Advertisement

Disorders of Cerebrospinal Fluid and Brain Extracellular Fluid

  • Leon D. Prockop

Abstract

The chemical composition of the extracellular fluid (ECF) of the brain is similar to that of cerebrospinal fluid (CSF). Brain ECF is inaccessible for studies in humans, and serial determinations are difficult in animals. On the other hand, CSF can be sampled serially, in vivo, without altering physical or chemical parameters. Therefore, the CSF’s dynamic alterations are used to define dysfunction within the CSF compartment, as a direct index of dysfunction of brain ECF, and as an indirect index of cerebrocellular metabolism and dysfunction.

Keywords

Multiple Sclerosis Cerebrospinal Fluid Extracellular Fluid Choroid Plexus Tuberculous Meningitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Archer-Hind, “The Timaeus of Plato,” p. 273, Macmillan Co., London, 1888.Google Scholar
  2. 2.
    E. Clarke, The early history of the cerebral ventricles, Trans. Stud. Coll. Phys. Phila. 30:85–89, 1963.Google Scholar
  3. 3.
    C. Singer, “Vesalius on the Human Brain” (C. Singer, ed.), p. 18, Oxford University Press, London, 1952.Google Scholar
  4. 4.
    L. C. McHenry, Jr., “Garrison’s History of Neurology,” p. 71, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  5. 5.
    H. Davson, “Physiology of the Cerebrospinal Fluid,” Williams & Wilkins Co., Baltimore, 1967.Google Scholar
  6. 6.
    H. Davson, “A Textbook of General Physiology,” pp. 714–750, Williams & Wilkins Co., Baltimore, 1970.Google Scholar
  7. 7.
    H. Cserr, Physiology of the choroid plexus, Physiol. Rev. 51:273–311, 1971.Google Scholar
  8. 8.
    T. H. Milhorat, M. K. Hammock, J. D. Fenstermacher, D. P. Rall, and V. A. Levin, Cerebrospinal fluid production by the choroid plexus and brain, Science 173:330–332, 1971.Google Scholar
  9. 9.
    K. Welch and V. Friedman, The cerebrospinal fluid valves, Brain 83:454–469, 1960.Google Scholar
  10. 10.
    L. H. Weed, The pathways of escape from the subarachnoid spaces with particular reference to the arachnoid villi,J. Med. Res. 31:51–91, 1914.Google Scholar
  11. 11.
    H. Davson, G. Hollingsworth, and M. B. Segal, The mechanism of drainage of the cerebrospinal fluid, Brain 93:665–678, 1970.Google Scholar
  12. 12.
    L. D. Prockop and L. S. Schanker, On the mode of exit of substances from cerebrospinal fluid, Life Sci. 1:141–149, 1962.Google Scholar
  13. 13.
    A. Shabo and D. Maxwell, The morphology of the arachnoid villi: A light and electron microscopic study in the monkey,J. Neurosurg. 29:451–463, 1968.Google Scholar
  14. 14.
    P. Ehrlich, “Das Sauerstoff-Bedürfnis des Organismus: Farbenanalytische Studie,” Hirschwald, Berlin, 1885.Google Scholar
  15. 15.
    L. Bakay and J. C. Lee, “Cerebral Edema,” C. C. Thomas, Springfield, Ill., 1965.Google Scholar
  16. 16.
    C. F. Barlow, Clinical aspects of the blood-brain barrier, Ann. Rev. Med. 15:187–202, 1964.Google Scholar
  17. 17.
    J. Dobbing, The development of the blood-brain barrier, in “Brain Barrier System” (A. Lajtha and D. H. Ford, eds.), pp. 417–427, Elsevier, New York, 1968.Google Scholar
  18. 18.
    R. Edstrom, Recent developments of the blood-brain barrier concept, Internat. Rev. Neurobiol. 7:153–190, 1964.Google Scholar
  19. 19.
    I. Klatzo and F. Seitelberger, “Brain Edema,” Springer-Verlag, New York, 1967.Google Scholar
  20. 20.
    J. Dobbing, The blood-brain barrier, in “Applied Neurochemistry” (A. N. Davison and J. Dobbing, eds.), Vols. 4 and 5 of “Contemporary Neurology Series,” F. A. Davis Co., Philadelphia, 1968.Google Scholar
  21. 21.
    J. C. Lee, Evolution in the concept of the blood-brain barrier phenomenon, in “Progress in Neuropathology” (A. M. Zimmerman, ed.), pp. 84–145, Gruen & Stratton, New York, 1971.Google Scholar
  22. 22.
    C. Crone, Facilitated transfer of glucose from blood into brain tissue,J. Physiol. 181:103–113, 1965.Google Scholar
  23. 23.
    R. A. Fishman, Carrier transport of glucose between blood and cerebrospinal fluid, Am. J. Physiol. 206:836–844, 1964.Google Scholar
  24. 24.
    W. O. Whetsell, Jr., and I. Lockard, Responses to intracarotid Hypaque in rabbits with and without low molecular weight dextran,J. Neuropathol. Exptl. Neurol. 25:283–295, 1966.Google Scholar
  25. 25.
    E. J. Laskowski, I. Klatzo, and M. Baldwin, Experimental study of the effects of hypothermia on local brain injury, Neurology 10:499–505, 1960.Google Scholar
  26. 26.
    M. Y. Maizelis, Permeability of tissue-blood barriers during changes in functional state of central nervous system. Fed. Proc. Trans. Suppl. 25–969–971, 1966.Google Scholar
  27. 27.
    R. B. Aird and R. A. Becker, The blood-brain barrier in clinical disease. A review,J. Nerv. Dis. 136:517–526, 1963.Google Scholar
  28. 28.
    T. Broman, On basic aspects of the blood-brain barrier, Acta Psychiat. Neurol. Scand. 30:115–124, 1955.Google Scholar
  29. 29.
    W. Haymaker, Effects of ionizing radiation on nervous tissue, in “The Structure and Function of Nervous Tissue” (G. H. Bourne, ed.), Vol. 3 of “Biochemistry and Disease,” pp. 441–518, Academic Press, New York, 1969.Google Scholar
  30. 30.
    R. A. Fishman, Cerebrospinal fluid, in “Clinical Neurology” (A. B. Baker, ed.), Vol. 1, Chap. 5, pp. 350–388, Hoeber-Harper, New York, 1962.Google Scholar
  31. 31.
    M. Cole, Examination of the cerebrospinal fluid, in “Special Techniques for Neurologic Diagnosis” (J. F. Toole, ed.), Vol. 3 of “Contemporary Neurology Series,” pp. 29–47, F. A. Davis Co., Philadelphia, 1969.Google Scholar
  32. 32.
    W. H. McMenemy, The significance of subarachnoid bleeding, Proc. Roy. Soc. Med. 47:701–704, 1954.Google Scholar
  33. 33.
    W. W. Tourtellotte, K. C. Quan, A. F. Haerer, and E. R. Bryan, Neoplastic cells in the cerebrospinal fluid, Neurology 13:866–868, 1963.Google Scholar
  34. 34.
    K. G. Kjellin, The binding of xanthochromic compounds in the cerebrospinal fluid,J. Neurol Sci. 9:597–601, 1969.Google Scholar
  35. 35.
    K. G. Kjellin, Bilirubin compounds in the CSF,J. Neurol. Sci. 13:161–173, 1971.Google Scholar
  36. 36.
    R. M. N. Crosby and G. L. Weiland, Xanthochromia of the cerebrospinal fluid, Arch. Neurol. Psychiat. 69:732–736, 1953.Google Scholar
  37. 37.
    V. Marks and D. Marrack, Tumor cells of the cerebrospinal fluid,J. Neurol. Neurosurg. Psychiat. 23:194–201, 1960.Google Scholar
  38. 38.
    W. F. McCormick and S. A. Coleman, A membrane filter technic for cytology of spinal fluid, Am. J. Clin. Pathol. 38:191–197, 1962.Google Scholar
  39. 39.
    J. R. Rich, A survey of cerebrospinal fluid cytology, Bull. Los Angeles Neurol. Soc. 34: 115:131, 1969.Google Scholar
  40. 40.
    J. M. Bennett, J. Ruberg, and S. Dixon, A semi-automated method for the concentration of cerebrospinal fluid for cytologic examination, Am. J. Clin. Pathol. 50:533–536, 1968.Google Scholar
  41. 41.
    O. Kolar and W. Zeman, Spinal fluid cytomorphology, Arch. Neurol. 18:44–51, 1968.Google Scholar
  42. 42.
    G. Simon and H. Schröer, The cell-catch procedure. A new method which preserves all cellular elements of spinal fluid samples,J. Neurosurg. 20:787–792, 1963.Google Scholar
  43. 43.
    F. Pariante and A. Scala, Cytology and cytochemistry of the cerebrospinal fluid, II Pensiero Sci. (Roma) 1–132, 1969.Google Scholar
  44. 44.
    H. H. Merritt and F. Fremont-Smith, “The Cerebrospinal Fluid,” Saunders, Philadelphia, 1937.Google Scholar
  45. 45.
    O. Gilland, Normal cerebrospinal-fluid pressure, New Engl. J. Med. 280–904–905, 1969.Google Scholar
  46. 46.
    W. E. Stern, Intracranial fluid dynamics. The relationship of intracranial pressure to the Monro-Kellie doctrine and the reliability of pressure assessment,J. Roy. Coll. Surg. Edinburgh 9:18–36, 1963.Google Scholar
  47. 47.
    G. Kellie, An account of the appearances observed in the dissection of two of three individuals presumed to have perished in the storm of 3d, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th, November, 1821; with some reflections on the pathology of the brain, Trans. Med. Chir. Soc. Edinburgh 1:84–169, 1824.Google Scholar
  48. 48.
    A. Monro, “Observations on the Structures and Function of the Nervous System,” Creech, Edinburgh, 1783.Google Scholar
  49. 49.
    L. Weed, Some limitations of the Monro-Kellie hypothesis, Arch. Surg. 18:1049–1068, 1929.Google Scholar
  50. 50.
    T. W. Langfitt, increased intracranial pressure, Clin. Neurosurg. 16:436–471, 1969.Google Scholar
  51. 51.
    L. D. Prockop, Drugs for reducing increased intracranial pressure, Med. Letter 12:47–48, 1970.Google Scholar
  52. 52.
    H. Hooshmand, J. Dove, S. Houff, and C. Suter, Effects of diuretics and steroids on CSF pressure, Arch. Neurol. 21:499–509, 1969.Google Scholar
  53. 53.
    S. Hakim and R. Adams, The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure,J. Neurol. Sci. 2:307–327, 1965.Google Scholar
  54. 54.
    R. Ojemann, C. Fisher, R. Adams, W. Sweet, and P. New, Further experience with the syndrome of “normal” pressure hydrocephalus,J. Neurosurg. 31:279–294, 1969.Google Scholar
  55. 55.
    F. Benson, M. LeMay, D. Patten, and A. Rubens, Diagnosis of normal-pressure hydrocephalus, New Engl. J. Med. 283:609–615, 1970.Google Scholar
  56. 56.
    H. E. Schultze and J. F. Heremans, The proteins of cerebrospinal fluid, in “Molecular Biology of Human Proteins,” Vol. 1, Sect, 4. Chap. 3, pp. 732–761, Elsevier, New York, 1966.Google Scholar
  57. 57.
    L. J. Lemmen, N. A. Newman, and R. N. DeJong, Study of cerebrospinal fluid proteins with paper electrophoresis 1. A review of literature, Univ. Mich. Med. Bull. 23:3–32, 1957.Google Scholar
  58. 58.
    E. A. Kabat, D. H. Moore, and H. Landow, An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum protein,J. Clin. Invest. 21:571–577, 1942.Google Scholar
  59. 59.
    R. A. Fishman, J. Ransohoff, and E. F. Osserman, Factors influencing the concentration gradient of protein in cerebrospinal fluid,J. Clin. Invest. 37:1419–1424.Google Scholar
  60. 60.
    J. Clausen, T. Fog, and E. R. Einstein, The clinical value of assaying proteins in the cerebrospinal fluid, Acta Neurol. Scand. 45:513–528, 1969.Google Scholar
  61. 61.
    H. Link, Immunoglobulin-G and low molecular weight proteins in human cerebrospinal fluid. Chemical and immunological characterizations with special reference to multiple sclerosis, Acta Neurol. Scand. 43: Suppl. 28, 1–136, 1967.Google Scholar
  62. 62.
    B. T. Naidoo, The cerebrospinal fluid in the healthy newborn infant, S. Afr. Med. J. 42:933–935, 1968.Google Scholar
  63. 63.
    H. Ito and S. Muira, Nervous system diseases and proteins in the blood and cerebrospinal fluid, Saishin Igaku 23:1651–1661, 1968.Google Scholar
  64. 64.
    C. E. Lunsden, The clinical pathology of multiple sclerosis, in “Multiple Sclerosis” (D. McAlpine, C. E. Lunsden, and E. D. Acheson, eds.), pp. 243–299. Williams & Wilkins Co., Baltimore, 1965.Google Scholar
  65. 65.
    H. Cohen, The magnesium content of the cerebrospinal and other body fluids, Quart. J. Med. 20:173–186, 1926.Google Scholar
  66. 66.
    S. Katzenelbogen, “The Cerebrospinal Fluid and Its Relation to the Blood,” Johns Hopkins Press, Baltimore, 1935.Google Scholar
  67. 67.
    B. Ursing, Clinical and immunoelectrophoretic studies on cerebrospinal fluid in virus meningoencephalitis and bacterial meningitis, Acta Med. Scand. 177: Suppl. 429, 1965.Google Scholar
  68. 68.
    L. P. Weiner, P. N. Anderson, and J. C. Allen, Cerebral plasmacytoma with myeloma protein in the cerebrospinal fluid, Neurology 16:615–618, 1966.Google Scholar
  69. 69.
    N. P. Goldstein, N. C. Hill, B. F. McKenzie, W. F. McGuckin, and H. J. Svien, Identification and quantification of proteins, glycoproteins, and lipoproteins of cerebrospinal fluid, Med. Clin. Am. 44:1053–1074, 1960.Google Scholar
  70. 70.
    R. R. Apostol, E. Roboz, W. C. Hess, and F. M. Forster, Changes in the glycoproteins of the cerebrospinal fluid in neurological diseases, Neurology 6:859–868, 1956.Google Scholar
  71. 71.
    E. Dallos, Z. Oberman, M. Herzberg, and M. Streifler, Cerebrospinal fluid glycoproteins in diseases of the central nervous system, Conf. Neurol. 29:20–32, 1967.Google Scholar
  72. 72.
    N. M. Linchenko, M. L. Promislov, and U. B. Makhmudov, Quantitative determination of glucoproteins in the CSF in differential diagnosis of brain gliomas, Zh. Nevropatol. Psikhiat. Korsakov 69:168–172, 1969.Google Scholar
  73. 73.
    J. C. Houck, H. J. McBride, and D. C. O’Doherty, The value of cerebrospinal fluid glycoprotein levels in the diagnosis of primary brain tumor, Neurology 18:397–402, 1968.Google Scholar
  74. 74.
    M. D. Yahr, S. S. Goldensohn, and E. A. Kabat, Further studies on the gamma globulin content of cerebrospinal fluid in multiple sclerosis and other neurological diseases, Ann. N. Y. Acad. Sci. 58:613–624, 1954.Google Scholar
  75. 75.
    A. Lowenthal, M. Van Sande, and D. Karcher, The differential diagnosis of neurological diseases by fractionating electrophoretically the CSF γ globulins,J. Neurochem. 6:51–56, 1960.Google Scholar
  76. 76.
    R. R. Ivers, B. F. McKenzie, W. F. McGuckin, and N. P. Goldstein, Spinal-fluid gamma globulin in multiple sclerosis and other neurologic diseases, J.A.M.A. 176:515–519, 1961.Google Scholar
  77. 77.
    O. J. Kolar, A. T. Ross, and J. T. Herman, Serum and cerebrospinal fluid immunoglobulins in multiple sclerosis, Neurology 20:1052–1061, 1970.Google Scholar
  78. 78.
    W. W. Tourtellotte and J. A. Parker, Multiple sclerosis: Correlation between immuno-globulin-G in cerebrospinal fluid and brain, Science 154:1044–1046, 1966.Google Scholar
  79. 79.
    J. Clausen, T. Fog, and E. R. Einstein, The clinical value of assaying proteins in the cerebrospinal fluid, Acta Neurol. Scand. 45:513–528, 1969.Google Scholar
  80. 80.
    B. Gerstl, C. T. Uyeda, L. E. Eng, P. Bond, and J. K. Smith, Soluble proteins in normal and diseased human brains, Neurology 19:1019–1026, 1969.Google Scholar
  81. 81.
    S. A. Schneck and H. N. Claman, CSF immunoglobulins in multiple sclerosis and other neurological diseases, Arch. Neurol. 20:132–139, 1969.Google Scholar
  82. 82.
    U. Consbruch and H. Koufen, Der Beitrag der Liquorelektrophorese zur klinischen Diagnostik, Deutsch. Med. Wschr. 93:2168–2172, 1968.Google Scholar
  83. 83.
    N. I. Manno, W. F. McGuckin, and N. P. Goldstein, Cerebrospinal fluid total polysao scharide in diseases of the nervous system, Neurology 15:49–55, 1965.Google Scholar
  84. 84.
    M. Van Sande, Y. Mardens, K. Adriaenssens, and A. Lowenthal, The free amino acids in human cerebrospinal fluid,J. Neurochem. 17:125–135, 1970.Google Scholar
  85. 85.
    B. T. Hourani, E. M. Hamlin, and T. B. Reynolds, Cerebrospinal fluid glutamine as a measure of hepatic encephalopathy, Arch. Int. Med. 127:1033–1036, 1971.Google Scholar
  86. 86.
    J. J. Richter and A. Wainer, Evidence for separate systems for the transport of neutral and basic amino acids across the blood-brain barrier,J. Neurochem. 18:613–620, 1971.Google Scholar
  87. 87.
    D. H. Harter and R. G. Petersdorf, A consideration of the pathogenesis of bacterial meningitis: Review of experimental and clinical studies, Yale J. Biol. Med. 32:280–309, 1960.Google Scholar
  88. 88.
    B. T. Troost, J. E. Walder, and M. Cherington, Hypoglycorrhachia associated with subarachnoid hemorrhage, Arch. Neurol. 19:438–442, 1968.Google Scholar
  89. 89.
    L. Berg, Hypoglycorrhachia of non-infectious origin: Diffuse meningeal neoplasia, Neurology 3:811–824, 1953.Google Scholar
  90. 90.
    C. M. Wilfert, Mumps meningoencephalitis with low cerebrospinal fluid glucose, New Engl. J. Med. 280:855–859, 1969.Google Scholar
  91. 91.
    R. G. Petersdorf, D. M. Swarner, and M. Garcia, Studies on the pathogenesis of meningitis III. Relationship of phagocytosis to the fall in cerebrospinal fluid sugar in experimental pneumococcal meningitis,J. Lab. Clin. Med. 61:745–745, 1963.Google Scholar
  92. 92.
    J. E. Sifontes, R. D. B. Williams, E. M. Lincoln, and H. Clemons, Observations on the effect of induced hyperglycemia on the glucose content of the cerebrospinal fluid in patients with tuberculous meningitis, Am. Rev. Tuberc. 67:732–754, 1953.Google Scholar
  93. 93.
    R. A. Fishman, Studies of the transport of sugars between blood and cerebrospinal fluid in normal states and in meningeal carcinomatosis, Trans. Am. Neurol. Ass. 88:114–118, 1963.Google Scholar
  94. 94.
    L. D. Prockop and R. A. Fishman, Experimental pneumococcal meningitis. Permeability changes influencing the concentration of sugars and macromolecules in cerebrospinal fluid, Arch. Neurol. 19:449–463, 1968.Google Scholar
  95. 95.
    M. J. Madonick and N. Savitsky, Spinal fluid sugar in subarachnoid hemorrhage,J. Nerv. Ment. Dis. 108:45–53, 1948.Google Scholar
  96. 96.
    R. I. Feinbloom and J. J. Alpert, The value of routine glucose determination in spinal fluid without pleocytosis,J. Pediat. 75:121–123, 1969.Google Scholar
  97. 97.
    W. W. Tourtellotte, Study of lipids in cerebrospinal fluid. VI. The normal lipid profile, Neurology 9:375–383, 1959.Google Scholar
  98. 98.
    P. S. Sastry and H. C. Stancer, Quantitative analysis and fatty acid composition of phospholipid constituents in cerebrospinal fluid of various age groups, Clin. Chim. Acta 22:301–307, 1968.Google Scholar
  99. 99.
    W. W. Tourtellotte, R. N. DeJong, and W. H. van Houten, A study of lipids in the cerebrospinal fluid. I. The historical aspects, Univ. Mich. Med. Bull. 24:66–96, 1958.Google Scholar
  100. 100.
    W. W. Tourtellotte and A. F. Haerer, Lipids in cerebrospinal fluid, Arch. Neurol. 20:605–615, 1969.Google Scholar
  101. 101.
    K. J. Zilkah and B. McArdle, The phospholipid composition of cerebrospinal fluid in disease associated with demyelination, Quart. J. Med. 32:79–97, 1963.Google Scholar
  102. 102.
    J. K. Smith, B. Gerstl, W. E. Davis, and D. L. Orth, Lipoprotein patterns of spinal fluid obtained by paper electrophoresis, Arch. Neurol. Psychiat. 76:608–613, 1956.Google Scholar
  103. 103.
    M. Farstad, The determination of fatty acid in cerebrospinal fluid, Scand. J. Clin. Lab. Invest. 18:343–346, 1966.Google Scholar
  104. 104.
    A. Pazzagli, G. Arnetoli, I. Pepeu, and L. A. Amaducci, Fatty acid changes of cerebrospinal fluid in neurological disorders as an index of changes in the blood-brain barrier, Neurology 20:783–386, 1970.Google Scholar
  105. 105.
    F. C. Sitzmann, An investigation of enzymatic activities in the cerebrospinal fluid of children with encephalitis (non-bacterial), meningitis and hydrocephalus, Z. Kinderheilk. 106:76–88, 1969.Google Scholar
  106. 106.
    A. L. Sherwin, J. W. Norris, and J. A. Bulcke, Spinal fluid creatine kinase in neurological disease, Neurology 19:993–999, 1969.Google Scholar
  107. 107.
    M. J. Nathan, Creatine Phosphokinase in the cerebrospinal fluid,J. Neurol. Neurosurg. Psychiat. 30:52–55, 1967.Google Scholar
  108. 108.
    A. Culebras and N. E. Richards, Creatine Phosphokinase content in cerebrospinal fluid. Preliminary report of findings in multiple sclerosis, Cleveland Clin. Quart. 36:47–51, 1969.Google Scholar
  109. 109.
    M. Van Rymenant, J. Robert, and J. Otten, Isocitric dehydrogenase in the cerebrospinal fluid. Clinical usefulness of its determination, Neurology 16:351–354, 1966.Google Scholar
  110. 110.
    H. G. Thompson, Jr., E. Hirschberg, M. Osnos, and A. Gelhorn, Evaluation of phos-phohexose isomerase activity in cerebrospinal fluid in neoplastic disease of the central nervous system, Neurology 9:545–552, 1959.Google Scholar
  111. 111.
    R. D. B. Williams and R. Hawkins, The clinical value of cerebrospinal fluid lactic dehydrogenase determinations in children with bacterial meningitis and other neurological disorders, Develop. Med. Child. Neurol. 10:711–714, 1968.Google Scholar
  112. 112.
    F. Taccone, Cerebrospinal fluid transaminases in various neurological affections of the child, Pediatrica (Napoli) 76:892–904, 1968.Google Scholar
  113. 113.
    M. A. Belsey, CSF glutamic oxaloacetic transaminase in acute bacterial meningitis, Am. J. Dis. Child. 117:288–293, 1969.Google Scholar
  114. 114.
    M. Nakata, Glutamic oxaloacetic transaminase activity of cerebrospinal fluid in cerebrospinal disease with special reference to its diagnostic value in encephalitis, Jap. Shikoku Acta. Med. 24:588–602, 1968.Google Scholar
  115. 115.
    M. Spiegel-Adolf, H. Baird, and D. Kollias, Lipases in cerebrospinal fluid in various neurological conditions especially infantile amaurotic idiocy, Confin. Neurol. (Basel) 17:310–312, 1957.Google Scholar
  116. 116.
    P. J. Riekkinen and U. K. Rinne, Fractionation of peptidase and esterase activities of human cerebrospinal fluid, Brain Res. 9:136–144, 1968.Google Scholar
  117. 117.
    S. A. Georgieva, Cholinesterase activity of the cerebrospinal fluid in patients with sequelae of cerebro-cranial injuries, Vop. Neirokhir. 32:13–16, 1968.Google Scholar
  118. 118.
    N. S. Sharpless, A. D. Ericsson, and D. S. McCann, Clinical and cerebrospinal fluid changes in Parkinsonian patients treated with L-3,4-dehydroxyphenylalanine (l-DOPA), Neurology 21:540–549, 1971.Google Scholar
  119. 119.
    R. B. Godwin-Austen, B. D. Kantamaneni, and G. Curzon, Comparison of benefit from L-dopa in parkinsonism with increase of amine metabolites in the CSF,J. Neurol. Neurosurg. Psychiat. 34:219–223, 1971.Google Scholar
  120. 120.
    O. Gilland, Cerebrospinal fluid, in “Progress in Neurology and Psychiatry” (E. A. Spiegel, ed.), Vol. 25, Chap. 3, pp. 214–237, Grune & Stratton, New York, 1970.Google Scholar
  121. 121.
    C. G. Gottfries, I. Gottfries, and B. E. Roos, Homovanillicacid and 5-hydroxyindoleacetic acid in the cerebrospinal fluid of patients with senile dementia, presenile dementia and parkinsonism,J. Neurochem. 16:1341–1345, 1969.Google Scholar
  122. 122.
    J. A. Brody, T. N. Chase, and E. K. Gordon, Depressed monoamine catabolite levels in cerebrospinal fluid of patients with parkinsonism dementia of Guam, New Engl. J. Med. 282:947–950, 1970.Google Scholar
  123. 123.
    K. Pind and A. Faurbye, Concentration of homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid after treatment with probenecid in patients with drug-induced tardive dyskinesia, Acta Psychiat. Scand. 46:323–326, 1970.Google Scholar
  124. 124.
    A. T. B. Moir, G. W. Ashcroft, T. B. B. Crawford, D. Eccleston, and H. C. Guldberg, Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain, Brain 93:357–368, 1970.Google Scholar
  125. 125.
    D. Eccleston, G. W. Ashcroft, A. T. B. Moir, A. Parker-Rhodes, W. Lutz, and D. P. O’Mahoney, A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid,J. Neurochem. 15:947–957, 1968.Google Scholar
  126. 126.
    H. C. Guldberg and C. M. Yates, Some studies of the effects of chlorpromazine, reserpine and dihydroxyphenylalanine on the concentrations of homovanillic acid, 3,4-dihydroxyphenylacetic acid and 5-hydroxyindol-3-ylacetic acid in the ventricular cerebrospinal fluid of the dog using the technique of serial sampling of the cerebrospinal fluid, Brit. J. Pharmacol. 33:457–471, 1968.Google Scholar
  127. 127.
    S. Fahn, P. Barbour, and L. D. Prockop, Unpublished data.Google Scholar
  128. 128.
    G. W. Ashcroft, R. C. Dow, and A. T. B. Moir, The active transport of 5-hydroxyindol-3-ylacetic and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanaesthetized dog,J. Physiol. 199:397–425, 1968.Google Scholar
  129. 129.
    D. M. Dawson and A. Taghavy, A test for spinal-fluid alcohol in torula meningitis, New Engl. J. Med. 269:1424–1425, 1963.Google Scholar
  130. 130.
    N. Vijayan, G. P. Bhatt, and P. M. Dreyfus, Intraventricular cryptococcal granuloma, Neurology 21:728–734, 1971.Google Scholar
  131. 131.
    L. Garcia-Buñuel and V. M. Garcia-Buñuel, Cerebrospinal fluid levels of free myoinositol in some neurological disorders, Neurology 15:348–350, 1965.Google Scholar
  132. 132.
    R. S. Clements, Jr., L. D. Prockop, and A. I. Winegrad, Acute cerebral oedema during treatment of hyperglycemia, Lancet 2:384–386, 1968.Google Scholar
  133. 133.
    L. D. Prockop, Hyperglycemia, polyol accumulation, and increased intracranial pressure, Arch. Neurol. 25:126–140, 1971.Google Scholar
  134. 134.
    W. V. McDermott, Jr., R. D. Adams, and A. C. Riddell, Ammonia levels in blood and cerebrospinal fluid, Proc. Soc. Exptl. Biol. Med. 88:380–383, 1955.Google Scholar
  135. 135.
    A. Ciplea, N. Balta, C. Stancu, and W. Dragulescu, The distribution of ammonium nitrogen in venous blood, ascites, and cerebrospinal fluid in cases of hepatic cirrhosis, Rev. Roum. Physiol. 7:163–169, 1970.Google Scholar
  136. 136.
    W. Q. Wolfson, R. Levine, and M. Tinsley, The transport and excretion of uric acid in man. I. True uric acid in normal cerebrospinal fluid, in plasma, and in ultrafiltrates of plasma,J. Clin. Invest. 26:991–994, 1947.Google Scholar
  137. 137.
    J. R. Cockrill, Non-electrolytes, their distribution between the blood and cerebrospinal fluid, Arch. Neurol. Psychiat. 25:1297–1305, 1931.Google Scholar
  138. 138.
    M. D. Bornstein, Presence and action of acetylcholine in experimental brain trauma,J. Neurophysiol. 9:347–366, 1946.Google Scholar
  139. 139.
    B. K. Siesjo and S. C. Sorensen, eds., “Ion Homeostasis of the Brain,” Alfred Benzon Symposium III, Munksgaard, Copenhagen, 1971.Google Scholar
  140. 140.
    R. Katzman, Effect of electrolyte disturbance on the central nervous system, Ann. Rev. Med. 17:197–212, 1966.Google Scholar
  141. 141.
