Disorders of Nucleic Acid Metabolism

  • William L. Nyhan


The cardinal clinical characteristics of the Lesch-Nyhan syndrome are mental retardation, spastic cerebral palsy, choreoathetosis, and self-mutilative biting behavior. These patients have hyperuricemia and thus may have any of the clinical manifestations of gout, including urinary tract stone disease, nephropathy, arthritis, and tophi. Activity of the enzyme hypoxanthine-guanine phosphoribosyl transferase is virtually absent.


Uric Acid Xanthine Oxidase Serum Uric Acid Uric Acid Concentration Purine Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Lesch and W. L. Nyhan, A familial disorder of uric acid metabolism and central nervous system function, Am. J. Med. 36:561, 1964.CrossRefGoogle Scholar
  2. 2.
    W. L. Nyhan, W. J. Oliver, and M. Lesch, A familial disorder of uric acid metabolism and central nervous system function. II, J.Pediat. 67:251, 1965.Google Scholar
  3. 3.
    W. L. Nyhan, A disorder of uric acid metabolism and cerebral function in childhood, Arthritis and Rheumatism 8:659, 1965.CrossRefGoogle Scholar
  4. 4.
    W. L. Nyhan, Introduction—clinical and genetic features, in Seminars on the Lesch-Nyhan Syndrome (J. H. Bland, ed.), Fed. Proc. 27:1027, 1968.Google Scholar
  5. 5.
    W. M. Michener, Hyperuricemia and mental retardation with athetosis and self-mutilation, Am. J. Dis. Child. 113:195, 1967.Google Scholar
  6. 6.
    R. S. Howard and M. P. Walzak, A new cause for uric acid stones in childhood, J.Urol. 98:639, 1968.Google Scholar
  7. 7.
    J. E. Seegmiller, F. M. Rosenbloom, and W. N. Kelley, Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis, Science 155:1682, 1967.CrossRefGoogle Scholar
  8. 8.
    W. L. Nyhan, L. Sweetman, and M. Lesch, Effects of the uricogenic agent, 2-ethylamino-1,3,4,-thiadiazole in hypoxanthine-guanine phosphoribosyl transferase deficiency, Metabolism 17:846, 1968.CrossRefGoogle Scholar
  9. 9.
    L. Sweetman and W. L. Nyhan, Excretion of hypoxanthine and xanthine in a genetic disease of purine metabolism, Nature 215:859, 1967.CrossRefGoogle Scholar
  10. 10.
    M. E. Balis, I. H. Krakoff, P. H. Berman, and J. Dancis, Urinary metabolites in congenital hyperuricosuria, Science 156:1122, 1967.CrossRefGoogle Scholar
  11. 11.
    L. Sweetman, Urinary and cerebrospinal oxypurine levels and allopurinol metabolism in the Lesch-Nyhan syndrome, Fed. Proc. 27:1055, 1968.Google Scholar
  12. 12.
    L. Sweetman and W. L. Nyhan, Detailed comparison of the urinary excretion of purines in a patient with the Lesch-Nyhan syndrome and a control subject, Biochem. Med. 4:121, 1970.CrossRefGoogle Scholar
  13. 13.
    D. S. Newcombe, The urinary excretion of aminoimidazolecarboxamide in the Lesch-Nyhan syndrome, Pediatrics 46:508, 1970.Google Scholar
  14. 14.
    W. L. Nyhan, Purine metabolism and abnormal behavior in childhood, in “Brain Chemistry and Mental Disease” (B. T. Ho and W. M. McIsaac, eds.), pp. 281–301, New York, 1971.Google Scholar
  15. 15.
    B. Bakay, M. A. Telfer, and W. L. Nyhan, Assay of hypoxanthine-guanine and adenine phosphoribosyl transferases. A simple screening test for the Lesch-Nyhan syndrome and related disorders of purine metabolism, Biochem. Med. 3:230, 1969.CrossRefGoogle Scholar
  16. 16.
    P. H. Berman, M. E. Balis, and J. Dancis, Diagnostic test for hyperuricemia with central nervous system dysfunction, J.Lab. Clin. Med. 71:247, 1968.Google Scholar
  17. 17.
    F. M. Rosenbloom, W. L. Kelley, J. Miller, J. F. Henderson, and J. E. Seegmiller, Inherited disorder of purine metabolism: Correlation between central nervous system dysfunction and biochemical defects, J.A.M.A. 202:175, 1967.CrossRefGoogle Scholar
  18. 18.
    T. A. Krenitsky, R. Papaioannou, and G. B. Elion, Human hypoxanthine phosphoribosyltransferase. I. Purification, properties and specificity, J. Biol. Chem. 244:1263, 1969.Google Scholar
  19. 19.
    B. Bakay and W. L. Nyhan, The separation of adenine and hypoxanthine-guanine phosphoribosyl transferase isoenzymes by disc gel electrophoresis, Biochem. Genet. 5:81, 1971.CrossRefGoogle Scholar
  20. 20.
    B. Bakay and W. L. Nyhan, Electrophoretic properties of hypoxanthine-guanine phosphoribosyl transferase in erythrocytes of subjects with the Lesch-Nyhan syndrome, Biochem. Genet., in press.Google Scholar
  21. 21.
    C. S. Rubin, J. Dancis, L. C. Yip, R. C. Niwinski, and M. E. Balis, Purification of IMP: Pyrophosphate phosphoribosyltransferases, catalytically incompetent enzymes in Lesch-Nyhan syndrome, Proc. Natl. Acad. Sci. 68:1461, 1971.CrossRefGoogle Scholar
  22. 22.
    W. Arnold and W. N. Kelley, Unpublished observations.Google Scholar
  23. 23.
    B. Bakay, W. L. Nyhan, and P. Svenson, Unpublished observations.Google Scholar
  24. 24.
    J. A. McDonald and W. N. Kelley, Lesch-Nyhan syndrome. Altered kinetic properties of mutant enzyme, Science 171:689, 1971.CrossRefGoogle Scholar
  25. 25.
    W. N. Kelley and J. C. Meade, Studies on hypoxanthine-guanine phosphoribosyltransferase in fibroblasts from patients with the Lesch-Nyhan syndrome. Evidence for genetic heterogeneity, J. Biol. Chem. 246:2953, 1971.Google Scholar
  26. 26.
    W. N. Kelley, Hypoxanthine-guanine phosphoribosyltransferase deficiency in the Lesch-Nyhan syndrome and gout, Fed. Proc. 27:1047, 1968.Google Scholar
  27. 27.
    L. Sweetman and W. L. Nyhan, Clinical and biochemical features of X-linked uric aciduria (Lesch-Nyhan syndrome). V. Further studies of the enzyme composition of mutant cells, Arch. Int. Med., in press.Google Scholar
  28. 28.
    M. L. Greene, J. A. Boyle, and J. E. Seegmiller, Substrate stabilization: Genetically controlled reciprocal relationship of two human enzymes, Science 167:887, 1970.CrossRefGoogle Scholar
  29. 29.
    I. H. Fox and W. N. Kelley, Phosphoribosyl-pyrophosphate in man: Biochemical and clinical significance, Ann. Int. Med. 74:424, 1971.Google Scholar
  30. 30.
    C. S. Rubin, M. E. Balis, S. Piomelli, P. H. Berman, and J. Dancis, Elevated AMP pyro-phosphorylase activity in congenital IMP pyrophosphorylase deficiency (Lesch-Nyhan disease), J. Lab. Clin. Med. 74:132, 1969.Google Scholar
  31. 31.
    B. Bakay and W. L. Nyhan, Unpublished data.Google Scholar
  32. 32.
    F. M. Rosenbloom, J. F. Henderson, I. C. Caldwell, W. N. Kelley, and J. E. Seegmiller, Biochemical bases of accelerated purine biosynthesis de novo in human fibroblasts lacking hypoxanthine-guanine phosphoribosyltransferase, J.Biol. Chem. 243:1166, 1968.Google Scholar
  33. 33.
    W. N. Kelley, I. H. Fox, and J. B. Wygaarden, Regulation of purine biosynthesis in cultured human cells. I. Effects of orotic acid, Biochim. Biophys. Acta 215:512, 1970.CrossRefGoogle Scholar
  34. 34.
    W. N. Kelley, M. L. Greene, I. H. Fox, F. M. Rosenbloom, R. I. Levy, and J. E. Seegmiller, Effects of orotic acid on purine and lipoprotein metabolism in man, Metabolism 19:1025, 1970.CrossRefGoogle Scholar
  35. 35.
    W. L. Nyhan, J. Pesek, L. Sweetman, D. G. Carpenter, and C. H. Carter, Genetics of an X-linked disorder of uric acid metabolism and cerebral function, Pediat. Res. 1:5, 1967.CrossRefGoogle Scholar
  36. 36.
    B. R. Migeon, V. M. DerKaloustian, W. L. Nyhan, and W. J. Young, X-linked hypoxan-thine-guanine phosphoribosyl transferase deficiency: Heterozygote has two clonal populations, Science 160:425, 1968.CrossRefGoogle Scholar
  37. 37.
    J. Salzmann, R. DeMars, and P. Benke, Single-allele expression at an X-linked hyperuricemia locus in heterozygous human cells, Proc. Natl. Acad. Sci. 60:545, 1968.CrossRefGoogle Scholar
  38. 38.
    W. L. Nyhan, B. Bakay, J. D. Connor, J. F. Marks, and D. K. Keele, Hemizygous expression of glucose-6-phosphate dehydrogenase in erythrocytes of heterozygotes for the Lesch-Nyhan syndrome, Proc. Natl. Acad. Sci. 65:214, 1970.CrossRefGoogle Scholar
  39. 39.
    W. L. Nyhan, Unpublished data.Google Scholar
  40. 40.
    J. L. Goldstein, J. F. Marks, and S. M. Gartler, Expression of two X-linked genes in human hair follicles of double heterozygotes, Proc. Natl. Acad. Sci. 68:1425, 1971.CrossRefGoogle Scholar
  41. 41.
    P. J. Fialkow, R. Lisker, J. Detter, E. R. Giblett, and C. Zavala, 6-Phosphogluconate dehydrogenase: Hemizygous manifestation in a patient with leukemia, Science 163:194, 1969.CrossRefGoogle Scholar
  42. 42.
    M. L. Greene, W. L. Nyhan, and J. E. Seegmiller, Hypoxanthine-guanine phosphoribosyl transferase deficiency and Xg blood group, Am. J. Hum. Genet. 22:50, 1970.Google Scholar
  43. 43.
    P. J. Fialkow, R. Lisker, and E. R. Giblett, Xg locus: Failure to detect inactivation in women with chronic myelocytic leukaemia, Nature 226:367, 1971.CrossRefGoogle Scholar
  44. 44.
    P. J. Fialkow, Is lyonization total in man? Lancet 2:315, 1970.Google Scholar
  45. 45.
    F. M. Rosenbloom, W. N. Kelley, J. F. Henderson, and J. E. Seegmiller, Lyon hypothesis and X-linked disease, Lancet 2:305, 1967.CrossRefGoogle Scholar
  46. 46.
    J. S. Felix and R. DeMars, Detection of females heterozygous for the Lesch-Nyhan mutation by 8-azaguanine-resistant growth of cultured fibroblasts, J.Lab. Clin. Med. 77:596, 1971.Google Scholar
  47. 47.
    B. R. Migeon, X-linked hypoxanthine-guanine phosphoribosyl transferase deficiency. Detection of heterozygotes by selective medium, Biochem. Genet. 4:377, 1970.CrossRefGoogle Scholar
  48. 48.
    S. M. Gartler, R. C. Scott, J. L. Goldstein, B. Campbell, and R. Sparkes, Lesch-Nyhan syndrome: Rapid detection of heterozygotes by use of hair follicles, Science 172:572, 1971.CrossRefGoogle Scholar
  49. 49.
    R. DeMars, G. Sarto, J. S. Felix, and P. Benke, Lesch-Nyhan mutation: Prenatal detection with amniotic fluid cells, Science 164:1303, 1969.CrossRefGoogle Scholar
  50. 50.
    W. Y. Fujimoto, J. E. Seegmiller, B. W. Uhlendorf, and C. B. Jacobsen, Biochemical diagnosis of an X-linked disease in utero, Lancet 2:511, 1968.CrossRefGoogle Scholar
  51. 51.
    J. A. Boyle, K. O. Raivio, K. H. Astrin, J. D. Schulman, M. L. Graf, J. E. Seegmiller, and C. B. Jacobsen, Lesch-Nyhan syndrome. Preventive control by prenatal diagnosis, Science 169:688, 1970.CrossRefGoogle Scholar
  52. 52.
    J. E. Seegmiller, Personal communication.Google Scholar
  53. 53.
    A. G. Motulsky, G. R. Frazer, and J. Felsenstein, Public health and long-term genetic implications of intrauterine diagnosis and selective abortion, Birth Defects Orig. Art. Ser., Vol. 7, No. 5, p. 22, April 1971.Google Scholar
  54. 54.
    J. M. Kaufman, M. L. Greene, and J. E. Seegmiller, Urine uric acid to creatinine ratio— a screening test for inherited disorders of purine metabolism, J. Pediat. 73:583, 1968.CrossRefGoogle Scholar
  55. 55.
    R. DeMars, Genetic studies of HG-PRT deficiency and the Leach-Nyhan syndrome with cultured human cells, Fed. Proc. 30:944, 1971.Google Scholar
  56. 56.
    R. J. Albertini and R. DeMars, Diploid azaguanine-resistant mutants of cultured human fibroblasts, Science 169:482, 1970.CrossRefGoogle Scholar
  57. 57.
    J. W. Littlefield and S. Goldstein, Some aspects of somatic cell hybridization, In Vitro 6:21, 1970.CrossRefGoogle Scholar
  58. 58.
    A. G. Schwartz, P. R. Cook, and H. Harris, Correction of a genetic defect in a mammalian cell, Nature New Biol. 230:5, 1971.Google Scholar
  59. 59.
    E. H. Szybalski and W. Szybalski, Genetics of human cell lines. IV. DNA-mediated hereditable transferase of a biochemical trait, Proc. Natl. Acad. Sci. 48:2026, 1962.CrossRefGoogle Scholar
  60. 60.
    W. L. Nyhan, Discussion of additional features, in Seminars on the Lesch-Nyhan Syndrome (J. H. Bland, ed.), Fed. J. Proc. 27:1044, 1968.Google Scholar
  61. 61.
    L. L. Morgan, N. Schneiderman, and W. L. Nyhan, Theophylline: Induction of self-biting in rabbits, Psychon. Sci. 19:37, 1970.Google Scholar
  62. 62.
    J. S. Felix and R. DeMars, Purine requirement of cells cultured from humans affected by Lesch-Nyhan syndrome (HGPRT deficiency), Proc. Natl. Acad. Sci. 62:536, 1969.CrossRefGoogle Scholar
  63. 63.
    S. P. M. VanDerZee, E. J. P. Lommen, J. M. F. Trijbels, and E. D. A. M. Schretlen, The influence of adenine on the clinical features and purine metabolism in the Lesch-Nyhan syndrome, Acta Paediat. Scand. 59:259, 1970.CrossRefGoogle Scholar
  64. 64.
    W. N. Kelley, F. M. Rosenbloom, J. Miller, and J. E. Seegmiller, An enzymatic basis for variation in response to allopurinol, New Engl. J. Med. 278:286, 1968.CrossRefGoogle Scholar
  65. 65.
    R. Pomales, S. Bieber, R. Friedman, and G. H. Hitchings, Augmentation of the incorporation of hypoxanthine into nucleic acids by the administration of an inhibitor of xanthine oridase, Biochim. Biophys. Acta 72:119, 1963.CrossRefGoogle Scholar
  66. 66.
    D. S. Newcombe, S. L. Shapiro, G. L. Sheppard, and F. E. Dreifuss, Treatment of X-linked primary hyperuricemia with allopurinol, J.A.M.A. 198:315, 1966.CrossRefGoogle Scholar
  67. 67.
    J. F. Marks, J. Baum, D. K. Keele, J. L. Kay, and A. MacFarlen, Lesch-Nyhan syndrome treated from the early neonatal period, Pediatrics 42:357, 1968.Google Scholar
  68. 68.
    M. L. Greene, W. Y. Fujimoto, and J. E. Seegmiller, Urinary xanthine stones—a rare complication of allopurinol therapy, New Engl. J. Med. 280:426, 1969.CrossRefGoogle Scholar
  69. 69.
    H. Ghadimi, C. K. Bhalla, and D. M. Kirschenbaum, The significance of the deficiency state in Lesch-Nyhan disease, Acta Paediat. Scand. 59:233, 1970.CrossRefGoogle Scholar
  70. 70.
    P. J. Benke and J. Anderson, Use of folic acid, adenine and bicarbonate in newborn twins with Lesch-Nyhan syndrome, Proc. Soc. Pediat. Res. 39:12, 1969.Google Scholar
  71. 71.
    M. D. Kogut, G. N. Donnell, W. L. Nyhan, and L. Sweetman, Disorder of purine metabolism due to partial deficiency of hypoxanthine-guanine phosphoribosyltransferase, Am. J. Med. 48:148, 1970.CrossRefGoogle Scholar
  72. 72.
    J. F. Henderson, W. N. Kelley, F. M. Rosenbloom, and J. E. Seegmiller, Inheritance of purine phosphoribosyltransferase in man, Am. J. Hum. Genet. 21:61, 1969.Google Scholar
  73. 73.
    W. N. Kelley, M. L. Greene, F. M. Rosenbloom, J. F. Henderson, and J. E. Seegmiller, Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout, Ann. Int. Med. 70:155, 1969.Google Scholar
  74. 74.
    B. Bakay, W. L. Nyhan, N. Fawcett, and M. D. Kogut, Isoenzymes of hypoxanthine-guanine phosphoribosyl transferase in a family with partial deficiency of the enzyme, Biochem. Genet. 7:73, 1972.CrossRefGoogle Scholar
  75. 75.
    P. Benke and N. Herrick, Purine analog-resistance as a manifestation of a new hyperuricemia disorder, Abst., p. 199, Society for Pediatric Research, Atlantic City, April 1971.Google Scholar
  76. 76.
    B. T. Emmerson and J. B. Wyngaarden, Purine metabolism in heterozygous carriers of hypoxanthine-guanine phosphoribosyl transferase deficiency, Science 166:1533, 1969.CrossRefGoogle Scholar
  77. 77.
    W. L. Nyhan, J. A. James, A. J. Teberg, L. Sweetman, and L. G. Nelson, A new disorder of purine metabolism with behavioral manifestations, J.Pediat. 74:20, 1969.CrossRefGoogle Scholar
  78. 78.
    C. Hooft, C. Van Nevel, and A. F. DeSchaepdryver, Hyperuricosuria encephalopathy without hyperuricaemia, Arch. Dis. Child. 43:734, 1968.CrossRefGoogle Scholar
  79. 79.
    E. Orowan, The origin of man, Nature 175:683, 1955.CrossRefGoogle Scholar
  80. 80.
    D. Stetten, Jr., and J. Z. Hearon, Intellectual level measured by Army classification battery and serum uric acid concentration, Science 129:1737, 1959.CrossRefGoogle Scholar
  81. 81.
    G. W. Brooks and E. Mueller, Serum urate concentrations among university professors, J.A.M.A. 195:415, 1966.CrossRefGoogle Scholar
  82. 82.
    S. V. Kasl, G. W. Brooks, and S. Cobb, Serum urate concentrations in male high-school students, J.A.M.A. 198:713, 1966.CrossRefGoogle Scholar
  83. 83.
    C. E. Dent and G. R. Philpot, Xanthinuria, an inborn error (or deviation) of metabolism, Lancet 1:182, 1954.CrossRefGoogle Scholar
  84. 84.
    J. H. Ayvazian, Xanthinuria and hemochromatosis, New Engl. J. Med. 270:18, 1964.CrossRefGoogle Scholar
  85. 85.
    K. Engelman, R. W. E. Watts, J. R. Klinenberg, A. Sjoerdsma, and J. E. Seegmiller, Clinical, physiological and biochemical studies of a patient with xanthinuria and pheo-chromocytoma, Am. J. Med. 37:839, 1964.CrossRefGoogle Scholar
  86. 86.
    O. Sperling, U. A. Liberman, M. Frank, and A. DeVries, Xanthinuria: An additional case with demonstration of xanthine oxidase deficiency, Am. J. Clin. Pathol. 55:351, 1971.Google Scholar
  87. 87.
    R. W. E. Watts, K. Engelman, J. R. Klinenberg, J. E. Seegmiiler, and A. Sjoerdsma, Enzyme defect in a case of xanthinuria, Nature 201:395, 1964.CrossRefGoogle Scholar
  88. 88.
    M. J. Bradford, I. H. Krakoff, R. Leeper, and M. E. Balis, Study of purine metabolism in a xanthinuric female, J.Clin. Invest. 47:1325, 1968.CrossRefGoogle Scholar
  89. 89.
    C. M. Huguley, Jr., J. A. Bain, S. L. Rivers, and R. B. Scoggins, Refractory megaloblastic anemia associated with excretion of orotic acid, Blood 14:615, 1959.Google Scholar
  90. 90.
    H. J. Fallon, L. H. Smith, J. B. Graham, and C. H. Burnett, A genetic study of hereditary orotic aciduria, New Engl. J. Med. 270:878, 1964.CrossRefGoogle Scholar
  91. 91.
    L. H. Smith, M. Sullivan, and C. M. Huguley, Jr., Pyrimidine metabolism in man. IV. The enzymatic defect of orotic acidurea, J.Clin. Invest. 40:656, 1961.CrossRefGoogle Scholar
  92. 92.
    M. Lotz, H. J. Fallon, and L. H. Smith, Jr., Excretion of orotic acid and orotidine in heterozygotes of congenital orotic aciduria, Nature 197:194, 1963.CrossRefGoogle Scholar
  93. 93.
    K.-D. Wuu and R. S. Krooth, Dihydroorotic acid dehydrogenase activity of human diploid cell strains, Science 160:539, 1968.CrossRefGoogle Scholar
  94. 94.
    L. Pinsky and R. S. Krooth, Studies on the control of pyrimidine biosynthesis in human diploid cell strains. I. Effect of 6-azauridine on cellular phenotype, Proc. Natl. Acad. Sci. 57:925, 1967.CrossRefGoogle Scholar
  95. 95.
    L. Pinsky and R. S. Krooth, Studies on the control of pyrimidine biosynthesis in human diploid cell strains. II. Effects of 6-azaorotic acid, barbituric acid, and pyrimidine precursors on cellular prototype, Proc. Natl. Acad. Sci. 57:1267, 1967.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • William L. Nyhan
    • 1
  1. 1.Department of Pediatrics, School of MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations