Advertisement

Disorders of Glucose Metabolism in Brain Dysfunction

  • William Sacks

Abstract

The brain is unique among the organs of the body in that it consumes about 50 ml of oxygen per minute (a value representing almost 20% of the resting human’s total requirements) and in that it “extracts” from blood about 70 mg of glucose per minute. Furthermore, experiments have demonstrated the brain’s utter dependence on oxygen and glucose, with irreparable damage resulting from deprivation of either or both for only short periods of time. A causal relationship between altered glucose metabolism and mental disturbances is implied. In this chapter, the association of both systemic and cerebral disorders of glucose metabolism with brain dysfunction will be discussed, with emphasis on in vivo investigations with human subjects and animals.

Keywords

Cerebral Blood Flow Brain Dysfunction Cerebral Metabolism Mental Patient Glucose Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. C. Mann and T. B. Magath, Studies on the physiology of liver. III. The effect of administration of glucose in the condition following total extirpation of the liver, Arch. Int. Med. 30:171–181, 1922.Google Scholar
  2. 2.
    F. C. Mann, The effects of complete and of partial removal of the liver, Medicine 6:419–511, 1972.Google Scholar
  3. 3.
    S. Maddock, J. E. Hawkins, Jr., and E. Holmes, The inadequacy of substances of the “glucose cycle” for maintenance of normal cortical potentials during hypoglycemia produced by hepatectomy with abdominal evisceration, Am. J. Physiol. 125:551–565, 1939.Google Scholar
  4. 4.
    H. Hoagland, M. A. Rubin, and C. E. Cameron, The electroencephalogram of schizophrenics during insulin hypoglycemia and recovery, Am. J. Physiol. 120:559–570, 1937.Google Scholar
  5. 5.
    F. H. Gibbs, E. L. Gibbs, and W. G. Lennox, Cerebral dysrhythmias of epilepsy: Measures for their control, Arch. Neurol. Psychiat. 39:298–314, 1938.Google Scholar
  6. 6.
    S. Harris, Diagnosis and treatment of hyperinsulinism, Ann. Int. Med. 10: 514–533, 1936.Google Scholar
  7. 7.
    I. McQuarrie, Idiopathic spontaneously occurring hypoglycemia in infants: Clinical significance of problem and treatment, Am. J. Dis. Child. 87:339–428, 1954.Google Scholar
  8. 8.
    W. A. Cochrane, W. W. Payne, M. J. Simpkiss, and L. I. Woolf, Familial hypoglycemia precipitated by amino acids, J. Clin. Invest. 35:411–422, 1956.Google Scholar
  9. 9.
    G. L. Engel and S. G. Margolin, Neuropsychiatric disturbances in internal disease, Arch. Int. Med. 70:236–259, 1942.Google Scholar
  10. 10.
    R. H. Williams, in “Textbook of Endocrinology” (R. H. Williams, ed.), 4th ed., pp. 803–846, W. B. Saunders Co., Philadelphia, 1968.Google Scholar
  11. 11.
    R. A. Field, in “The Metabolic Basis of Inherited Disease” (J. B. Stanbury, J. B. Wyngaarden, and D.S. Fredrickson, eds.), 2nd ed., pp. 141–177, McGraw-Hill, New York, 1966.Google Scholar
  12. 12.
    G. T. Cori and C. F. Cori, Glucose-6-phosphatase of the liver in glycogen storage disease, J. Biol. Chem. 199:661–667, 1952.Google Scholar
  13. 13.
    C. M. Pearson, D. G. Rimer, and W. F.H. M. Mommaerts, Defect in muscle Phosphorylase: A newly defined human disease, Clin. Res. 7:298, 1959.Google Scholar
  14. 14.
    H. G. Hers, in “Advances in Metabolic Disorders” (R. Levine and R. Luft, eds.), pp. 1–44, Academic Press, New York, 1964.Google Scholar
  15. 15.
    P. Özand, M. Tokatli, and S. Amiri, Biochemical investigation of an unusual case of glycogenosis, J. Pediat. 71:225–232, 1967.Google Scholar
  16. 16.
    E. R. Froesch, in “The Metabolic Basis of Inherited Disease” (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), 2nd ed., pp. 124–140, McGraw-Hill, New York, 1966.Google Scholar
  17. 17.
    E. R. Froesch, H. P. Wolf, H. Baitsch, A. Prader, and A. Labhart, Hereditary fructose intolerance: An inborn defect of hepatic fructose-1-phosphate splitting aldolase, Am. J. Med. 34:151–167 1963.Google Scholar
  18. 18.
    J. Dancis and M. Levitz, in “The Metabolic Basis of Inherited Disease” (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), 2nd ed., p. 359, McGraw-Hill, New York, 1966.Google Scholar
  19. 19.
    H. E. Himwich, “Brain Metabolism and Cerebral Disorders,” Williams & Wilkins Co., Baltimore, 1951.Google Scholar
  20. 20.
    J. H. Jackson, The Croonian lectures on evolution and dissolution of the nervous system, Brit. Med. J. 1:591–593, 660–663, 703–707, 1884.Google Scholar
  21. 21.
    H. E. Himwich, K. M. Bowman, J. F. Fazekas, and W. Goldfarb, Biochemical changes occurring in the cerebral blood during the insulin treatment of schizophrenia, J. Nerv. Ment. Dis. 89:273–293, 1939.Google Scholar
  22. 22.
    H. E. Himwich, K. M. Bowman, C. Daly, J. F. Fazekas, J. Wortis, and W. Goldfarb, Cerebral blood flow and brain metabolism during insulin hypoglycemia, Am. J. Physiol. 132:640–647, 1941.Google Scholar
  23. 23.
    S. S. Kety, R. B. Woodford, M. H. Harmel, F. A. Freyhan, K. E. Appel, and C. F. Schmidt, Cerebral blood flow and brain metabolism in schizophrenia, Am. J. Psychiat. 104:765–770, 1948.Google Scholar
  24. 24.
    S. S. Kety, F. D. W. Lukens, R. B. Woodford, J. H. Harmel, F. A. Freyhan, and C. F. Schmidt, Effects of insulin hypoglycemia and coma on human cerebral metabolism and blood flow, Fed. Proc. 7:321–322, 1948.Google Scholar
  25. 25.
    U. Gottstein and K. Held, Insulinwirkung auf den menschlichen Hirnmetabolismus von Stoffwechselgesunden und Diabetikern, Klin. Wschr. 45:18–23, 1967.Google Scholar
  26. 26.
    P. Della Porta, A. T. Maiolo, V. U. Negri, and E. Rossella, Cerebral blood flow and metabolism in therapeutic insulin coma, Metabolism 13:131–140, 1964.Google Scholar
  27. 27.
    A. Geiger, J. Magnes, and R. Geiger, Survival of the perfused cat’s brain in the absence of glucose, Nature 170:754–755, 1952.Google Scholar
  28. 28.
    W. J. H. Butterfield, R. A. Sells, M. E. Abrams, G. Sterky, and M. J. Whichelow, Insulin sensitivity of the human brain, Lancet 1:557–560, 1966.Google Scholar
  29. 29.
    D. D. Gilboe and A. L. Betz, Kinetics of glucose transport in the isolated dog brain, Am. J. Physiol. 219:774–778, 1970.Google Scholar
  30. 30.
    E. V. Flock, G. M. Tyce, and C. A. Owen, Jr., Glucose metabolism in brains of eviscerated rats with different blood levels of glucose, Mayo Clin. Proc. 44:387–405, 1969.Google Scholar
  31. 31.
    E. V. Flock, G. M. Tyce, and C. A. Owen, Jr., Regulatory effects of insulin and liver on brain glucose metabolism, Endocrinology 84:392–406, 1969.Google Scholar
  32. 32.
    W. Sacks, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 1, pp. 301–324, Plenum Press, New York, 1969.Google Scholar
  33. 33.
    N. S. Olsen and J. R. Klein, Effect of insulin hypoglycemia on brain glucose, glycogen, lactate and phosphates, Arch. Biochem. 13:343–347, 1947.Google Scholar
  34. 34.
    R. O. Cravioto, G. Massieu, and J. J. Izquierdo, Free amino acids in rat brain during insulin shock, Proc. Soc. Exptl. Biol. 78:856–858, 1951.Google Scholar
  35. 35.
    R. M. C. Dawson, Studies on the glutamine and glutamic acid content of the rat brain during hypoglycemia, Biochem. J. 47:386–391, 1950.Google Scholar
  36. 36.
    R. M. C. Dawson, Cerebral amino acids in fluoroacetate poisoned, anaesthetized and hypoglycemic rats, Biochim. Biophys. Acta 11:548–552, 1953.Google Scholar
  37. 37.
    J. M. Davis, W. A. Himwich, and V. C. Pederson, Hypoglycemia and developmental changes in free amino acids of rat brain, J. Appl. Physiol. 29:219–222 1970.Google Scholar
  38. 38.
    G. B. Ansell and S. Spanner, The effect of insulin on the formation of phosphorylcholine and phosphorylethanolamine in the brain, J. Neurochem. 4:325–331, 1959.Google Scholar
  39. 39.
    O. J. Rafaelsen and E. Mellerup, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 4, pp. 361–371, Plenum Press, New York, 1970.Google Scholar
  40. 40.
    R. U. Margolis and N. Altszuler, Insulin in the cerebrospinal fluid, Nature 215:1375–1376, 1967.Google Scholar
  41. 41.
    A. Geiger and J. Magnes, The isolation of the cerebral circulation and the perfusion of the brain in the living cat, Am. J. Physiol. 149:517–537, 1947.Google Scholar
  42. 42.
    L. G. Abood and A. Geiger, Breakdown of proteins and lipids during glucose-free perfusion of the cat’s brain, Am. J. Physiol. 182:557–560, 1955.Google Scholar
  43. 43.
    A. C. MacCuish, J. F. Munro, and L. J. P. Duncan, Treatment of hypoglycaemic coma with glucagon, intravenous dextrose, and mannitol infusion in a hundred diabetics, Lancet 2:946–949, 1970.Google Scholar
  44. 44.
    A. T. Maiolo, G. Bianchi Porro, P. Della Porta, and C. Galli, in “I Comi Metabolici” (Elio Polli, ed.), pp. 425–426, E. L. Pozzi, Rome, 1967.Google Scholar
  45. 45.
    E. Ramirez, J. Mariategui, and C. Bachmann, in “Biological Treatment of Mental Illness” (M. Rinkel, ed.), pp. 694–714, L. C. Page Co., New York, 1966.Google Scholar
  46. 46.
    W. Sacks, Mutarotase in erythrocytes: Isolation and properties, Science 158:498–499, 1967.Google Scholar
  47. 47.
    W. Sacks, Isolation and properties of mutarotase in erythrocytes, Arch. Biochem. Biophys. 123:507–513, 1968.Google Scholar
  48. 48.
    W. Sacks and S. Sacks, Glucose binding by human erythrocytes, Res. Commun. Chem. Pathol. Pharmacol. 2:35–52, 1971.Google Scholar
  49. 49.
    W. Sacks and S. Sacks, Cerebral metabolism of glucose anomers in human subjects in vivo, in “Second International Meeting of the International Society for Neurochemistry” (R. Paoletti, R. Fumagalli, and C. Galli, eds.), pp. 349–350, Tamburini Editore, Milan, Italy, 1969.Google Scholar
  50. 50.
    F. H. Kooy, Hyperglycemia in mental disorders, Brain 42:214–289, 1919.Google Scholar
  51. 51.
    S. A. Mann, Blood sugar studies in mental disorders, J. Ment. Sci. 71:443–473, 1925.Google Scholar
  52. 52.
    P. K. McCowan and J. H. Quastel, Blood sugar studies in abnormal states, Lancet 2:731–736, 1931.Google Scholar
  53. 53.
    W. F. Lorenz, Tolerance in dementia praecox and other mental diseases, Arch. Neurol. Psychiat. 8:184–196, 1922.Google Scholar
  54. 54.
    T. Raphael and J. P. Parsons, Blood sugar studies in dementia praecox and manic depressive insanity, Arch. Neurol. Psychiat. 5:687–709, 1921.Google Scholar
  55. 55.
    T. Raphael, W. G. Ferguson, and O. M. Searle, Constitution-factors in schizophrenia, Proc. Ass. Res. Nerv. Ment. Dis. 5:100–132, 1928.Google Scholar
  56. 56.
    G. W. Henry and E. Mangam, Blood in personality disorders, Arch. Neurol. Psychiat. 13:743–749 1925.Google Scholar
  57. 57.
    K. K. Drury and C. Farran-Ridge, Some observations on the types of blood sugar curve found in different forms of insanity, J. Ment. Sci. 71:8–29, 1925.Google Scholar
  58. 58.
    H. Freeman and R. N. Zaborenke, Relation of changes in carbohydrate metabolism to psychotic states, Arch. Neurol. Psychiat. 61:569–576, 1949.Google Scholar
  59. 59.
    D. A. Freedman, M. Sabshin, H. E. King, and B. O’Reardon, On the glucose tolerance test, and the effect on the formed elements of the blood of glucose and epinephrine in schizophrenia, J. Nerv. Ment. Dis. 119:31–42, 1954.Google Scholar
  60. 60.
    E. F. Gildea, V. L. McLean, and E. B. Man, Oral and intravenous dextrose tolerance curves of patients with manic-depressive psychosis, Arch. Neurol. Psychiat. 49:852–859, 1943.Google Scholar
  61. 61.
    H. E. Himwich, in “Chemical Pathology of the Nervous System” (J. Folch-Pi, ed.), pp. 470–496, Pergamon Press, New York, 1961.Google Scholar
  62. 62.
    L. D. Proctor, J. F. Dewan, and B. H. McNeel, Variations in glucose tolerance observations in schizophrenics before and after shock treatment, Am. J. Psychiat. 100:652–658, 1944.Google Scholar
  63. 63.
    F. M. Shattock, The somatic manifestations of schizophrenia. A clinical study of their significance, J. Ment. Sci. 96:32–142, 1950.Google Scholar
  64. 64.
    J. C. Thomas, B. Gilsenan, and E. J. C. Hewitt, Insulin shock therapy; Carbohydrate metabolism in schizophrenia (preliminary observations), J. Ment. Sci. 85:696–706, 1939.Google Scholar
  65. 65.
    T. L. Sourkes, “Biochemistry of Mental Disease,” p. 157, Harper & Row, New York, 1962.Google Scholar
  66. 66.
    H. Freeman, E. H. Rodnick, D. Shakow, and T. Lebeaux, The carbohydrate tolerance of mentally disturbed soldiers, Psychosom. Med. 6:311–317, 1944.Google Scholar
  67. 67.
    S. I. Schwab, Diagnostic value of blood sugar curves in neurology, Arch. Neurol. Psychiat. 8:401–411, 1922.Google Scholar
  68. 68.
    M. D. Altschule, “Bodily Physiology in Mental and Emotional Disorders,” pp. 134–135, Grune & Stratton, New York, 1953.Google Scholar
  69. 69.
    P. S. Mueller, G. R. Heninger, and R. K. McDonald, Intravenous glucose tolerance test in depression, Arch. Gen. Psychiat. 21:470–477, 1969.Google Scholar
  70. 70.
    H. M. Van Praag and B. Leijnse, The influence of some antidepressives of the hydrazine type on the glucose metabolism in depressed patients, Clin. Chim. Acta 8:466–475, 1963.Google Scholar
  71. 71.
    H. M. Van Praag and B. Leijnse, Depression, glucose tolerance, peripheral glucose uptake and their alterations under the influence of antidepressive drugs of the hydrazine type, Psychopharmacologia 8:67–78, 1965.Google Scholar
  72. 72.
    A. W. Hackfield, Are physiologic disturbances related to the acute psychotic process in the mentally ill? Arch. Neurol. Psychiat. 28:883–890, 1932.Google Scholar
  73. 73.
    L. J. Meduna, “Oneirophrenia. The Confusional State,” University of Illinois Press, Urbana, Ill., 1950.Google Scholar
  74. 74.
    A. Glynn, Effect of electrically induced convulsions on sugar tolerance of psychotic patients, Nature 155:366, 1945.Google Scholar
  75. 75.
    I. G. Pryce, Melancholia, glucose tolerance and body weight, J. Ment. Sci. 104:421–427, 1958.Google Scholar
  76. 76.
    I. G. Pryce, The relationship between glucose tolerance, body weight, and clinical state in melancholia, J. Ment. Sci. 104:1079–1092, 1958.Google Scholar
  77. 77.
    D. H. Henneman, M. D. Altschule, and R. M. Goncz, Carbohydrate metabolism in brain disease. II. Glucose metabolism in schizophrenic, manic-depressive, and involutional psychoses, Arch. Int. Med. 94:402–416, 1954.Google Scholar
  78. 78.
    M. D. Altschule, in “Chemical Pathology of the Nervous System” (J. Folch-Pi, ed.), pp. 497–501, Pergamon Press, New York, 1961.Google Scholar
  79. 79.
    D. H. Henneman, M. D. Altschule, and R. M. Goncz, Carbohydrate metabolism in brain disease. IV. Effect of hydrocortisone and corticotropin (ACTH) on the metabolic effects of administered glucose in patients with chronic schizophrenia and manic-depressive psychoses, Arch. Int. Med. 95:241–246, 1955.Google Scholar
  80. 80.
    M. D. Altschule, D. H. Henneman, P. D. Holliday, and R. M. Goncz, Carbohydrate metabolism in brain disease. VII. The effect of glutathione on carbohydrate intermediary metabolism in schizophrenic and manic-depressive psychoses, Arch. Int. Med. 99:22–27, 1957.Google Scholar
  81. 81.
    M. D. Altschule, E. P. Siegel, R. M. Goncz, and J. P. Murnane, Effect of pineal extracts on blood glutathione level in psychotic patients, Arch. Neurol. Psychiat. 71:615–618, 1954.Google Scholar
  82. 82.
    M. D. Altschule, Some effects of aqueous extracts of acetone-dried beef-pineal substance in chronic schizophrenia, New Engl. J. Med. 257:919–922, 1957.Google Scholar
  83. 83.
    M. D. Altschule, R. M. Goncz, and P. D. Holliday, Carbohydrate metabolism in brain disease. X. Lack of effect of chlorpromazine and reserpine on abnormal carbohydrate metabolism in chronic schizophrenia, Arch. Int. Med. 99:892–895, 1957.Google Scholar
  84. 84.
    G. M. Brown, B. Quarrington, and H. C. Stancer, A re-evaluation of glucose tolerance in schizophrenia, J. Psychiat. Res. 6:261–270, 1969.Google Scholar
  85. 85.
    B. Herzberg, A. Coppen, and V. Marks, Glucose tolerance in depression, Brit. J. Psychiat. 114:627–630, 1968.Google Scholar
  86. 86.
    H. Freeman, J. M. Looney, R. G. Hoskins, and C. G. Dyer, Results of insulin and epinephrine tolerance tests in schizophrenic patients and in normal subjects, Arch. Neurol. Psychiat. 49:195–203, 1943.Google Scholar
  87. 87.
    F. J. Braceland, L. J. Meduna, and J. A. Vaichulis, Delayed action of insulin in schizophrenia, Am. J. Psychiat. 102:108–110, 1945–1946.Google Scholar
  88. 88.
    H. Freeman, Resistance to insulin in mentally disturbed soldiers, Arch. Neurol. Psychiat. 56:74–78, 1946.Google Scholar
  89. 89.
    O. Lingjaerde, Failure in the utilization of carbohydrates in mental disease, Acta Psychiat. Neurol. Scand. Suppl. 106:302–310, 1956.Google Scholar
  90. 90.
    L. J. Meduna, F. J. Gerty, and V. G. Urse, Biochemical disturbances in mental disorders: Anti-insulin effect of blood in cases of schizophrenia, Arch. Neurol. Psychiat. 47:38–52, 1941.Google Scholar
  91. 91.
    M. M. Harris, Insulin sensitivity of patients with mental disease: Factors in their serum affecting action of insulin, Arch. Neurol. Psychiat. 48:761–773, 1942.Google Scholar
  92. 92.
    S. J. Tillim, Observations of insulin sensitivity, Am. J. Psychiat. 96:361–369, 1939.Google Scholar
  93. 93.
    B. S. Stell, Resistance to insulin and production of deep “shock” with insulin and metrazol, Psychiat. Quart. 19:438–449, 1945.Google Scholar
  94. 94.
    G. Franzen and L. Nilsson, A controlled study of the blood sugar response to insulin injection in schizophrenia, Acta Psychiat. Scand. 44:24–36, 1968.Google Scholar
  95. 95.
    D. H. Henneman, M. D. Altschule, and R. M. Gonzc, Carbohydrate metabolism in brain disease. V. Effect of epinephrine on intermediary carbohydrate metabolism in schizophrenic and manic-depressive psychoses, Arch. Int. Med. 95:594–600, 1955.Google Scholar
  96. 96.
    H. Holmgren and S. Wohlfahrt, Course of blood sugar curve in mentally healthy subjects and in schizophrenics during adrenalin tolerance tests for day and night, Acta Psychiat. Neurol (Suppl.) 46:132–144, 1947.Google Scholar
  97. 97.
    E. H. Parsons, E. F. Gildea, E. Ronzoni, and S. Z. Hulbert, Comparative lymphocytic and biochemical responses of patients with schizophrenia and affective disorders to electroshock, insulin shock, and epinephrine, Am. J. Psychiat. 105:573–580, 1949.Google Scholar
  98. 98.
    J. T. Shurley and H. M. Morris, Autonomic function in insulin coma therapy, J. Nerv. Ment. Dis. 114:532–537, 1951.Google Scholar
  99. 99.
    H. F. Borenz, D. B. Schuster, and G. J. Downey, The effect of insulin shock therapy on glucose metabolism in schizophrenia, J. Nerv. Ment. Dis. 110:507–517, 1949.Google Scholar
  100. 100.
    M. Somogyi, Studies of arteriovenous differences in blood sugar, J. Biol. Chem. 174:189–200, 1948.Google Scholar
  101. 101.
    H. McIlwain, “Biochemistry and the Central Nervous System,” 2nd ed., Little, Brown & Co., Boston, 1959.Google Scholar
  102. 102.
    G. Humphrey and R. V. Coxon, “The Chemistry of Thinking,” C. C. Thomas, Springfield, Ill., 1963.Google Scholar
  103. 103.
    S. Eiduson, E. Geller, A. Yuwiler, and B. T. Eiduson, “Biochemistry and Behavior,” D. Van Nostrand Co., Princeton, N. J., 1964.Google Scholar
  104. 104.
    H. F. Bradford, in “Applied Neurochemistry” (A. N. Davison and J. Dobbing, eds.), pp. 222–250, Blackwell Scientific Publications, Oxford, 1968.Google Scholar
  105. 105.
    W. Sacks, Cerebral oxidation of fumarate-2-C14 in normal human subjects, J. Appl. Physiol 9:43–48, 1956.Google Scholar
  106. 106.
    S. S. Kety and C. F. Schmidt, Quantitative measurements of cerebral blood flow in the macaque monkey, Am. J. Physiol. 138:421–431, 1943.Google Scholar
  107. 107.
    W. Sacks, Cerebral metabolism of isotopic glucose in normal human subjects, J. Appl. Physiol. 10:37–44, 1957.Google Scholar
  108. 108.
    W. Sacks, Cerebral metabolism of isotopic glucose in chronic mental disease, J. Appl. Physiol. 14:849–854, 1959.Google Scholar
  109. 109.
    W. Sacks, Cerebral metabolism of doubly labeled glucose in humans in vivo, J. Appl. Physiol. 20:117–130, 1965.Google Scholar
  110. 110.
    L. G. Abood, R. W. Gerard, J. Banks, and R. D. Tschirgi, Substrate and enzyme distribution in cells and cell fractions of the nervous system, Am. J. Physiol. 168:728–738, 1952.Google Scholar
  111. 111.
    C. E. Frohman, J. M. Orten, and A. H. Smith, Chromatographic determination of the acids of the citric acid cycle in tissues, J. Biol Chem. 193:277–283, 1951.Google Scholar
  112. 112.
    W. Sacks, Cerebral metabolism of isotopie lipid and protein derivatives in normal human subjects, J. Appl. Physiol. 12:311–318, 1958.Google Scholar
  113. 113.
    S. Berl, G. Takagaki, D. D. Clarke, and H. Waelsch, Metabolic compartments in vivo: Ammonia and glutamic acid metabolism in brain and liver, J. Biol Chem. 237:2562–2569, 1962.Google Scholar
  114. 114.
    S. S. Barkulis, A. Geiger, Y. Kawakiti, and V. Aguilar, A study on the incorporation of 14C derived from glucose into the free amino acids of the brain cortex, J. Neurochem. 5:339–348, 1960.Google Scholar
  115. 115.
    A. P. Sanders, W. D. Currie, and B. Woodhall, Protection of brain metabolism with glutathione, glutamate, λ-aminobutyrate and succinate, Proc. Soc. Exptl. Biol. Med. 130:1021–1027, 1969.Google Scholar
  116. 116.
    G. M. McKhann, R. W. Albers, L. Sokoloff, O. Mickelsen, and D. B. Tower, in “Inhibition in the Nervous System and Gamma-Aminobutyric Acid” (E. Roberts, C. F. Baxter, A. Van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 169–181, Pergamon Press, New York, 1960.Google Scholar
  117. 117.
    Y. Tsukada, S. Hirano, Y. Nagata, and T. Matsutani, in “Inhibition in the Nervous System and Gamma-Aminobutyric Acid” (E. Roberts, C. F. Baxter, A. Van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 163–168, Pergamon Press, New York, 1960.Google Scholar
  118. 118.
    H. H. Tallan, Studies on the distribution of N-acetyl-L-aspartic acid in brain, J. Biol. Chem. 224:41–45, 1957.Google Scholar
  119. 119.
    R. V. Margolis, S. S. Barkulis, and A. Geiger, A comparison between the incorporation of 14C from glucose into the N-acetyl-L-aspartic acid and aspartic acid in brain perfusion experiments, J. Neurochem. 5:379–382, 1960.Google Scholar
  120. 120.
    G. V. Aprikyan, N-acetyl-L-aspartic acid in the brain during excitation of the central nervous system, Dokl. Akad. Nauk Arm. SSR 35:213–216, 1962.Google Scholar
  121. 121.
    E. Roberts, M. Rothstein, and C. F. Baxter, Some metabolic studies of γ-aminobutyric acid, Proc. Soc. Exptl. Biol. Med. 97:796–802, 1958.Google Scholar
  122. 122.
    A. Lajtha, S. Berl, and H. Waelsch, in “Inhibition in the Nervous System and Gamma-Aminobutyric Acid” (E. Roberts, C. F. Baxter, A. Van Harreveld, C. A. G. Wiersma, W. R. Adey, and K. F. Killam, eds.), pp. 361–369, Pergamon Press, New York, 1960.Google Scholar
  123. 123.
    S. Berl, A. Lajtha, and H. Waelsch, Amino acid and protein metabolism. VI. Cerebral compartments of glutamic acid metabolism, J. Neurochem. 7:186–197, 1961.Google Scholar
  124. 124.
    G. Takagaki, S. Berl, D. D. Clarke, D. P. Purpura, and H. Waelsch, Glutamic acid metabolism in brain and liver during infusion with ammonia labeled with nitrogen-15, Nature 189:326, 1961.Google Scholar
  125. 125.
    S. Roberts and B. S. Morelos, Regulation of cerebral metabolism of amino acids. IV. Influence of amino acid levels on leucine uptake, utilization, and incorporation into proteins in vivo, J. Neurochem. 12:373–387, 1965.Google Scholar
  126. 126.
    A. J. Patel and R. Balázs, Development of metabolic compartmentation in rat brain, Biochem. J. 111:17P–18P, 1969.Google Scholar
  127. 127.
    H. Waelsch, S. Berl, C. A. Rossi, D. D. Clarke, and D. P. Purpura, Quantitative aspects of CO2 fixation in mammalian brain in vivo, J. Neurochem. 11:717–728, 1964.Google Scholar
  128. 128.
    M. K. Gaitonde, Rate of utilization of glucose and compartmentation of α-oxoglutarate and glutamate in rat brain, Biochem. J. 95:803–810, 1965.Google Scholar
  129. 129.
    J. E. Cremer, Amino acid metabolism in rat brain studied with 14C-labeled glucose, J. Neurochem. 11:165–185, 1964.Google Scholar
  130. 130.
    R. M. O’Neal and R. E. Koeppe, Precursors in vivo of glutamate, aspartate and their derivatives of rat brain, J. Neurochem. 13:835–847, 1966.Google Scholar
  131. 131.
    R. M. O’Neal, R. E. Koeppe, and E. I. Williams, Utilization in vivo of glucose and volatile fatty acids by sheep brain for the synthesis of acidic amino acids, Biochem. J. 101:591–597, 1966.Google Scholar
  132. 132.
    D. Garfinkel, A simulation study of the metabolism and compartmentation in brain of glutamate, aspartate, the Krebs cycle, and related metabolites, J. Biol. Chem. 241:3918–3929, 1966.Google Scholar
  133. 133.
    D. Garfinkel, A simulation study of brain compartments. I. Fuel sources, and GABA metabolism, Brain Res. 23:387–406, 1970.Google Scholar
  134. 134.
    C. J. van den Berg, P. Mela, and H. Waelsch, On the contribution of the tricarboxylic acid cycle to the synthesis of glutamate, glutamine and aspartate in brain, Biochem. Biophys. Res. Commun. 23:479–484, 1966.Google Scholar
  135. 135.
    C. J. van den Berg, L. Krzalic, P. Mela, and H. Waelsch, Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain, Biochem. J. 113:281–290, 1969.Google Scholar
  136. 136.
    R. Balázs, Y. Machiyama, B. J. Hammond, T. Julian, and D. Richter, The operation of the γ-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro, Biochem. J. 116:445–467, 1970.Google Scholar
  137. 137.
    S. Berl and D. D. Clarke, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 2, pp. 447–472, Plenum Press, New York, 1969.Google Scholar
  138. 138.
    W. Sacks, Cerebral metabolism of glucose-3-C14, pyruvate-l-C14 and lactate-1-C14 in mental disease, J. Appl. Physiol. 16:175–180, 1961.Google Scholar
  139. 139.
    C. J. van den Berg, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 3, pp. 355–356, Plenum Press, New York, 1970.Google Scholar
  140. 140.
    G. L. Searle, E. H. Strisower, and I. L. Chaikoff, Determination of rates of glucose oxidation in normal and diabetic dogs by a technique involving continuous injection of C14-glucose, Am. J. Clin. Pathol. 36:75–91, 1961.Google Scholar
  141. 141.
    D. B. Zilversmit, The design and analysis of isotope experiments, Am. J. Med. 29:832–848, 1960.Google Scholar
  142. 142.
    A. Geiger, Correlation of brain metabolism and function by the use of a brain perfusion method in situ, Physiol. Rev. 38:1–20, 1958.Google Scholar
  143. 143.
    A. Geiger, J. Magnes, R. M. Taylor, and M. Veralli, Effect of blood constituents on uptake of glucose and on metabolic rate of the brain in perfusion experiments, Am. J. Physiol. 177:138–149, 1954.Google Scholar
  144. 144.
    A. Geiger, Y. Kawakita, and S. S. Barkulis, Major pathways of glucose utilization in brain perfusion experiments in vivo and in situ, J. Neurochem. 5:323–338, 1960.Google Scholar
  145. 145.
    C. F. Schmidt, S. S. Kety, and H. H. Pennes, The gaseous metabolism of the brain of the monkey, Am. J. Physiol. 143:33–52, 1945.Google Scholar
  146. 146.
    D. E. Cameron, H. E. Himwich, S. R. Rosen, and J. Fazekas, Oxygen consumption in the psychoses of the senium, Am. J. Psychiat. 97:566–572, 1940.Google Scholar
  147. 147.
    S. S. Kety, in “Methods in Medical Research” (V. R. Potter, ed.), Vol. 1, pp. 204–217, Year Book Publishers, Chicago, 1948.Google Scholar
  148. 148.
    C. Allweis and J. Magnes, Metabolism of the perfused cat brain during metrazol convulsions and electroshock, Nature 181:626–627, 1958.Google Scholar
  149. 149.
    A. Geiger, N. Horvath, and Y. Kawakita, The incorporation of 14C derived from glucose into the proteins of the brain cortex, at rest and during activity, J. Neurochem. 5:311–322, 1960.Google Scholar
  150. 150.
    R. K. Andjus, K. Suhara, and H. A. Sloviter, An isolated, perfused rat brain preparation, its spontaneous and stimulated activity, J. Appl. Physiol. 22:1033–1039, 1967.Google Scholar
  151. 151.
    L. J. King, O. H. Lowry, J. V. Passonneau, and V. Venson, Effects of convulsants on energy reserves in the cerebral cortex, J. Neurochem. 14:599–611, 1967.Google Scholar
  152. 152.
    J. Folbergová, J. V. Passonneau, O. H. Lowry, and D. W. Schulz, Glycogen, ammonia and related metabolites in the brain during seizures evoked by methionine sulphoximine, J. Neurochem. 16:191–203, 1969.Google Scholar
  153. 153.
    B. Sacktor, J. E. Wilson, and C. G. Tiekert, Regulation of glycolysis in brain, in situ, during convulsions, J. Biol. Chem. 241:5071–5075, 1966.Google Scholar
  154. 154.
    F. N. Minard and I. K. Mushahwar, The effect of periodic convulsions induced by 1,1-dimethylhydrazine on the synthesis of rat brain metabolites from [2–14C] glucose, J. Neurochem. 13:1–11, 1966.Google Scholar
  155. 155.
    J. E. Cremer, Studies on brain-cortex slices. Differences in the oxidation of 14C-labelied glucose and pyruvate revealed by the action of triethyltin and other toxic agents, Biochem. J. 104:212–222, 1967.Google Scholar
  156. 156.
    M. K. Gaitonde, D. R. Dahl, and K. A. C. Elliott, Entry of glucose carbon into amino acids of rat brain and liver in vivo after injection of uniformly 14C-labeled glucose, Biochem. J. 94:345–352, 1965.Google Scholar
  157. 157.
    G. Bianchi Porro, A. T. Maiolo, C. Galli, and E. E. Polli, Brain energy metabolism in hepatic coma, Round Table on Neurochemistry of Hepatic Coma, Second International Meeting of the International Society for Neurochemistry, Milan, Italy, September 1–5, 1969.Google Scholar
  158. 158.
    C. O. Walker and S. Schenker, Pathogenesis of hepatic encephalopathy, Am. J. Clin. Nutrition 23:619–632, 1970.Google Scholar
  159. 159.
    L. Zieve, Pathogenesis of hepatic coma, Arch. Int. Med. 118:211–223, 1966.Google Scholar
  160. 160.
    C. O. Walker, D. W. McCandless, J. D. McGarry, and S. Schenker, Cerebral energy metabolism in short-chain fatty acid-induced coma, J. Lab Clin. Med. 76:569–583, 1970.Google Scholar
  161. 161.
    P. J. Cohen, S. C. Alexander, T. C. Smith, M. Reivich, and H. Wollman, Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man, J. Appl. Physiol. 23:183–189, 1967.Google Scholar
  162. 162.
    N. A. Lassen and O. Munck, The cerebral blood flow in man determined by the use of radioactive krypton, Acta Physiol. Scand. 33:30–49, 1955.Google Scholar
  163. 163.
    S. C. Alexander, P. J. Cohen, H. Wollman, T. C. Smith, M. Reivich, and R. A. Vander Molen, Cerebral carbohydrate metabolism during hypocarbia in man. Studies during nitrous oxide anesthesia, Anesthesiology 26:624–632, 1965.Google Scholar
  164. 164.
    D. D. Gilboe, D. H. Minsker, and K. Huh, in “Ontogenesis of the Brain” (L. Jilek and S. Trojan, eds.), pp. 205–213, Charles University, Prague, 1967.Google Scholar
  165. 165.
    D. D. Gilboe, R. L. Andrews, and G. Dardenne, Factors affecting glucose uptake by the isolated dog brain, Am. J. Physiol. 219:767–773, 1970.Google Scholar
  166. 166.
    D. H. Minsker, D. D. Gilboe, and W. E. Stone, Effects of shock and anoxia on nucleotides and creatine phosphate in the isolated brain of the dog, J. Neurochem. 17:253–259, 1970.Google Scholar
  167. 167.
    A. Geiger, G. Gombos, and S. Otzuki, in “Selective Vulnerability of the Brain in Hypoxaemia” (J. P. Schade and W. H. McMenemey, eds.), pp. 295–304, F. A. Davis Co., Philadelphia, 1963.Google Scholar
  168. 168.
    L. Jilek and S. Trojan, The effect of repeated intraperitoneal glucose administration during early postnatal development of resistance of the central nervous system to anoxia, Physiol. Bohemoslov. 13:504–509, 1964.Google Scholar
  169. 169.
    J. S. Meyer, T. Ryu, M. Toyoda, Y. Shinohara, I. Wiederholt, and B. Guiraud, Evidence for a Pasteur effect regulating cerebral oxygen and carbohydrate metabolism in man, Neurology 19:954–966, 1969.Google Scholar
  170. 170.
    O. M. Reinmuth, E. Beteta, and P. Scheinberg, Total cerebral blood flow and metabolism in cerebral vascular disease in relation to hypertension, Neurology 16:815–825, 1966.Google Scholar
  171. 171.
    U. Gottstein, A. Bernsmeier, and I. Sedlmeyer, Der Kohlenhydratstoffwechsel des menschlichen Gehirns. II. Untersuchungen mit substratspezifischen enzymatischen Methoden bei Kranken mit verminderter Hirndurchblutung auf dem Boden einer Arteriosklerose der Hirngefässe, Klin. Wschr. 42:310–313, 1964.Google Scholar
  172. 172.
    U. Gottstein, K. Held, H. Sebening, and G. Walpurger, Der Glucoseverbrauch des menschlichen Gehirns unter dem Einfluss intravenöser Infusionen von Glucose, Glucagon und Glucose-Insulin, Klin. Wschr. 43:965–975, 1965.Google Scholar
  173. 173.
    P. Novack, B. Goluboff, L. Bortin, A. Soffe, and H. A. Shenkin, Studies of the cerebral circulation and metabolism in congestive heart failure, Circulation 7:724–731, 1953.Google Scholar
  174. 174.
    S. Sato, M. Tateyama, C. Sasamori, S. Kogayashi, Y. Chiba, and Y. Takeda, On the intermediate metabolism of carbohydrates in the brain of hypertensive and postapoplectic patients, Tohoku J. Exptl. Med. 81:207–214, 1963.Google Scholar
  175. 175.
    S. Shimojyo, P. Scheinberg, and O. Reinmuth, Cerebral blood flow and metabolism in the Wernicke-Korsakoff syndrome, J. Clin. Invest. 5:849–854, 1967.Google Scholar
  176. 176.
    M. K. Roach, The effect of ethanol on the synthesis of amino acids from glucose in hamster brain, Life Sci. 9:437–441, 1970.Google Scholar
  177. 177.
    M. J. H. Smith and P. K. Smith, “The Salicylates: A Critical Bibliographic Review,” Interscience Publishers, New York, 1966.Google Scholar
  178. 178.
    P. K. Smith, The pharmacology of salicylates and related compounds, Ann. N. Y. Acad. Sci. 86:38–63, 1960.Google Scholar
  179. 179.
    S. C. Alexander and A. L. Smith, Cerebral blood flow and metabolism during acute salicylate intoxication in the goat, J. Appl. Physiol. 26:745–751, 1969.Google Scholar
  180. 180.
    J. H. Thurston, P. G. Pollock, S. K. Warren, and E. M. Jones, Reduced brain glucose with normal plasma glucose in salicylate poisoning, J. Clin. Invest. 49:2139–2145, 1970.Google Scholar
  181. 181.
    O. E. Owen, A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahili, Jr., Brain metabolism during fasting, J. Clin. Invest. 46:1589–1595, 1967.Google Scholar
  182. 182.
    L. Sokoloff, in “Handbook of Physiology” (J. Field, H. W. Magoun, and V. E. Hall, eds.), Vol. 3, pp. 1843–1864, Waverly Press, Baltimore, 1960.Google Scholar
  183. 183.
    C. Allweis, T. Landau, M. Abeles, and J. Magnes, The oxidation of uniformly labelled albumin-bound palmitic acid to CO2 by the perfused cat brain, J. Neurochem. 13:795–804, 1966.Google Scholar
  184. 184.
    E. H. Wolf and J. J. Spitzer, Oxidation of palmitate from the CSF during ventriculo-cisternal perfusion, Fed. Proc. 30:207, 1971.Google Scholar
  185. 185.
    A. Geiger, G. Gombos, S. Otsuki, V. Aguilar, B. Gothelf, W. Scruggs, and G. Whitney, The effect of drugs on the “metabolic pattern” of the brain. The effect of isoniazid, iproniazide, and phenylcyclopropylamine on the utilization of endogenous sources of the brain in the production of respiratory CO2, Internat. J. Neuropharmacol. 1:283–294, 1962.Google Scholar
  186. 186.
    S. S. Hotta and J. M. Seventko Jr., The hexosemonophosphate shunt and glutathione reduction in guinea pig brain tissue: Changes caused by chlorpromazine, amytal, and malonate, Arch. Biochem. Biophys. 123:104–108, 1968.Google Scholar
  187. 187.
    S. Otsuki, S. Watanabe, K. Ninomiya, T. Hoaki, and N. Okumura, Correlation between [U-14C] glucose metabolism and function in perfused cat brain, J. Neurochem. 15:859–865, 1968.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • William Sacks
    • 1
  1. 1.Research CenterRockland State HospitalOrangeburgUSA

Personalised recommendations