    M. W. B. Bradbury, Water and electrolyte and acid-base disorders in neurologic disease, in “Clinical Disorders of Fluid and Electrolyte Metabolism” (M. H. Maxwell and C. R. Kleeman, eds.), McGraw-Hill, New York, in press.Google Scholar
  142. 142.
    D. H. Ingvar, N. A. Lassen, B. K. Siesio, and E. Skinhoi, eds., Cerebral blood flow and cerebro-spinal fluid, Scand. J. Clin. Lab. Invest. 22: Suppl. 102, 1968.Google Scholar
  143. 143.
    B. K. Siesjo and A. Kjallquist, A new theory for the regulation of the extracellular pH in the brain, Scand. J. Clin. Lab. Invest. 24:1–9, 1969.Google Scholar
  144. 144.
    I. R. Cameron, Acid-base changes in cerebrospinal fluid. Brit. J. Anaesthesiol. 41:213–221, 1969.Google Scholar
  145. 145.
    J. B. Posner and F. Plum, Spinal-fluid pH and neurologic symptoms in systemic acidosis, New Engl. J. Med. 277:605–613, 1967.Google Scholar
  146. 146.
    G. B. Wallace and B. B. Brodie, Distribution of iodide, thiocyanate, bromide and chloride in the central nervous system and spinal fluid,J. Pharmacol. Exptl. Therap. 65:220–226, 1939.Google Scholar
  147. 147.
    V. Fencl, T. B. Miller, and J. R. Pappenheimer, Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid, Am. J. Physiol. 210:459–472, 1966.Google Scholar
  148. 148.
    V. Fencl, J. R. Vale, and J. R. Broch, Cerebral blood flow and pulmonary ventilation in metabolic acidosis and alkalosis, Scand. J. Clin. Lab. Invest. 22: Suppl. 102, 1968.Google Scholar
  149. 149.
    J. B. Posner and F. Plum, Independence of blood and cerebrospinal fluid lactate, Arch. Neurol. 16:492–496, 1967.Google Scholar
  150. 150.
    F. Plum and J. B. Posner, Blood and cerebrospinal fluid lactate during hyperventilation, Am. J. Physiol. 212:864–870, 1967.Google Scholar
  151. 151.
    A. E. Kaasik, L. Nilsson, and B. K. Siesjo, The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78: 433–447, 1970.Google Scholar
  152. 152.
    A. E. Kaasik, L. Nilsson, and B. K. Siesjo, The effect of asphyxia upon the lactate, pyruvate and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats, Acta Physiol. Scand. 78:448–458, 1970.Google Scholar
  153. 153.
    L. D. Prockop, Cerebrospinal fluid lactic acid. Clearance and effect on facilitated diffusion of a glucose analogue, Neurology 18:189–196, 1968.Google Scholar
  154. 154.
    L. Granholm, Studies of the lactate/pyruvate system of brain and cerebrospinal fluid, Thesis, Student Literature, Lund, 1969.Google Scholar
  155. 155.
    B. K. Siesjo, L. Granholm, and A. Kiallquist, Regulation of lactate and pyruvate levels in the CSF, Scand. J. Clin. Lab. Invest. 22: Suppl. 102, 1968.Google Scholar
  156. 156.
    I. Leusen, J. Weyne, and G. Demeester, Acid-base and lactate/pyruvate changes in CSF and brain, Scand. J. Clin. Lab. Invest. 22: Suppl. 102, 1968.Google Scholar
  157. 157.
    R. Zupping, A. E. Kaasik, and F. Rauidam, Cerebrospinal fluid metabolic acidosis and brain oxygen supply, Arch. Neurol. 25:33–38, 1971.Google Scholar
  158. 158.
    D. M. Woodburry, in “Biology of Neuroglia” (W. R. Windel, ed.), pp. 120–127, C. C. Thomas, Springfield, Ill., 1958.Google Scholar
  159. 159.
    H. Davson and M. Pollay, The turnover of 24Na in the cerebrospinal fluid and its bearing on the blood-brain barrier,J. Physiol. 167:247–255, 1963.Google Scholar
  160. 160.
    L. Bakay, Studies in sodium exchange: Experiments with plasma, cerebrospinal fluid and normal, injured, and embryonic brain tissue, Neurology 10:564–571, 1960.Google Scholar
  161. 161.
    D. Macaulay and M. Watson, Hypernatraemia in infants as a cause of brain damage, Arch. Dis. Child. 42:485–491, 1967.Google Scholar
  162. 162.
    P. H. Morris-Jones, I. B. Houston, and R. C. Evans, Prognosis of the neurological complications of acute hypernatraemia, Lancet 2:1385–1389, 1967.Google Scholar
  163. 163.
    N. W. Elton, W. J. Elton, and J. P. Nazareno, Pathology of acute salt poisoning in infants, Am. J. Clin. Pathol. 39:252–264, 1963.Google Scholar
  164. 164.
    D. Pleasure and M. Goldberg, Neurogenic hypernatremia, Arch. Neurol. 15:78–87, 1966.Google Scholar
  165. 165.
    G. H. Glaser, Sodium and seizures, Epilepsia 5:97–111, 1964.Google Scholar
  166. 166.
    R. E. Frusz, Hyponatremia, Medicine 42:149, 1963.Google Scholar
  167. 167.
    J. W. Stormont and C. Waterhouse, Severe hyponatremia associated with pneumonia, Metab. Clin. Exper. 11:1181–1186, 1962.Google Scholar
  168. 168.
    F. C. Bartter and W. B. Schwartz, The syndrome of inappropriate secretion of antidiuretic hormone, Am. J. Med. 42:790–806, 1967.Google Scholar
  169. 169.
    A. A. Faris and C. M. Poser, Experimental production of focal neurologic deficits by systemic hyponatremia, Neurology 14:206–211, 1964.Google Scholar
  170. 170.
    M. W. B. Bradbury and B. Stulcova, Efflux mechanism contributing to the stability of the potassium concentration in cerebrospinal fluid,J. Physiol. 208:415–430, 1970.Google Scholar
  171. 171.
    M. W. B. Bradbury and C. R. Kleeman, Stability of the potassium content of cerebrospinal fluid and brain, Am. J. Physiol. 213:519–528, 1967.Google Scholar
  172. 172.
    M. W. B. Bradbury, Potassium homeostasis in cerebrospinal fluid, in “Homeostasis of the Brain” (B. K. Seisjo and S. C. Sorensen, eds.), Munksgaard, Copenhagen, 1971.Google Scholar
  173. 173.
    J. W. Conn, Presidential address. II. Primary aldosteronism, a new clinical syndrome,J. Lab. Clin. Med. 45:6–17, 1955.Google Scholar
  174. 174.
    D. Held, V. Fencl, and J. R. Pappenheimer, Electrical potential of cerebrospinal fluid,J. Neurophysiol. 27:942–959, 1964.Google Scholar
  175. 175.
    J. Abbott, H. Davson, I. Glen, and N. Grant, Chloride transport and potential across the blood-CSF barrier, Brain Res. 29:185–193, 1971.Google Scholar
  176. 176.
    S. B. Friedman, W. G. Austen, R. E. Rieselbach, J. B. Block, and D. P. Rall, Effect of hypochloremia on cerebrospinal fluid chloride concentration in a patient with anorexia nervosa and in dogs, Proc. Soc. Exptl. Biol. Med. 114:801–805, 1963.Google Scholar
  177. 177.
    M. W. B. Bradburry, J. Stubbs, I. E. Hughes, and P. Parker, The distribution of potassium sodium, chloride, and urea between lumbar cerebrospinal fluid and blood serum in human subjects, Clin. Sci. 25:97–105, 1963.Google Scholar
  178. 178.
    L. Graziani, A. Escriva, and R. Katzman, Exchange of calcium between blood, brain, and cerebrospinal fluid, Am. J. Physiol. 208:1058–1064, 1965.Google Scholar
  179. 179.
    R. Kaplan, L. Graziani, A. Escriva, and R. Katzman, The effects of ouabain, CO2, EDTA and hypercalcemia on CSF calcium, Physiologist 8:205, 1965.Google Scholar
  180. 180.
    M. M. Mandell, Recurrent psychotic depression associated with hypercalcemia and parathyroid adenoma, Am. J. Psychiat. 117:234–234, 1960.Google Scholar
  181. 181.
    M. W. B. Bradburry, C. R. Leeman, H. Bagdoyanh, and A. Berberia, The calcium and magnesium content of skeletal muscle, brain, and cerebrospinal fluid as determined by atomic absorption flame photometry,J. Lab. Clin. Med. 71:884–892, 1968.Google Scholar
  182. 182.
    F. C. Bartter, The parathyroid gland and its relationship to disease of the nervous system, Ass. Res. Nerv. Ment. Dis. 32:1–20, 1953.Google Scholar
  183. 183.
    W. E. C. Wacker and B. L. Vallee, Magnesium metabolism, New Engl. J. Med, 159:431–438, 1958.Google Scholar
  184. 184.
    J. Woodbury, K. Lyons, R. Carretta, A. Hahn, and J. F. Sullivan, Cerebrospinal fluid and serum levels of magnesium, zinc. and calcium in man, Neurology 18:700–705, 1968.Google Scholar
  185. 185.
    R. A. Fishman, Neurological aspects of magnesium metabolism, Arch. Neurol. 12:562–569, 1965.Google Scholar
  186. 186.
    W. R. Faulkner, J. W. King, and H. C. Damm, eds., “Handbook of Clinical Laboratory Data,” Chemical Rubber Company, Cleveland, 1968.Google Scholar
  187. 187.
    H. L. Rosomoff and F. T. Zugibe, Distribution of intracranial contents in experimental edema, Arch. Neurol. 9:26–34, 1963.Google Scholar
  188. 188.
    E. Young and R. F. Bradley, Cerebral edema with irreversible coma in severe diabetic ketoacidosis, New Engl. J. Med. 276:665–669, 1967.Google Scholar
  189. 189.
    D. K. McCurdy, Hyperosmolar hyperglycemic nonketotic diabetic coma, Med. Clin. N. Am. 54:683–699, 1970.Google Scholar
  190. 190.
    M. Maccario, Neurological dysfunction associated with nonketotic hyperglycemia, Arch. Neurol. 19:525–534, 1968.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • Leon D. Prockop
    • 1
  1. 1.Department of Neurology, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations