Advertisement

Pathophysiology of Anoxic Brain Damage

  • Bo K. Siesjö
  • Fred Plum

Abstract

In clinical medicine, anoxia and ischemia rank near the top as common causes of brain injury under circumstances that affect every period of life from the stresses and strains of birth to the stroke-prone years of old age. Every biologist knows that the brain depends overwhelmingly on oxygen to generate its energy supply, and this constant requirement has often led to the viewpoint that anoxia and ischemia damage nervous tissues by identical mechanisms.

Keywords

Cerebral Blood Flow Lactic Acidosis Cerebral Perfusion Pressure Revival Time Pyruvate Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Jöbsis, in“Handbook of Physiology—Respiration” (W. O. Fenn and H. H. Rahn, eds.), Vol. 1, pp. 63–124, American Physiological Society, Washington, D. C., 1965.Google Scholar
  2. 2.
    H. McIlwain, “Biochemistry and the Central Nervous System,” J. & A. Churchill, Ltd., London, 1966.Google Scholar
  3. 3.
    H. S. Bachelard and H. Mcllwain, in“Comprehensive Biochemistry” (M. Florkin and E. H. Stotz, eds.), Vol. 17, pp. 191–218, Elsevier, Amsterdam, 1969.Google Scholar
  4. 4.
    R. Balázs, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 3, pp. 1–36, Plenum Press, New York, 1970.Google Scholar
  5. 5.
    O. H. Lowry, J. V. Passonneau, F. X. Hasselberger, and D. W Schulz, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem. 239:18–30, 1964.Google Scholar
  6. 6.
    C. Crone, Facilitated transfer of glucose from blood into brain tissue, J. Physiol. (London) 181:103–113, 1965.Google Scholar
  7. 7.
    R. A. Fishman, Carrier transport of glucose between blood and cerebrospinal fluid, Am. J. Physiol. 206:836–844, 1964.Google Scholar
  8. 8.
    L. Sokoloff, in“Handbook of Physiology—Neurophysiology” (J. Field, H. W. Magoun, and V. E. Hall, eds.), Vol. 3, pp. 1843–1864, American Physiological Society, Washington, D. C., 1960.Google Scholar
  9. 9.
    C. F. Schmidt, in“Oxygen in the Animal Organism” (F. Dickens and E. Neil, eds.), Vol. 31, pp. 433–446, Pergamon Press, London, 1964.Google Scholar
  10. 10.
    E. Opitz and M. Schneider, Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen, Ergeh. Physiol. 46:126–260, 1950.Google Scholar
  11. 11.
    U.V. Nair, D. Palm, and L. J. Roth, Relative vascularity of certain anatomical areas of the brain and other organs of the rat, Nature 188:497–498, 1960.Google Scholar
  12. 12.
    S. S. Kety, Circulation and metabolism of the human brain in health and disease, Am. J. Med. 3:205–217, 1950.Google Scholar
  13. 13.
    N. A. Lassen, Cerebral blood flow and oxygen consumption in man, Physiol. Rev. 39:183–238, 1959.Google Scholar
  14. 14.
    J. W. Woodbury, in“Neurophysiology” (T. C. Ruch, H. D. Patton, J. W. Woodbury, and A. L. Towe, eds.), 1–25, W. B. Saunders Co., Philadelphia, 1968.Google Scholar
  15. 15.
    A. L. Lehninger, “Bioenergetics,” W. A. Benjamin, Inc., New York, 1965.Google Scholar
  16. 16.
    R. D. Keynes and G. W. Maisel, The energy requirement for sodium extrusion from a frog muscle, Proc. Roy. Soc. 142:383–392, 1954.Google Scholar
  17. 17.
    A. N. Davison, in“Applied Neurochemistry” (A.-N. Davison and J. Dobbing, eds.), pp. 222–250, F. A. Davis Co., Philadelphia, 1968.Google Scholar
  18. 18.
    R. Whittam, Active cation transport as a pace-maker of respiration, Nature 191:603–604, 1961.Google Scholar
  19. 19.
    H. Hirsch, W. Krenkel, M. Schneider, and F. Schnellbächer, Der Sauerstoffverbrauch des Warmblütergehirns bei Sauerstoffmangel durch Ischämie und der Mechanismus der Mangelwirkung, Pflügers Arch. Ges. Physiol. 261:402–408, 1955.Google Scholar
  20. 20.
    A. Leaf, Regulation of intracellular fluid volume and disease, Am. J. Med. 49:291–295, 1970.Google Scholar
  21. 21.
    W. G. Lennox, F. A. Gibbs, and E. L. Gibbs, Relationship of unconsciousness to cerebral blood flow and to anoxemia, Arch. Neurol. Psychiat. 34:1001–1013, 1935.Google Scholar
  22. 22.
    F. A. Gibbs, D. Williams, and E. L. Gibbs, Modification of the cortical frequency spectrum by changes in CO2, blood sugar, and O2, J. Neurophysiol. 3:49–58, 1940.Google Scholar
  23. 23.
    C. E. Schaertlin, Polarographische Messung der Sauerstoffspannung im Hirnblut bei Hypoxie, Helv. Physiol. Acta 19:155–262, 1961.Google Scholar
  24. 24.
    J. Ernsting, in“Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schadé and W. H. McMenemey, eds.), pp. 41–45, Blackwell Scientific Publications, Oxford, 1963.Google Scholar
  25. 25.
    A. Krogh, The number and distribution of capillaries in muscles with calculation of the oxygen pressure head necessary for supplying the tissue, J. Physiol. (London) 52:409–415, 1919.Google Scholar
  26. 26.
    M. Schneider, in“Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schadé and W. H. McMenemey, eds.), pp. 7–20, Blackwell Scientific Publications, Oxford, 1963.Google Scholar
  27. 27.
    S. S. Kety, Determinants of tissue oxygen tension, Fed. Proc. 16:666–670, 1957.Google Scholar
  28. 28.
    G. Thews, Die Sauerstoffdiffusion im Gehirn, Pflügers Arch. Ges. Physiol. 271:197–226, 1960.Google Scholar
  29. 29.
    G. Thews, in“Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schadé and W. H. McMenemey, eds.), pp. 27–35, Blackwell Scientific Publications, Oxford, 1963.Google Scholar
  30. 30.
    A. Bänder and M. Kiese, Die Wirkung des sauerstoffübertragenden Ferments in Mitochondrien aus Rattenlebern bei niedrigen Sauerstoffdrucken, Arch. Exptl. Pathol. Pharmakol. 224:312–321, 1955.Google Scholar
  31. 31.
    D. W. Lübbers, in“Oxygen Transport in Blood and Tissue” (D. W. Lübbers, U. C. Luft, G. Thews, and E. Witzleb, eds.), pp. 124–139, Georg Thieme Verlag, Stuttgart, 1968.Google Scholar
  32. 32.
    J. Grote, in“Hydrodynamik, Elektrolyt- und Säure-Basen-Haushalt im Liquor und Nervensystem” (R. Degkwitz, P. Duus, and G. Kienle, eds.), pp. 41–50, Georg Thieme Verlag, Stuttgart, 1967.Google Scholar
  33. 33.
    D. W. Lübbers and M. Kessler, in“Oxygen Transport in Blood and Tissue” (D. W. Lübbers, U. C. Luft, G. Thews, and W. Witzleb, eds.), pp. 90–99, Georg Thieme Verlag, Stuttgart, 1968.Google Scholar
  34. 34.
    B. Chance, P. Cohen, F. Jöbsis, and Brigitte Schoener, Intracellular oxidation-reduction states in vivo, Science 137:499–508, 1962.Google Scholar
  35. 35.
    B. Chance, B. Schoener, and F. Schindler, in“Oxygen in the Animal Organism” (F. Dickens and E. Neil, eds.), pp. 367–392, Pergamon Press, Oxford, 1964.Google Scholar
  36. 36.
    I. A. Silver, in“A Symposium on Oxygen Measurements in Blood and Tissues” (J. P. Payne and D. W. Hill, eds.), pp. 135–153, J. & A. Churchill, Ltd., London, 1966.Google Scholar
  37. 37.
    W. Grunewald, in“Oxygen Transport in Blood and Tissue” (D. W. Lübbers, U. C. Luft, G. Thews, and E. Witzleb, eds.), pp. 100–114, Georg Thieme Verlag, Stuttgart, 1968.Google Scholar
  38. 38.
    H. S. Bachelard, The subcellular distribution and properties of hexokinases in guinea-pig cerebral cortex, Biochem. J. 104:286–292, 1967.Google Scholar
  39. 39.
    H. S. Bachelard, in“Brain Hypoxia” (J. B. Brierley and B. S. Meldrum, eds.), pp. 251–260, William Heinemann Medical Books, Ltd., London, 1971.Google Scholar
  40. 40.
    W. Thorn, W. Isselhard, and B. Müldener, Glykogen-, Glucose- und Milchsäuregehalt in Warmblüterorganen bei unterschiedlicher Versuchsanordnung und anoxischer Belastung mit Hilfe optischer Fermentteste ermittelt, Biochem. Z. 331:545–562, 1959.Google Scholar
  41. 41.
    C. I. Mayman, P. D. Gatfield, and B. M. Breckenridge, The glucose content of the brain in anesthesia, J. Neurochem. 11:483–487, 1964.Google Scholar
  42. 42.
    G. Gercken and H. Preuss, The effect of breathing oxygen on the metabolism of the rat brain under normal and ischaemic conditions, J. Neurochem. 16:761–767, 1969.Google Scholar
  43. 43a.
    J. Folbergrová, V. MacMillan, and B. K. Siesjö, The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmatic NADH/NAD+ratio of the rat brain, J. Neurochem. in press.Google Scholar
  44. 43b.
    J. Folbergrová, V. MacMillan, and B. K. Siesjö, The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain, J. Neurochem. in press.Google Scholar
  45. 44.
    D. L. Woodward, D. J. Reed, and D. M. Woodbury, Extracellular space of rat cerebral cortex, Am. J. Physiol. 212: 367–370, 1967.Google Scholar
  46. 45.
    D. P. Rall and J. D. Fenstermacher, in“Ion Homeostasis of the Brain” (B. K. Siesjö and S. C. Sørensen, eds.), pp. 29–33, Munksgaard, Copenhagen, 1971.Google Scholar
  47. 46.
    H. A. Krebs and H. L. Kornberg, A survey of the energy transformations in living matter, Ergeb. Physiol. Biol. Chem. Pharmacol. 49:212–298, 1957.Google Scholar
  48. 47.
    A. L. Lehninger, H. C. Sudduth, and J. R. Wiese, D-β- Hydroxybutyric dehydrogenase of mitochondria, J. Biol. Chem. 235:2450–2455, 1960.Google Scholar
  49. 48.
    J. R. Williamson, J. B. Clark, W. J. Nicklas, and B. Safer, in“Ion Homeostasis of the Brain” (B. K. Siesjö and S. C. Sørensen, eds.), pp. 381–411, Munksgaard, Copenhagen, 1971.Google Scholar
  50. 49.
    G. D. Greville, in“Carbohydrate Metabolism and Its Disorders” (F. Dickens, P. J. Randle, and W. J. Whelan, eds.), Vol. I, p. 297, Academic Press, London, 1968.Google Scholar
  51. 50.
    M. Klingenberg, Mitochondria metabolite transport, FEBS Letters 6:145–154, 1970.Google Scholar
  52. 51.
    T. Bücher and M. Klingenberg, Wege des Wasserstoffs in der lebendigen Organisation, Angew. Chem. 70:552–570, 1958.Google Scholar
  53. 52.
    W. E. Huckabee, Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glycose and of hyperventilation, J. Clin. Invest. 37:244–254, 1958.Google Scholar
  54. 53.
    H. J. Hohorst, Der Reduktionszustand des Diphosphopyridin-Nukleotidsystemes in lebendem Gewebe, Dissertation, University of Marburg, 1960.Google Scholar
  55. 54.
    D. H. Williamson, P. Lund, and H. A. Krebs, The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver, Biochem. J. 103:514–527, 1967.Google Scholar
  56. 55.
    H. A. Krebs and R. L. Veech, in“Pyridine Nucleotide-Dependent Dehydrogenases” (H. Sund, ed.), pp. 413–438, Springer-Verlag, New York, 1970.Google Scholar
  57. 56.
    T. Bücher, in“Pyridine Nucleotide-Dependent Dehydrogenases” (H. Sund, ed.), pp. 439–461, Springer-Verlag, New York, 1970.Google Scholar
  58. 57.
    B. K. Siesjö, Å. Kjällquist, and N. N. Zwetnow, The CSF lactate/pyruvate ratio in cerebral hypoxia, Life Sci. 7:45–52, 1968.Google Scholar
  59. 58.
    L. Granholm and B. K. Siesjö, The effects of hypercapnia and hypocapnia upon the cerebrospinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate, ATP, ADP, phosphocreatine and creatine concentrations of cat brain tissue, Acta Physiol. Scand. 75:257–266, 1969.Google Scholar
  60. 59.
    K. Messeter and B. K. Siesjö, The effect of acute and chronic hypercapnia upon labile phosphates and upon the lactate, pyruvate, α-ketoglutarate, and glutamate contents of the rat brain, Acta Physiol. Scand. 83:344–351, 1971.Google Scholar
  61. 60.
    B. K. Siesjö, J. Folbergrová, and V. MacMillan, The effect of hypercapnia upon intracellular pH in the brain evaluated with the H2CO3/HCO3- method and from the creatine Phosphokinase equilibrium, J. Neurochem. in press.Google Scholar
  62. 61.
    A. E. Kaasik, L. Nilsson, and B. K. Siesjö, The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78:433–447, 1970.Google Scholar
  63. 62.
    A. E. Kaasik, L. Nilsson, and B. K. Siesjö, The effect of arterial hypotension upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78:448–458, 1970.Google Scholar
  64. 63.
    L. Nilsson and B. K. Siesjö, in“Ion Homeostasis of the Brain” (B. K. Siesjö and S. C. Sorensen, eds.), pp. 428–436, Munksgaard, Copenhagen, 1971.Google Scholar
  65. 64.
    O. H. Lowry and J. V. Passonneau, The relationships between substrates and enzymes of glycolysis in brain, J. Biol. Chem. 239:31–41, 1964.Google Scholar
  66. 65.
    E. W. Sutherland and G. A. Robinson, The role of cyclic-3′,5′-AMP in responses to catecholamines and other hormones, Pharmacol. Rev. 18:145–161, 1966.Google Scholar
  67. 66.
    B. M. Breckenridge, Cyclic AMP and drug action, Ann. Rev. Pharmacol. 10:19–34, 1970.Google Scholar
  68. 67.
    J. V. Passonneau and O. H. Lowry, P-fmctokinase and the control of the citric acid cycle, Biochem. Biophys. Res. Commun. 13:372–379, 1963.Google Scholar
  69. 68.
    O. H. Lowry and J. V. Passonneau, Kinetic evidence for multiple binding sites on phos-phofructokinase, J. Biol. Chem. 241:2268–2279, 1966.Google Scholar
  70. 69.
    H. K. Delcher and J. C. Shipp, Effect of pH, Pcozand bicarbonate on metabolism of glucose by perfused rat heart, Biochim. Biophys. Acta 121:250–260, 1966.Google Scholar
  71. 70.
    J. Scheuer and M. N. Berry, Effect of alkalosis on glycolysis in the isolated rat heart, Am. J. Physiol. 213:1143–1148, 1967.Google Scholar
  72. 71.
    W. H. Danforth, in“Control of Energy Metabolism” (B. Chance, R. W. Estabrook, and J. R. Williamson, eds.), pp. 287–297, Academic Press, New York, 1968.Google Scholar
  73. 72.
    J. Krzanowski and F. M. Matchinsky, Regulation of phosphofructokinase by phosphocreatine and phosphorylated glycolytic intermediates, Biochem. Biophys. Res. Commun. 34:816–823, 1969.Google Scholar
  74. 73.
    B. K. Siesjö and K. Messeter, in“Ion Homeostasis of the Brain” (B. K. Siesjö and S. C. Sørensen, eds.), pp. 244–262, Munksgaard, Copenhagen, 1971.Google Scholar
  75. 74.
    K. Y. Hostetler, B. R. Landau, R. J. White, M. S. Albin, and D. Yashon, Contribution of the pentose cycle to the metabolism of glucose in the isolated, perfused brain of the monkey, J. Neurochem. 17:33–39, 1970.Google Scholar
  76. 75.
    W. Sachs, Cerebral metabolism of doubly labelled glucose in humans in vivo, J. Appl. Physiol. 20:117–130, 1965.Google Scholar
  77. 76.
    J. J. O’Neill and T. E. Duffy, Alternate metabolic pathways in newborn brain, Life Sci. 5:1849–1857, 1966.Google Scholar
  78. 77.
    A. L. Lehninger, “Biochemistry—Molecular Basis of Cell Structure,” Worth Publishers, New York, 1970.Google Scholar
  79. 78.
    B. Chance and G. R. Williams, The respiratory chain and oxidative phosphorylation, Advan. Enzymol. 17:65–134, 1956.Google Scholar
  80. 79.
    B. Chance, The interaction of energy and electron transfer reactions in mitochondria, J. Biol. Chem. 236:1544–1554, 1961.Google Scholar
  81. 80.
    M. Klingenberg and P. Schollmeyer, On the relation between the activation of succinate oxidation and the activation of DPN reduction in mitochondria, Biochem. Biophys. Res. Commun. 4:38–41, 1961.Google Scholar
  82. 81.
    N. D. Goldberg, J. V. Passonneau, and O. H. Lowry, Effects of changes in brain metabolism on the level of citric acid cycle intermediates, J. Biol. Chem. 211:3997–4003, 1966.Google Scholar
  83. 82.
    C. J. van den Berg, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 3, pp. 355–379, Plenum Press, New York, 1970.Google Scholar
  84. 83.
    C. F. Baxter, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 3, pp. 289–353, Plenum Press, New York, 1970.Google Scholar
  85. 84.
    R. W. Albers and G. J. Koval, Succinic semialdehyde dehydrogenase: Purification and properties of the enzyme from monkey brain, Biochim. Biophys. Acta 52:29–35, 1961.Google Scholar
  86. 85.
    F. N. Pitts, Jr., and C. Quick, Brain succinate semialdehyde dehydrogenase. I. Assay and distribution, J. Neurochem. 12:893–900, 1965.Google Scholar
  87. 86.
    E. Roberts, in“Progress in Neurology. I. Neurochemistry” (S. R. Korey and J. I. Nurnburger, eds.), pp. 11–25, Hoeber-Harper, New York, 1956.Google Scholar
  88. 87.
    G. M. McKhann, R. W. Albers, L. Sokoloff, O. Mickelsen, and D. B. Tower, in“Inhibition in the Nervous System and γ-Amino-butyric Acid” (E. Roberts, ed.), pp. 169–181, Pergamon Press, Oxford, 1960.Google Scholar
  89. 88.
    R. Balázs, K. Magyar, and D. Richter, in“Comparative Neurochemistry” (D. Richter, ed.), pp. 225–248, Pergamon Press, Oxford, 1964.Google Scholar
  90. 89.
    R. Balázs, Y. Machiyama, and D. Richter, in“First International Meeting of the International Society for Neurochemistry,” p. 13, Strasbourg, 1967.Google Scholar
  91. 90.
    D. R. Curtis and G. A. R. Johnston, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 4, pp. 115–134, Plenum Press, New York, 1970.Google Scholar
  92. 91.
    S. Berl, G. Takagaki, D. D. Clarke, and H. Waelsch, Carbon dioxide fixation in the brain, J. Biol. Chem. 237:2570–2573, 1962.Google Scholar
  93. 92.
    H. Waelsch, S. Berl, C. A. Rossi, D. D. Clarke, and D. P. Purpura, Quantitative aspects of CO2fixation in mammalian brain in vivo, J. Neurochem. 11:717–728, 1964.Google Scholar
  94. 93.
    L. Salganicoff and R. E. Koeppe, Subcellular distribution of pyruvate carboxylase, diphosphopyridine nucleotide and triphosphopyridine nucleotide isocitrate dehydrogenases, and malate enzyme in rat brain, J. Biol. Chem. 243:3416–3420, 1968.Google Scholar
  95. 94.
    S. Berl, S.-C. Cheng, and H. Waelsch, in“Comparative Neurochemistry” (D. Richter, ed.), pp. 207–212, Pergamon Press, Oxford, 1964.Google Scholar
  96. 95.
    F. A. Finnerty, Jr., L. Witkin, and J. F. Fazekas, Cerebral hemodynamics during ischemia induced by acute hypotension, J. Clin. Invest. 33:1227–1232, 1954.Google Scholar
  97. 96.
    S. A. Kuby and E. A. Noltman, in“The Enzymes” (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.), Vol. 6, pp. 515–596, Academic Press, New York, 1962.Google Scholar
  98. 97.
    I. A. Rose, The state of magnesium in cells as estimated from the adenylate kinase equilibrium, Proc. Natl. Acad. Sci. 80:235–248, 1968.Google Scholar
  99. 98.
    K. Messeter and B. K. Siesjö, The intracellular pHin the brain in acute and sustained hypercapnia, Acta Physiol. Scand 83:210–219, 1971.Google Scholar
  100. 99.
    D. E. Atkinson, Biological feedback control at the molecular level, Science 150:851–857, 1965.Google Scholar
  101. 100.
    D. E. Atkinson, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7:4030–4034, 1968.Google Scholar
  102. 101.
    F. N. Minard and R. V. Davis, The effects of electroshock on the acid-soluble phosphates of rat brain, J. Biol. Chem. 237:1283–1289, 1962.Google Scholar
  103. 102.
    H. S. Maker and G. M. Lehrer, in“Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 4, pp. 267–310, Plenum Press, New York, 1970.Google Scholar
  104. 103.
    W. Thorn, H. Scholl, G. Pfleiderer, and B. Muldener, Stoffwechselvorgänge im Gehirn bei normaler und herabgesetzter Körpertemperature unter ischämischer und anoxischer Belastung, J. Neurochem. 2:150–165, 1958.Google Scholar
  105. 104.
    H. J. Hohorst, F. H. Kreutz, and T. Bücher, Über Metabolitgehalte und Metabolitkonzentrationen in der Leber der Ratte, Biochem. Z. 332:18–46, 1959.Google Scholar
  106. 105.
    F. W. Schmahl, E. Betz, H. Talke, and H. J. Hohorst, Energiereiche Phosphate und Metabolite des Energiestoffwechsels in der Grosshirnrinde der Katze, Biochem. Z. 432:518–531, 1965.Google Scholar
  107. 106.
    P. D. Gatfield, O. H. Lowry, D. W. Schulz, and J. V. Passonneau, Regional energy reserves in the mouse brain and changes with ischaemia and anaesthesia, J. Neurochem. 13:185–195, 1966.Google Scholar
  108. 107.
    J. Folbergrová, J. V. Passonneau, O. H. Lowry, and D. W. Schulz, Glycogen, ammonia and related metabolites in the brain during seizures evoked by methionine sulphoximine, J. Neurochem. 16:191–203, 1969.Google Scholar
  109. 108.
    J. Folbergrová, O. H. Lowry, and J. V. Passonneau, Changes in metabolites of the energy reserves in individual layers of mouse cerebral cortex and subjacent white matter during ischaemia and anaesthesia, J. Neurochem. 17:1155–1162, 1970.Google Scholar
  110. 109.
    D. C. Howse and T. E. Duffy, Biochemical and EEG effect of ischemia on the young gerbil brain, in preparation, 1972.Google Scholar
  111. 110.
    S. E. Kerr, Studies on the phosphorus compounds of brain. I. Phosphocreatine, J. Biol. Chem. 110:625–635, 1935.Google Scholar
  112. 111.
    D. Richter and R. M. C. Dawson, Brain metabolism in emotional excitement, Am. J. Physiol. 154:73–79, 1948.Google Scholar
  113. 112.
    U. Pontén, Acid-base changes in rat brain tissue during acute respiratory acidosis and baseosis, Acta Physiol. Scand. 68:152–163, 1966.Google Scholar
  114. 113.
    B. K. Siesjö and N. N. Zwetnow, Effects of increased cerebrospinal fluid pressure upon adenine nucleotides and upon lactate and pyruvate in rat brain tissue, Acta Neurol. Scand. 46:187–202, 1970.Google Scholar
  115. 114.
    L. Nilsson and B. K. Siesjö, The effect of anesthetics upon labile phosphates and upon extra- and intracellular lactate, pyruvate and bicarbonate concentrations in the rat brain, Acta Physiol. Scand. 80:235–248, 1970.Google Scholar
  116. 115.
    J. Barcroft, “Features in the Architecture of Physiologic Function,” Cambridge University Press, London, 1934.Google Scholar
  117. 116.
    W. S. Root, in“Handbook of Physiology—Respiration” (W. O. Fenn and H. Rahn, eds.), Vol. 2, pp. 1087–1098, American Physiological Society, Washington, D.C., 1965.Google Scholar
  118. 117.
    W. Noell, Über die Durchblutung und die Sauerstoffversorgung des Gehirns. VI. Mitteilung. Einfluss der Hypoxemic und Anämie, Pflügers Arch. Ges. Physiol. 247:553–575, 1944.Google Scholar
  119. 118.
    E. S. Gurdjian, W. E. Stone, and J. E. Webster, Cerebral metabolism in hypoxia, Arch. Neurol. 51:472–477, 1944.Google Scholar
  120. 119.
    D. G. McDowall, in“A Symposium on Oxygen Measurements in Blood and Tissues and Their Significance” (J. P. Payne and D. W. Hill, eds.), pp. 205–219, J. &. A. Churchill, Ltd., London, 1966.Google Scholar
  121. 120.
    K. Kogure, P. Scheinberg, O. M. Reinmuth, M. Fujishima, and R. Busto, Mechanisms of cerebral vasodilatation in hypoxia, J. Appl. Physiol. 29:223–229, 1970.Google Scholar
  122. 121.
    H. A. Kontos, J. E. Levasseur, D. W. Richardson, H. P. Manck, and J. L. Patterson, Comparative circulatory responses to systemic hypoxia in man and unanesthetized dog, J. Appl. Physiol. 23:381–386, 1967.Google Scholar
  123. 122.
    J. Scheuer, Myocardial metabolism in cardiac hypoxia, Am. J. Cardiol. 19:385–392, 1967.Google Scholar
  124. 123.
    C. E. Cross, A. Rieben, C. I. Barron, and P. F. Salisbury, Effects of arterial hypoxia on the heart and circulation: An integrative study, Am. J. Physiol. 205:963–970, 1963.Google Scholar
  125. 124.
    S. E. Downing, N. S. Talner, and T. H. Gardner, Influence of hypoxemia and acidemia on left ventricular function, Am. J. Physiol. 210:1327–1334, 1966.Google Scholar
  126. 125.
    S. S. Kety and C. F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values, J. Clin. Invest. 27: 476–483, 1948.Google Scholar
  127. 126.
    W. M. Landau, W. H. Freygang, L. P. Rosland, L. Sokoloff, and S. S. Kety, The local circulation of the living brain; values in the unanesthetized and anesthetized cat, Trans. Am. Neurol. Ass. 80:125–129, 1955.Google Scholar
  128. 127.
    M. Reivich, J. Jehle, L. Sokoloff, and S. S. Kety, Measurement of regional cerebral blood flow with antipyrine-14C in awake cats, J. Appl. Physiol. 27:296, 1969.Google Scholar
  129. 128.
    S. S. Kety, in“Handbook of Physiology—Neurophysiology” (J. Field, H. W. Magoun, and V. E. Hall, eds.), Vol. 3, pp. 1751–1760, American Physiological Society, Washington, D. C., 1960.Google Scholar
  130. 129.
    L. Sokoloff, The action of drugs on cerebral circulation, Pharmacol. Rev. 11:1–85, 1959.Google Scholar
  131. 130.
    C. E. Rapela and H. D. Green, Autoregulation of canine cerebral blood flow, Circ. Res. 15:205–211, 1964, Suppl. I.Google Scholar
  132. 131.
    E. Häggendal and B. Johansson, Effects of arterial carbon dioxide tension and oxygen saturation on cerebral blood flow autoregulation in dogs, Acta Physiol. Seand. 66:27–53, 1965. Suppl. 258.Google Scholar
  133. 132.
    A. M. Harper, Autoregulation of cerebral blood flow: Influence of the arterial blood pressure on the blood flow through the cerebral cortex, J. Neurol. Neurosurg. Psychiat. 29:398–403, 1966.Google Scholar
  134. 133.
    J. Freeman and D. H. Ingvar, Elimination by hypoxia of cerebral blood flow autoregulation and EEG relationship, Exptl. Brain Res. 5:61–71, 1968.Google Scholar
  135. 134.
    F. Plum, J. B. Posner, and B. Troy, Cerebral metabolic and circulatory responses to induced convulsions in animals, Arch. Neurol. 18:1–13, 1968.Google Scholar
  136. 135.
    M. Reivich, W. J. S. Marshall, and N. Kassell, Effects of trauma upon cerebral vascular autoregulation, in“Proceedings of the Seventh Princeton Conference on Cerebral Vascular Disorders,” Grune & Stratton, New York, 1971.Google Scholar
  137. 136.
    S. S. Kety and C. F. Schmidt, The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men, J. Clin. Invest. 27:484–492, 1948.Google Scholar
  138. 137.
    S. C. Alexander, P. J. Cohen, H. Wollman, T. C. Smith, M. Reivich, and R. A. van der Molen, Cerebral carbohydrate metabolism during hypocarbia in man, Anesthesiology 26:624–632, 1965.Google Scholar
  139. 138.
    S. C. Alexander, T. C. Smith, G. Strobel, G. W. Stephen, and H. Wollman, Cerebral carbohydrate metabolism of man during respiratory and metabolic alkalosis, J. Appl. Physiol. 24:66–72, 1968.Google Scholar
  140. 139.
    L. Granholm and B. K. Siesjö, The effect of combined respiratory and nonrespiratory alkalosis on energy metabolites and acid-base parameters in the rat brain, Acta Physiol. Scand. 81:307–314, 1971.Google Scholar
  141. 140.
    E. Sveinsdottir, P. Thorlof, J. Risberg, D. H. Ingvar, and N. A. Lassen, Regional cerebral blood flow in man, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Karger, Basel, 1972.Google Scholar
  142. 141.
    U. C. Luft, in“Handbook of Physiology—Respiration” (W. O. Fenn and H. Rahn, eds.), Vol. 2, pp. 1099–1145, American Physiological Society, Washington, D. C., 1965.Google Scholar
  143. 142.
    B. Chance and B. Schoener, Correlation of oxidation-reduction changes of intracellular reduced pyridine nucleotide and changes in electroencephalogram of the rat in anoxia, Nature 195:956–958, 1962.Google Scholar
  144. 143.
    W. Thorn, G. Pfleiderer, R. A. Frowein, and J. Ross, Stoftwächselvorgänge im Gehirn bei akuter Anoxie, akuter Ischämie und in der Erholung, Pflügers Arch. Ges. Physiol. 261:334–360, 1955.Google Scholar
  145. 144.
    U. Müller, W. Isselhard, D. H. Hinzen, and E. Geppert, Elektrocortigramm und regionaler Energiestoffwechsel des Kaninchengehirns in der postischämischen Erholung, Pflugers Arch. Ges. Physiol. 320:181–194, 1970.Google Scholar
  146. 145.
    P. J. Cohen, S. C. Alexander, T. C. Smith, M. Reivich, and H. Wollman, Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man, J. Appl. Physiol. 23:183–189, 1967.Google Scholar
  147. 146.
    S. Shimojyo, P. Scheinberg, K. Kogure, and O. M. Reinmuth, The effects of graded hypoxia upon transient cerebral blood flow and oxygen consumption, Neurology 18:127–133, 1968.Google Scholar
  148. 147.
    A. G. Swanson, L. S. Stavney, and F. Plum, Effects of blood pH and carbon dioxide on cerebral electrical activity, Neurology 8:787–792, 1958.Google Scholar
  149. 148.
    B. K. Siesjö and L. Nilsson, The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentration in the rat brain, Scand. J. Clin. Lab. Invest. 27:83–96, 1971.Google Scholar
  150. 149.
    V. MacMillan and B. K. Siesjo, Critical oxygen tensions in the brain, Acta Physiol. Scand. 82:412–414, 1971.Google Scholar
  151. 150.
    V. MacMillan and B. K. Siesjö, Cerebral energy metabolism in hypoxemia, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Karger, Basel, 1972Google Scholar
  152. 151.
    B. Hindfelt and B. K. Siesjö, Cerebral effects of acute ammonia intoxication. I. The influence on intracellular and extracellular acid-base parameters, Scand. J. Clin. Lab. Invest. 28:353–364, 1971.Google Scholar
  153. 152.
    L. G. Salford, J. B. Brierley, F. Plum, and B. K. Siesjö, Energy metabolism and histology in the brain during combined hypoxemia and ischemia, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Karger, Basel, 1972.Google Scholar
  154. 153.
    R. L. Friede and W. H. van Houten, Relations between post morten alterations and glycolytic metabolism in the brain, Exptl. Neurol. 4:197–204, 1961.Google Scholar
  155. 154.
    R. Lindenberg, in“Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schadé and W. H. McMenemey, eds.), pp. 189–209, Blackwell Scientific Publications, Oxford, 1963.Google Scholar
  156. 155.
    J. K. Thews, S. H. Carter, P. D. Roa, and W. E. Stone, Free amino acids and related compounds in dog brain: Post-mortem and anoxic changes, effects of ammonium chloride infusion, and levels during seizures induced by Picrotoxin and by phenylene tetrazol, J. Neurochem. 10:641–653, 1963.Google Scholar
  157. 156.
    R. L. Young and O. H. Lowry, Quantitative methods for measuring the histochemical distribution of alanine, glutamate and glutamine in brain, J. Neurochem. 13:785–793, 1966.Google Scholar
  158. 157.
    R. A. Lowell, S. J. and K. A. C. Elliott, The γ-aminobutyric acid and factor I content of brain, J. Neurochem. 10:479–488, 1963.Google Scholar
  159. 158.
    W. Thorn and J. Heimann, Beeinfluenssung der Ammoniak-konzentration in Gehirn, Herz, Leber, Niere und Muskulatur durch Ischämie, Anoxie, Asphyxie und Hypothermie, J. Neurochem. 2:166–177, 1958.Google Scholar
  160. 159.
    U. Müller, W. Isselhard, D. H. Hinzen, and E. Geppert, Regionaler Energiestoffwechsel im Kaninchengehirn während kompletter Ischämie in Normothermie, Pflügers Arch. Ges. Physiol. 320:168–180, 1970.Google Scholar
  161. 160.
    B. Eklöf, V. MacMillan, and B. K. Siesjö, The effect of ischemia upon the energy state of the brain, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Kar, Basel, 1972.Google Scholar
  162. 161.
    O. Sugar and R. Gerard, Anoxia and brain potentials, J. Neurophysiol. 1:558–572, 1938.Google Scholar
  163. 162.
    L. M. Weinberger, M. H. Gibbon, and J. H. Gibbon, Temporary arrest of the circulation to the central nervous system, Arch. Neurol. Psychiat. 43:961–986, 1940.Google Scholar
  164. 163.
    H. Gänshirt, L. Dransfeld, and W. Zylka, Das Hirnpotentialbild und der Erholungsrückstand am Warmblütergehirn nach kompletter Ischämie, Arch. Psychiat. Nervenkr. 189:109–125, 1952.Google Scholar
  165. 164.
    C. Heymans, J. J. Bouckaert, F. Jordan, S. J. G. Nowak, and S. Farber, Survival and revival of nerve centers following acute anemia, Arch. Neurol. Psychiat. 38:304–307, 1937.Google Scholar
  166. 165.
    H. E. Himwich and J. F. Fazekas, Comparative studies of the metabolism of the brain of infant and adult dogs, Am. J. Physiol. 132:454–459, 1941.Google Scholar
  167. 166.
    H. E. Himwich, P. Sykowski, and J. F. Fazekas, A comparative study of excised cerebral tissues of adult and infant rats, Am. J. Physiol. 132:293–296, 1941.Google Scholar
  168. 167.
    W. J. Waddell and T. C. Butler, Calculation of intracellular pH from the distribution of 5.5-dimethyl-2.4-oxazolidinedione (DMO). Application to skeletal muscle of the dog, J. Clin. Invest. 38:720–729, 1959.Google Scholar
  169. 168.
    W. Thorn and R. Heitmann, pH der Gehirnrinde vom Kaninchen in situwährend perakuter, totaler Ischämie, reiner Anoxie und in der Erholung, Pflügers Arch. Ges. Physiol. 258:510–510, 1954.Google Scholar
  170. 169.
    J. W. Crowell and B. N. Kaufmann, Changes in tissue pH after circulatory arrest, Am. J. Physiol. 200:743–745, 1961.Google Scholar
  171. 170.
    V. MacMillan and B. K. Siesjö, Intracellular pH of the brain in hypoxemia, evaluated with the CO2method and from the creatine Phosphokinase equilibrium, Scand. J. Clin. Lab. & Invest., in press.Google Scholar
  172. 171.
    D. B. McDougal, Jr., J. Holowach, M. C. Howe, E. M. Jones, and C. A. Thomas, The effects of anoxia upon energy sources and selected metabolic intermediates in the brains of fish, frog and turtle, J. Neurochem. 15:577–588, 1968.Google Scholar
  173. 172.
    H. Hirsch, K. H. Euler, and M. Schneider, Über die Erholung und Wiederbelebung des Gehirns nach Ischämie bei Normothermie, Pflügers Arch. Ges. Physiol. 265:281–313, 1957.Google Scholar
  174. 173.
    M. Schneider, in“Cerebral Anoxia and the Electroencephalogram” (H. Gastaut and J. S. Meyer, eds.), Chap. 13, C. C. Thomas, Springfield, Ill., 1961.Google Scholar
  175. 174.
    H. Hirsch, A. Bolte, A. Schaudig, and D. Tönnis, Uber die Wiederbelebung des Gehirns bei Hypothermie, Pflügers Arch. Ges. Physiol. 265:328–336, 1957.Google Scholar
  176. 175.
    A. Ames, III, and B. S. Gurian, Effects of glucose and oxygen deprivation on function of isolated mammalian retina, J. Neurophysiol. 26:617–634, 1963.Google Scholar
  177. 176.
    W. A. Neely and J. R. Youmans, Anoxia of canine brain without damage, J. A.M.A. 183:1085–1087, 1963.Google Scholar
  178. 177.
    W. Kramer and J. A. Tuynman, Acute intracranial hypertension—an experimental investigation, Brain Res. 6:686–705, 1967.Google Scholar
  179. 178.
    M. Kowada, A. Ames, III, G. Majno, and R. L. Wright, Cerebral ischemia. I. An improved experimental method for study; cardiovascular effects and demonstration of an early vascular lesion in the rabbit, J. Neurosurg. 28:150–157, 1968.Google Scholar
  180. 179.
    A. Ames, III, R. L. Wright, M. Kowada, J. M. Thurston, and G. Majno, Cerebral ischemia. II. The no-reflow phenomenon, Am. J. Pathol. 52:437–454, 1968.Google Scholar
  181. 180.
    J. Chiang, M. Kowada, A. Ames, III, R. L. Wright, and G. Majno, Cerebral ischemia. III. Vascular changes, Am. J. Pathol. 52:455–476, 1968.Google Scholar
  182. 181.
    R. C. Cantu and A. Ames, III, Experimental prevention of cerebral vasculature obstruction produced by ischemia, J. Neurosurg. 30:50–54, 1969.Google Scholar
  183. 182.
    K.-A. Hossmann and Y. Olsson, Suppression and recovery of neuronal function in transient cerebral ischemia, Brain Res. 22:313–325, 1970.Google Scholar
  184. 183.
    B. K. Siesjö and N. N. Zwetnow, The effect of hypovolemic hypotension on extra- and intracellular acid-base parameters and energy metabolites in the rat brain, Acta Physiol. Scand. 79:114–124, 1970.Google Scholar
  185. 184.
    B. Eklöf and B. K. Siesjö, Cerebral blood flow and cerebral energy state, Acta Physiol. Scand. 82:409–411, 1971.Google Scholar
  186. 185.
    B. K. Siesjö, Metabolism and flow in the hypoxic brain, in“Proceedings of the Fifth International Symposium on Cerebral Blood Flow,” Symposium European Neurology, S. Karger, Basel, 1972.Google Scholar
  187. 186.
    R. Lindenberg, The pathology of the arterial border zones of the brain, J. Neuropathol. Exptl. Neurol. 18:348–349, 1959.Google Scholar
  188. 187.
    F. Romanul and A. Abramowicz, Changes in brain and pial vessels in arterial border zones, Arch. Neurol. 11:40–65, 1964.Google Scholar
  189. 188.
    J. B. Brierley, A. W. Brown, B. J. Excell, and B. S. Meldrum, Brain damage in the rhesus monkey resulting from profound arterial hypotension. I. Its nature, distribution and general physiological correlates, Brain Res. 13:68–100, 1969.Google Scholar
  190. 189.
    H. E. Himwich, “Brain Metabolism and Cerebral Disorders,” Williams & Wilkins Co., Baltimore, 1951.Google Scholar
  191. 190.
    J. H. Thurston and D. B. McDougal, Jr., Effect of ischemia on metabolism of the brain of the newborn mouse, Am. J. Physiol. 216:348–352, 1969.Google Scholar
  192. 191.
    C. I. Mayman and M. L. Tijerina, in“Brain Hypoxia” (J. B. Brierley and B. S. Meldrum, eds.), pp. 243–249, William Heinemann Medical Books, Ltd., London, 1971.Google Scholar
  193. 192.
    S. W. Britton and R. F. Kline, Age, sex, carbohydrate, adrenal cortex and other factors in anoxia, Am. J. Physiol. 145:190–202, 1945–1946.Google Scholar
  194. 193.
    E. A. Bering, Effect of body temperature change on cerebral oxygen consumption of the intact monkey, Am. J. Physiol. 200:417–419, 1961.Google Scholar
  195. 194.
    P. J. Cohen, H. Wollman, S. C. Alexander, P. E. Chase, and M. G. Behar, Cerebral carbohydrate metabolism in man during halothane anesthesia, Anesthesiology 25:18–5191, 1964.Google Scholar
  196. 195.
    O. Secher and B. Wilhjelm, The protective action of anesthetics against hypoxia, Scand. Anaesth. Soc. J. 15:423–440, 1968.Google Scholar
  197. 196.
    L. Nilsson and B. K. Siesjö, The effect of deep halothane hypotension upon labile phosphates and upon extra- and intracellular lactate and pyruvate concentrations in the rat brain, Acta Physiol. Scand. 81:508–516, 1971.Google Scholar
  198. 197.
    L. Nilsson, The influence of barbiturate anaesthesia upon the energy state and upon acid-base parameters of the brain in arterial hypotension and in asphyxia, Acta Neurol. Scand. 47:233–253, 1971.Google Scholar
  199. 198.
    B. K. Siesjö, L. Nilsson, M. Rokeach, and N. N. Zwetnow, Energy metabolism of the brain at reduced cerebral perfusion pressures and in arterial hypoxaemia, in“Brain Hypoxia” (J. B. Brierley and B. S. Meldrum, eds.), pp. 49–60, William Heinemann Medical Books Ltd., London, 1971.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Bo K. Siesjö
    • 1
  • Fred Plum
    • 2
  1. 1.Brain Research LaboratoryUniversity HospitalLundSweden
  2. 2.New York HospitalCornell University Medical CollegeNew YorkUSA

Personalised recommendations