineBronxUSA

Personalised recommendations