Galactosemia: Biochemistry, Genetics, Pathophysiology, and Developmental Aspects

  • H. M. Kalckar
  • J. H. Kinoshita
  • G. N. Donnell


The manifold problems emerging from studies of the disease galactosemia have stimulated investigations in many fields of medicine. The term “galactosemia” means simply “galactose in the blood.” In animals, galactosemia can be achieved by overloading the organism with this sugar by feeding a diet rich in galactose. In man, one has encountered two types of congenital disease, both called “galactosemia.” One type of hereditary galactosemia is caused by a defect in galactokinase, which catalyzes the first step in galactose metabolism. The other, more common, type is caused by a defect in galactose-1-phosphate uridylyl transferase, which catalyzes the second step of this pathway. Accumulation of free galactose, as well as its reduction product, occurs with either type of galactosemia in patients who consume normal amounts of milk. However, the more prevalent type, in which the second step in galactose metabolism is blocked also gives rise to accumulation of galactose-1-phosphate. With this type, the pathophysiology is particularly complex in that it includes mental retardation, a symptom not found in galactokinase deficiency. The pathophysiology of galactosemia has been studied extensively in young animals that are maintained on diets including abnormally high amounts of galactose. However, aside from cataract of the lens, the pathogenesis of the disease remains largely unexplained.


Aldose Reductase Galactose Metabolism Classical Galactosemia Rabbit Lens Epimerase Activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Morse, E. M. Lederberg, and J. Lederberg, Transduction in Escherichia coli K-12, Genetics 41:143, 1956.Google Scholar
  2. 2.
    C. K. Mathai, M. E. Q. Pilson, and E. Beutler, Galactose metabolism in the sea lion, Proc. Soc. Exptl. Biol. Med. 123:603–604, 1966.Google Scholar
  3. 3.
    M. Malone and J. Folch-Pi, Unpublished paper.Google Scholar
  4. 4.
    R. K. Boutwell, R. P. Geyer, C. A. Elvehjem, and E. B. Hart, Further studies on the comparative value of butterfat and vegetable oils and oil margarines, J. Nutrition 26:601–609, 1943.Google Scholar
  5. 5.
    S. N. Varma, V. Schwarz, and I. M. N. Simpson, The role of dietary lactose in the synthesis of brain galactolipids, Biochem. J. 85:546–549, 1962.Google Scholar
  6. 6.
    J. Folch-Pi, Composition of the brain in relation to maturation, in “Biochemistry of the Developing Nervous System” (H. Waelsch, ed.), p. 121, Academic Press, New York, 1955.Google Scholar
  7. 7.
    A. S. Keston, Occurrence of mutarotase in animals: Its proposed relationship to transport and reabsorption of sugars and insulin, Science 120:355–356, 1954.Google Scholar
  8. 8.
    J. M. Bailey, P. H. Fishman, and P. G. Pentchev, Studies on mutarotases, J. Biol. Chem. 245:559–563, 1970.Google Scholar
  9. 9.
    R. Levine, M. Goldstein, S. Klein, and B. Huddlestun, The action of insulin on the distribution of galactose in eviscerated nephrectomized dogs, J. Biol. Chem. 179:985–986, 1949.Google Scholar
  10. 10.
    B. Rotman, A. K. Ganesan, and R. Guzman, Transport systems for galactose and galactosides in Escherichia coli. II, J. Mol. Biol. 36:247–260, 1968.Google Scholar
  11. 11.
    H. C. P. Wu, W. Boos, and H. M. Kalckar, Role of the galactose transport system in the retention of intracellular galactose in Escherichia coli, J. Mol. Biol. 41:109–120, 1969.Google Scholar
  12. 12.
    G. Hazelbauer and J. Adler, Chemotaxis—role of galactose binding protein in E. coli, Nature New Biol. 230:101–104, 1971.Google Scholar
  13. 13.
    H. M. Kalckar, High affinity periplasmic galactose binders in E. coli mutants: Correlation with transport and Chemotaxis, First Jean Weigle Memorial Lecture, Division of Biology, California Institute of Technology, 1970; Science 174:557–565, 1971.Google Scholar
  14. 14.
    W. Boos, The galactose binding protein and its relationship to the β-methylgalactoside permease from Escherichia coli, Europ. J. Biochem. 10:66–73, 1969.Google Scholar
  15. 15.
    Y. Anraku, The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli, J. Biol. Chem. 242:793–800, 1967.Google Scholar
  16. 16.
    K. Wallenfels and K. Herrmann, Aldose-1-epimerase (mutarotase) aus E. coli, Biochem. Z. 343:294–306, 1965.Google Scholar
  17. 17.
    L. F. Leloir, The metabolism of hexosephosphates, in “Phosphorus Metabolism” (W. D. McElroy and B. Glass, eds.), Chapter II, Vol. I, pp. 67–93, Johns Hopkins Press, Baltimore, 1951.Google Scholar
  18. 18.
    H. M. Kalckar, Uridinediphosphogalactose—metabolism, enzymology and biology, in “Advances in Enzymology” (F.F. Nord, ed.), Vol. XX, pp. 111–134, Interscience Publishers, New York, 1958.Google Scholar
  19. 19.
    H. W. Kosterlitz, The structure of the galactosephosphate present in the liver during galactose assimilation, Biochem. J. 37:318–321, 1943.Google Scholar
  20. 20.
    C. E. Cardini and L. F. Leloir, Enzymic phosphorylation of galactosamine and galactose, Arch. Biochem. Biophys. 45:55–64, 1953.Google Scholar
  21. 21.
    S. M. Howard and M. R. Heinrich, The anomeric specificity of yeast galactokinase, Arch. Biochem. Biophys. 110:395–400, 1965.Google Scholar
  22. 22.
    D. G. Walker and H. H. Khan, Some properties of galactokinase in developing rat liver, Biochem. J. 108:169–175, 1968.Google Scholar
  23. 23.
    V. Schwarz, L. Golberg, G. M. Komrower, and A. Holzel, Some disturbances of erythrocyte metabolism in galactosemia, Biochem. J. 62:34–40, 1956.Google Scholar
  24. 24.
    W. G. Ng, G. N. Donnell, and W. R. Bergren, Galactokinase activity in human erythrocytes of individuals at different ages, J. Lab. Clin. Med. 66:115–121, 1965.Google Scholar
  25. 25.
    P. Cuatrecasas and S. Segal, Mammalian galactokinase,J. Biol. Chem. 240:2382–2388, 1965.Google Scholar
  26. 26.
    E. A. Robinson, H. M. Kalckar, H. Troedsson, and K. Sanford, Metabolic inhibition of mammalian uridine diphosphate galactose-4-epimerase in cell cultures and in tumor cells, J. Biol. Chem. 241:2737–2745, 1966.Google Scholar
  27. 27.
    L. P. Kozak and W. W. Wells, Effect of galactose on energy and phospholipid metabolism in the chick brain, Arch. Biochem. Biophys. 135:371–377, 1969.Google Scholar
  28. 28.
    H. M. Kalckar, E. P. Anderson, and K. J. Isselbacher, Galactosemia, a congenital defect in a nucleotide transferase: A preliminary report, Proc. Natl. Acad. Sci. 42:49–51, 1956.Google Scholar
  29. 29.
    D. Bertoli and S. Segal, Developmental aspects and some characteristics of mammalian galactose-1-phosphate uridylyl transferase, J. Biol. Chem. 241:4023–4029, 1966.Google Scholar
  30. 30.
    J. D. Russell and R. DeMars, UDP-glucose: α-D-galactose-1-phosphate uridylyl transferase activity in cultured human fibroblasts, Biochem- Genet. 1:11–24, 1967.Google Scholar
  31. 31.
    H. de Robichon-Szulmajster, Induction of enzymes of the galactose pathway in mutants of Saccharomyces cerevisiae, Science 127:28–29, 1958.Google Scholar
  32. 32.
    H. M. Kalckar, H. de Robichon-Szulmajster, and K. Kurahashi, Galactose metabolism in mutants of man and microorganisms, in Proc. Internat. Symp. Enzyme Chem., Tokyo, 1957.Google Scholar
  33. 33.
    H. M. Kalckar, K. Kurahashi, and E. Jordan, Hereditary defects in galactose metabolism in Escherichia coli mutants. I. Determination of enzyme activities, Proc. Natl. Acad. Sci. 45:1776–1786, 1959.Google Scholar
  34. 34.
    G. Buttin, Mécanismes régulateurs dans la biosynthèse des enzymes du métabolisme du galactose chez Escherichia coli Kl2, I, J. Mol. Biol. 7:164–182, 1963.Google Scholar
  35. 35.
    M. B. Yarmolinsky and H. Wiesmeyer, Regulation by coliphage lambda of the expression of the capacity to synthesize a sequence of host enzymes, Proc. Natl. Acad. Sci. 46:1626–1645, 1960.Google Scholar
  36. 36.
    E. S. Maxwell, K. Kurahashi, and H. M. Kalckar, Purification of liver galactose-1-phosphate uridylyl transferase, in “Methods of Enzymology” (S. P. Colowick and N. O. Kaplan, eds.), Vol. V, pp. 180–181, Academic Press, New York, 1962.Google Scholar
  37. 37.
    J. S. Mayes and R. G. Hanson, Galactose-1-phosphate uridylyl transferase, in “Methods of Enzymology” (W. A. Wood, ed.), Vol. IX, pp. 708–713, Academic Press, New York, 1966.Google Scholar
  38. 38.
    S. Segal, S. Rogers, and P. G. Holtzapple, Liver galactose-1-phosphate uridylyl transferase: Activity in normal and galactosemic subjects, J. Clin. Invest. 50:500–506, 1971.Google Scholar
  39. 39.
    E. Beutler and M. C. Baluda, Biochemical properties of human red cell galactose-1-phosphate uridylyl transferase (UDP glucose: a-D-galactose-1-phosphate uridylyl transferase E.C. from normal and mutant subjects, J. Lab. Clin. Med. 67:947–954, 1966.Google Scholar
  40. 40.
    D. Keppler and K. Decker, Studies on the mechanism of galactosamine hepatitis: Accumulation of galactosamine-l-phosphate and its inhibition of UDP-glucose pyrophosphorylase, Europ. J. Biochem. 10:219–225, 1969.Google Scholar
  41. 41.
    S. Segal, Personal communication.Google Scholar
  42. 42.
    E. S. Maxwell, The enzymic interconversion of uridine diphosphogalactose and uridine diphosphoglucose, J. Biol. Chem. 229:139–151, 1957.Google Scholar
  43. 43.
    K. J. Isselbacher and S. M. Krane, Studies on the mechanism of the inhibition of galactose oxidation by ethanol, J. Biol. Chem. 236:2394–2398, 1961.Google Scholar
  44. 44.
    K. J. Isselbacher, E. P. Anderson, K. Kurahashi, and H. M. Kalckar, Congenital galactosemia, a single enzymatic block in galactose metabolism, Science 123:635–636, 1956.Google Scholar
  45. 45.
    W. G. Ng, G. N. Donnell, J. E. Hodgman, and W. R. Bergren, Differences in uridine diphosphate galactose-4-epimerase between hemolysates of newborns and of adults, Nature 214:283–284, 1967.Google Scholar
  46. 46.
    E. S. Maxwell, H. M. Kalckar, and R. M. Burton, Galactowaldenase and the enzymic incorporation of galactose-1-phosphate in mammalian tissues, Biochim. Biophys. Acta 18:444–445, 1955.Google Scholar
  47. 47.
    J. B. Shatton, M. Gruenstein, H. Shay, and S. Weinhouse, Enzymes of galactose synthesis in mammary gland and mammary tumors of the rat, J. Biol. Chem. 240:22–28, 1965.Google Scholar
  48. 48.
    R. Cohn and S. Segal, Some characteristics and developmental aspects of rat uridine diphosphogalactose 4-epimerase, Biochim. Biophys. Acta 171:333–341, 1969.Google Scholar
  49. 49.
    H. Nikaido, Studies in the biosynthesis of cell wall polysaccharide in mutant strains of Salmonella. II, Proc. Natl. Acad. Sci. 48:1542–1548, 1962.Google Scholar
  50. 50.
    M. J. Osborn, S. M. Rosen, L. Rothfield, and B. L. Horecker, Biosynthesis of bacterial lipopolysaccharide. I. Enzymatic incorporation of galactose in a mutant strain of Salmonella, Proc. Natl. Acad. Sci. 48:1831–1838, 1962.Google Scholar
  51. 51.
    A. M. C. Rapin, H. M. Kalckar, and L. Alberico, The metabolic basis for masking of receptor sites on E. coli Kl2 for C21, a lipopolysaccharide core-specific phage, Arch. Biochem. Biophys. 128:95–105, 1968.Google Scholar
  52. 52.
    E. S. Maxwell, H. de Robichon-Szulmajster, and H. M. Kalckar, Yeast uridine diphosphogalactose 4-epimerase, correlation between activity and fluorescence, Arch. Biochem. Biophys. 78:407–415, 1958.Google Scholar
  53. 53.
    E. Jordan, M. B. Yarmolinsky, and H. M. Kalckar, Control of inducibility of enzymes of the galactose sequence in Escherichia coli, Proc. Natl. Acad. Sci. 48:32–40, 1962.Google Scholar
  54. 54.
    E. S. Maxwell and H. de Robichon-Szulmajster, Purification of uridine diphosphate galactose-4-epimerase from yeast, and the identification of protein-bound diphospho-pyridine nucleotide, J.Biol. Chem. 235:308–312, 1960.Google Scholar
  55. 55.
    D. B. Wilson and D. S. Hogness, The enzymes of the galactose Operon in Escherichia coli, J. Biol. Chem. 239:2469–2481, 1964.Google Scholar
  56. 56.
    A. U. Bertland, Y. Seyama, and H. M. Kalckar, Concerted reduction of yeast uridine diphosphate gaIactose-4-epimerase, Biochemistry 10:1545–1551, 1971.Google Scholar
  57. 57.
    H. M. Kalckar, A. U. Bertland, and B. Bugge, The reductive inactivation of UDP-galactose-4-epimerase from yeast and E. coli, Proc. Natl. Acad. Sci. 65:1113–1119, 1970.Google Scholar
  58. 58.
    W. L. Adair, R. W. Gaugler, and O. Gabriel, Biological mechanisms involved in the formation of deoxysugars: The metabolic fate of TDPG in E. coli 045 and E. coli Y-10, Fed. Proc. 30: Abst. 376, 1971.Google Scholar
  59. 59.
    L. F. Leloir, Two decades of research on the biosynthesis of saccharides. Nobel lecture, Science 172:1299–1303, 1971.Google Scholar
  60. 60.
    H. Nikaido, Bacterial cell wall, in “The Specificities of Cell Surfaces” (Davis and Warren, eds.), pp. 3–30, Prentice-Hall, Englewood Cliffs, N. J. 1965.Google Scholar
  61. 61.
    I. T. Oliver, Inhibitor studies on uridinediphosphoglucose pyrophosphorylase, Biochim. Biophys. Acta 52:75–81, 1961.Google Scholar
  62. 62.
    C. Villar-Palasi and J. Larner, Uridinediphosphate glucose pyrophosphorylase from skeletal muscle, Arch. Biochem. Biophys. 86:61, 1960.Google Scholar
  63. 63.
    K. K. Tsuboi, K. Fukunaga, and J. C. Petricciani, Purification and specific kinetic properties of erythrocyte uridine diphosphate glucose pyrophosphorylase, J. Biol. Chem. 244:1008–1015, 1969.Google Scholar
  64. 64.
    J. Knop and R. G. Hansen, Crystallization and properties of uridine diphosphate glucose pyrophosphorylase from liver, J. Biol. Chem. 241:2968–2975, 1966.Google Scholar
  65. 65.
    V. S. Steelman and K. E. Ebner, The enzymes of lactose biosynthesis, Biochim. Biophys. Acta 128:92, 1966.Google Scholar
  66. 66.
    J. Knop and R. G. Hansen, UDPG PPlase uridine diphosphate glucose pyrophosphorylase. IV. Crystallization and properties of the enzyme from human liver, J. Biol. Chem. 245: 2499–2505, 1970.Google Scholar
  67. 67.
    K. J. Isselbacher, A mammalian UDPgalactose pyrophosphorylase, J. Biol. Chem. 232:429, 1958.Google Scholar
  68. 68.
    S. Levine, T. A. Gillett, E. Hageman, and R. G. Hansen, UDPgalactose pyrophosphorylase. II. Polymeric and subunit structure, J. Biol. Chem. 244:5729, 1969.Google Scholar
  69. 69.
    J. L. Strominger, H. M. Kalckar, J. Axelrod, and E. S. Maxwell, Enzymatic oxidation of UDPGlc to UDPGA, J. Am. Chem. Soc. 76:6411, 1954.Google Scholar
  70. 70.
    J. L. Strominger, E. S. Maxwell, J. Axelrod, and H. M. Kalckar, Enzymatic formation of uridine diphosphoglucuronic acid, J. Biol. Chem. 224:79, 1957.Google Scholar
  71. 71.
    G. L. Nelsestuen and S. Kirkwood, The mechanism of action of UDPGlc dehydrogenase, Fed. Abst. 30: No. 375, 1971.Google Scholar
  72. 72.
    J. Zalitis and D. S. Feingold, Purification and properties of UDPG dehydrogenase from beef liver, Arch. Biochem. Biophys. 132:457–465, 1969.Google Scholar
  73. 73.
    M. Uram, Studies on structure and activity of UDPGlc dehydrogenase from bovine liver, Fed. Abst. 30: No. 1552, 1971.Google Scholar
  74. 74.
    E. F. Neufeld and C. W. Hall, Inhibition of UDP-D-glucose dehydrogenase with UDP-D-xylose, Biochem. Biophys. Res. Commun. 19:456–461, 1965.Google Scholar
  75. 75.
    R. A. Darrow and W. M. Hendrickson, UDPGlc dehydrogenase from chick embryo: Tissue-specific forms of the enzyme, Biochem. Biophys. Res. Commun. 43:1125–1131, 1971.Google Scholar
  76. 76.
    R. A. Darrow and W. M. Hendrickson, Unpublished paper, 1970.Google Scholar
  77. 77.
    A. Markovitz, J. A. Cifonelli, and A. Dorfman, The biosynthesis of hyaluronic acid by group A Streptococcus. VI. Biosynthesis from uridine nucleotides in cell-free extracts, J. Biol. Chem. 234:2343, 1959.Google Scholar
  78. 78.
    G. T. Miss and E. E. B. Smith, Biosynthesis of pneumococcal capsular polysaccharides, Fed. Proc. 21:1089–1092, 1962.Google Scholar
  79. 79.
    R. Schmid, J. Axelrod, L. Hammaker, and R. L. Swarm, Congenital jaundice in rats, due to a defect in glucuronide formation, J. Clin. Invest. 37:1123, 1958.Google Scholar
  80. 80.
    A. K. Brown and W. W. Zuelzer, Studies on the neonatal development of the glucuronide conjugating system, J. Clin. Invest. 37:332–340, 1958.Google Scholar
  81. 81.
    R. M. Burton, M. A. Sodd, and R. O. Brady, The incorporation of galactose into galactolipids, J. Biol. Chem. 233:1053, 1958.Google Scholar
  82. 82.
    W. W. Cleland and E. P. Kennedy, The enzymatic synthesis of psychosine, J. Biol. Chem. 235:45–51, 1960.Google Scholar
  83. 83.
    R. O. Brady, Studies on the total enzymatic synthesis of cerebrosides, J. Biol. Chem. 237:PC2416–2417, 1962.Google Scholar
  84. 84.
    P. Morell and N. S. Radin, Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid, Biochemistry 8:506, 1969.Google Scholar
  85. 85.
    S. Basu, A. M. Schultz, M. Basu, and S. Roseman, Enzymatic synthesis of galactocerebroside by a galactosyltransferase from embryonic chicken brain, J. Biol. Chem. 246:4272–4279, 1971.Google Scholar
  86. 86.
    S. Basu, B. Kaufman, and S. Roseman, Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brain, J. Biol. Chem. 243:5802–5804, 1968.Google Scholar
  87. 87.
    J. N. Kanfer, Incorporation of [14C] UDPglucose and [14C] UDP galactose into carbohydrate-containing sphingolipids by a rat brain particulate fraction, Lipids 4:163–165, 1969.Google Scholar
  88. 88.
    G. H. de Vries and W. T. Norton, Evidence for the absence of myelin and the presence of galactolipid in an axon-enriched fraction from bovine central nervous system, Fed. Proc. 303:Abst. 1142, 1971.Google Scholar
  89. 89.
    S. Hakomori and R. W. Jeanloz, Isolation of a glycolipid containing fucose, galactose, glucose and glucosamine from human cancerous tissue, J. Biol. Chem. 239:PC3606–3607, 1964.Google Scholar
  90. 90.
    S. Hakomori, Cell density-dependent changes of glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells, Proc. Natl. Acad. Sci. 67:1741–1747, 1970.Google Scholar
  91. 91.
    S. Hakomori, S. Kijimoto, and B. Siddiqui, Glycolipids of normal and transformed cells, and loss of this response in transformed cells, Fed. Proc. 30: Symp. Abst. 1043. 1971.Google Scholar
  92. 92.
    W. M. Watkins and W. Z. Hassid, The synthesis of lactose by particulate enzyme preparations from guinea pig and bovine mammary glands, J. Biol. Chem. 237:1432, 1962.Google Scholar
  93. 93.
    U. Brodbeck and K. E. Ebner, Resolution of a soluble lactose synthetase into two protein components, J.Biol. Chem. 241:762, 1966.Google Scholar
  94. 94.
    U. Brodbeck, W. L. Denton, N. Tanahashi, and K. E. Ebner, The isolation and identification of the B protein of lactose synthetase as α-lactalbumin, J. Biol. Chem. 242:1391, 1967.Google Scholar
  95. 95.
    K. Brew, T. C. Vanaman, and R. L. Hill, The role of a-lactalbumin and the A protein in lactose synthetase, Proc. Natl. Acad. Sci. 59:491, 1968.Google Scholar
  96. 96.
    P. Cuatrecasas and S. Segal, Mammalian galactose dehydrogenase. I. Identification and purification in rat liver, J. Biol. Chem. 241:5904–5909, 1966.Google Scholar
  97. 97.
    P. Cuatrecasas and S. Segal, Mammalian galactose dehydrogenase. II. Properties, substrate specificity and developmental changes, J. Biol. Chem. 241:5910–5918, 1966.Google Scholar
  98. 98.
    W. R. Bergren, W. G. Ng, G. N. Donnell, and S. P. Markey, Identification of urinary galactonic acid, Science 176:683–684, 1972.Google Scholar
  99. 99.
    P. Cuatrecasas and S. Segal, Galactose conversion to D-xylulose; an alternative route of galactose metabolism, Science 153:549, 1966.Google Scholar
  100. 100.
    S. K. Srivastava and E. Beutler, Auxiliary pathways of galactose metabolism, J. Biol. Chem. 244:6377, 1969.Google Scholar
  101. 101.
    S. Segal and P. Cuatrecasas, The oxidation of 14C-galactose by patients with congenital galactosemia, Am. J. Med. 44:340, 1968.Google Scholar
  102. 102.
    H. G. Hers, “Le metabolisme de fructose,” Arsica, Brussels, 1957.Google Scholar
  103. 103.
    H. G. Hers, Aldose reductase, Biochim. Biophys. Acta 37:120–126, 1960.Google Scholar
  104. 104.
    R. van Heyningen, Formation of polyols by the lens of the rat with sugar cataract, Nature 184:194–195, 1959.Google Scholar
  105. 105.
    R. van Heyningen, Metabolism of xylose by the lens, Biochem. J. 73:197–199, 1959.Google Scholar
  106. 106.
    G. I. Moonsommy and M. A. Stewart, Purification and properties of brain aldose reductase and L-hexonate dehydrogenase, J. Neurochem. 14:1187–1193, 1967.Google Scholar
  107. 107.
    R. S. Clements, J. P. Wearen, and A. I. Winegrad, The distribution of polyol NADP oxidoreductase in mammalian tissues, Biochem. Biophys. Res. Commun. 37:347–353, 1969.Google Scholar
  108. 108.
    K. H. Gabbay and J. B. O’Sullivan, The sorbitol pathway enzyme localization and content in normal and diabetic nerve and cord, Diabetes 17:239–243, 1968.Google Scholar
  109. 109.
    K. H. Gabbay and J. B. O’Sullivan, The sorbitol pathway in diabetes and galactosemia: enzyme localization and changes in kidney, Diabetes 17:300, 1968.Google Scholar
  110. 110.
    J. H. Kinoshita, Cataracts in galactosemia. The Jonas S. Friedenwald memorial lecture, Invest. Ophthalmol. 4:786–799, 1965.Google Scholar
  111. 111.
    S. Hayman and J. H. Kinoshita, Isolation and properties of lens aldose reductase, J. Biol. Chem. 240:877–882, 1965.Google Scholar
  112. 112.
    M. A. Stewart, W. R. Sherman, M. M. Kurien, G. I. Moonsommy, and M. Wisgerhof, Polyol accumulations in nervous tissue of rats with experimental diabetes and galactosemia, J. Neurochem. 14:1057–1066, 1967.Google Scholar
  113. 113.
    O. Touster and D. R. D. Shaw, Biochemistry of polyols, Physiol. Rev. 42:182–223, 1962.Google Scholar
  114. 114.
    S. Hayman, M. F. Lou, L. O. Merola, and J. H. Kinoshita, Aldose reductase activity in the lens and other tissues, Biochim. Biophys. Acta 128:474–482, 1966.Google Scholar
  115. 115.
    J. Jedziniak and J. H. Kinoshita, Activators and inhibitors of lens aldose reductase, Invest. Ophthalmol. 10:357–366, 1971.Google Scholar
  116. 116.
    B. M. Schen and B. L. Horecker, Pentose metabolism in Candida. III. The triphosphopyridine nucleotidespecific polyol dehydrogenase of Candida utilil, Arch. Biochem. Biophys. 116:117–128, 1966.Google Scholar
  117. 117.
    G. H. Sheys and C. C. Doughty, Subunits of aldose reductase from rhodotorula, Biochim. Biophys. Acta 235:414–417, 1971.Google Scholar
  118. 118.
    M. A. Stewart, M. M. Kurien, W. R. Sherman, and E. V. Cotlier, Inositol changes in nerve and lens of galactose fed rats, J. Neurochem. 15:941–946, 1968.Google Scholar
  119. 119.
    R. Quan-Ma and W. W. Wells, The distribution of galactitol in tissues of rats fed galactose, Biochem. Biophys. Res. Commun. 20:486–489, 1965.Google Scholar
  120. 120.
    M. G. Smith, L-Iditol dehydrogenase, Biochem. J. 83:135–144, 1962.Google Scholar
  121. 121.
    W. W. Wells, T. A. Pittman, H. J. Wells, and T. J. Egan, The isolation and identification of galactitol from the brains of galactosemia patients, J. Biol. Chem. 240:1002–1003, 1965.Google Scholar
  122. 122.
    W. W. Wells, T. A. Pittman, H. J. Wells, and T. J. Egan, The isolation and identification of galactitol from the urine of patients with galactosemia, J. Biol. Chem. 239:3192–3195, 1964.Google Scholar
  123. 123.
    R. Gitzelmann, H. C. Curtius, and I. Schneller, Galactitol and galactose-1-phosphate in the lens of the galactosemic infant, Exptl. Eye Res. 6:1–3, 1967.Google Scholar
  124. 124.
    R. Gitzelmann, Hereditary galactokinase deficiency, a newly recognized cause of juvenile cataracts, Pediat. Res. 1:14–23, 1967.Google Scholar
  125. 125.
    J. A. Monteleone, E. Beutler, P. L. Monteleone, C. L. Utz, and E. C. Casey, Cataracts, galactosemia and hypergalactosemia due to galactokinase deficiency in a child, Am. J. Med. 50:403–407, 1971.Google Scholar
  126. 126.
    V. Schwarz, The value of galactose phosphate determination in the treatment of galactosemia, Arch. Dis. Child. 35:428–432, 1960.Google Scholar
  127. 127.
    H. N. Kirkman and E. S. Maxwell, Enzymatic estimation of erythrocyte galactose-1-phosphate, J. Lab. Clin. Med. 56:161, 1960.Google Scholar
  128. 128.
    A. Holzel, G. M. Komrower, and V. Schwarz, Galactosemia, Mod. Probi. Pediat. 3:359–377, 1957.Google Scholar
  129. 129.
    H. M. Kalckar, E. P. Anderson, and K. J. Isselbacher, Galactosemia, a congenital defect in a nucleotide transferase, Biochim. Biophys. Acta 20:262–268, 1956.Google Scholar
  130. 130.
    H. M. Kalckar, Hereditary defects in galactose metabolism in man and microorganisms, Fed. Proc. 194:984–990, 1960Google Scholar
  131. 131.
    T. Inouye, H. L. Nadler, and D. Y. Y. Hsia, A method for the assay of galactose-1-phosphate uridylyl transferase in red and white cells of blood, Clin. Chim. Acta 19:169, 1968.Google Scholar
  132. 132.
    T. Inouye, H. L. Nadler, and D. Y. Y. Hsia, Some characteristics of galactose-1-phosphate uridylyl transferase of human white blood cells, in “Galactosemia” (D. Y. Y. Hsia, ed.), pp. 105–112, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  133. 133.
    E. P. Anderson, H. M. Kalckar, and K. J. Isselbacher, Defect in the uptake of galactose-1-phosphate into liver nucleotides in congenital galactosemia, Science 125:113, 1957.Google Scholar
  134. 134.
    R. Krooth and A. N. Weinberg, Studies on cell lines developed from tissues of patients with galactosemia, J. Exptl. Med. 113:1155, 1961.Google Scholar
  135. 135.
    J. D. Russell, Variations in uridine diphosphoglucose: alpha-D-galactose-1-phosphate uridylyl transferase activity during growth of cultured fibroblasts, in “Galactosemia” (D. Y. Y. Hsia, ed.), pp. 204–212, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  136. 136.
    A. Holtzel and G. M. Komrower, A study in the genetics of galactosemia, Arch. Dis. Child. 30:155–159, 1955.Google Scholar
  137. 137.
    H. N. Kirkman and H. M. Kalckar, Enzymatic deficiency in congenital galactosemia and its heterozygous carriers, Ann. N.Y. Acad. Sci. 75:274–278, 1958.Google Scholar
  138. 138.
    H. N. Kirkman and E. Bynum, Enzymic evidence of a galactosemic trait in parents of galactosemic children, Ann. Human Genet. 23:117–126, 1958–1959.Google Scholar
  139. 139.
    D. Y. Y. Hsia, I. Huang, and S. G. Driscoll, The heterozygous carriers in galactosemia, Nature 182:1389–1390, 1958.Google Scholar
  140. 140.
    R. K. Bretthauer, R. G. Hansen, G. N. Donnell, and W. R. Bergren, A procedure for detecting carriers of galactosemia, Proc. Natl. Acad. Sci. 45:328–331, 1959.Google Scholar
  141. 141.
    G. N. Donnell, W. R. Bergren, R. K. Bretthauer, and R. G. Hansen, The enzymatic expression of heterozygosity in families of children with galactosemia, Pediatrics 25:572–581, 1960.Google Scholar
  142. 142.
    T. A. Tedesco and W. J. Mellman, Galactosemia: evidence for a structural gene mutation, Science 172:727–728, 1971.Google Scholar
  143. 143.
    H. L. Nadler, C. M. Chacko, and M. Rachmeler, Interallelic complementation in hybrid cells derived from human diploid strains deficient in galactose-1-phosphate uridylyl transferase activity, Proc. Natl. Acad. Sci. 67:976–982, 1970.Google Scholar
  144. 144.
    S. Segal and S. Rogers, Human liver galactose-1-phosphate uridylyl transferase: Activity galactose-1-phosphate uridylyl transferase: Activity in the Negro galactosemic, in “The Society for Pediatric Research, 40th Annual Meeting, Programs and Abstracts,” p. 50, 1970.Google Scholar
  145. 145.
    A. Yoshida, G. Stamatoyannopoulos, and A. G. Motulsky, Negro variant of glucose-6-phosphate dehydrogenase deficiency (A-) in man, Science 155:97–99, 1967.Google Scholar
  146. 146.
    S. Piomelli, L. M. Corashi, D. Davenport, J. Miraglia, and E. L. Ambrosi, In vivo lability of glucose-6-phosphate dehydrogenase in GdA- and Gd Mediterranean deficiency, J. Clin. Invest. 47:940, 1968.Google Scholar
  147. 147.
    C. M. Chacko, J. C. Christian, and H. L. Nadler, Unstable galactose-1-phosphate uridylyl transferase: A new variant of galactosemia, J. Pediat. 78:454–460, 1971.Google Scholar
  148. 148.
    R. S. Krooth and G. A. Darlington, Studies on the behavior of diploid cell strains developed from tissues from galactosemics, in “Galactosemia” (D. Y. Y. Hsia, ed.), pp. 188–203, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  149. 149.
    C. R. Merril, M. R. Geier, and J. C. Petricciani, Bacterial virus gene expression in human cells, Nature 233:398–400, 1971.Google Scholar
  150. 150.
    C. K. Mathai and E. Beutler, Electrophoretic variation of galactose-1-phosphate uridylyl transferase, Science 154:1179, 1966.Google Scholar
  151. 151.
    E. Beutler, M. C. Baluda, P. Sturgeon, and R. W. Day, The genetics of galactose-1-phosphate uridylyl transferase deficiency, J. Lab. Clin. Med. 68:646, 1966.Google Scholar
  152. 152.
    W. G. Ng, W. R. Bergren, M. Fields, and G. N. Donnell, An improved electrophoretic procedure for galactose-1-phosphate uridylyl transferase: Demonstration of multiple activity bands with the Duarte variant, Biochem. Biophys. Res. Commun. 37: 354–362, 1969.Google Scholar
  153. 153.
    F. Schapira and J. C. Kaplan, Electrophoretic abnormality of galactose-1-phosphate uridylyl transferase in galactosemia, Biochem. Biophys. Res. Commun. 35:451–455, 1969.Google Scholar
  154. 154.
    N. J. Brandt, Genes on the mongol chromosome? Lancet II:837, 1962.Google Scholar
  155. 155.
    N. J. Brandt, A. Frøland, M. Mikkelsen, and N. Tolstrup, Galactosemia locus and the Down’s syndrome, Lancet II:700, 1963.Google Scholar
  156. 156.
    D. Y. Y. Hsia, T. Inouye, P. Wong, and A. South, Studies on galactose oxidation in Down’s syndrome, New Engl. J. Med. 270:1085, 1964.Google Scholar
  157. 157.
    W. J. Mellman, F. A. Oski, T. A. Tedesco, and H. Harris, Leucocyte enzymes in Down’s syndrome, Lancet II:674, 1694.Google Scholar
  158. 158.
    F. Rosner, B. H. Ong, R. S. Paine, and D. Mahanand, Biochemical differentiation of trisomic Down’s syndrome (mongolism) from that due to translocation, New Engl. J. Med. 273:1356, 1965.Google Scholar
  159. 159.
    G. N. Donnell, W. R. Bergren, and W. G. Ng, Galactosemia, Biochem. Med. 1:29, 1967.Google Scholar
  160. 160.
    W. G. Ng, W. R. Bergren, and G. N. Donnell, Chapter 13, Table 13-I: Galactose-1-phosphate uridylyl transferase activity in hemolysates, in “Galactosemia” (D. Y. Y. Hsia, ed.), p. 102, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  161. 161.
    A. S. Alter, S. L. Lee, M. Pourfar, and M. Dobkin, Leucocyte alkaline phosphatase in mongolism, J. Clin. Invest. 41:1341, 1962.Google Scholar
  162. 162.
    M. J. King and E. M. Gillis, Alkaline phosphatase activity of polymorphs in mongolism, Lancet II:1302–1305, 1962.Google Scholar
  163. 163.
    M. A. O’Sullivan and C. V. Pryles, A comparison of leucocyte alkaline phosphatase determination in 200 patients with mongolism and in 2000 familial controls, New Engl. J. Med. 268:1168–1170, 1963.Google Scholar
  164. 164.
    S. Trubowitz, D. Kirman, and B. Masek, The leucocyte alkaline phosphatase in mongolism, Lancet II:486–487, 1962.Google Scholar
  165. 165.
    W. Krone, U. Wolf, H. W. Goedde, and H. Baitsch, Untersuchungen über die Aktivität der Galaktokinase in Blut von normal Personen und von Patienten mit G. Trisomie, Humangenetik I:279–288, 1965.Google Scholar
  166. 166.
    G. N. Donnell, W. G. Ng, W. R. Bergren, J. Melnyk, and R. Koch, Enhancement of erythrocyte-galactokinase activity in Langdon-Down trisomy, Lancet I:553, 1965.Google Scholar
  167. 167.
    L. Y. Shih, P. Wong, T. Inouye, M. Makler, and D. Y. Y. Hsia, Enzymes in Down’s syndrome, Lancet II:746–747, 1965.Google Scholar
  168. 168.
    G. N. Donnell, W. R. Bergren, D. Boyle, and W. G. Ng, Enzyme activity in Down’s syndrome, Lancet II:1256, 1966.Google Scholar
  169. 169.
    W. Krone, U. Wolf, H. W. Goedde, and H. Baitsch, Elevated galactokinase activity in blood cells of patients in G-trisomy (a belated correction), Humangenetik II:81–82, 1970.Google Scholar
  170. 170.
    N. J. Brandt, “Galaktose-1-Fosfat Uridylyl-Transferase” (Diss. Copenhagen), Munks-gaard Publisher, 1966.Google Scholar
  171. 171.
    K. Bender, H. Ritter, and U. Wolf, Zur Frage der Zuordnung von Genen zu bestimmten Autosomen des Menschen mit Hilfe von Chromosomenaberrationen, Humangenetik 4:85–103, 1967.Google Scholar
  172. 172.
    K. Hugh-Jones, A. Newcomb, and D. Y. Y. Hsia, The genetic mechanism of galactosemia, Arch. Dis. Child. 34:521, 1960.Google Scholar
  173. 173.
    S. Segal, Disorder of galactose metabolism, Chapter 8 in “Medical Basis of Inherited Disorder” (Stanbury, Wyngaarden, and Frederickson, eds.), p. 174, McGraw-Hill, New York, 1972.Google Scholar
  174. 174.
    N. J. Brandt, Genetics of hereditary galactosemia, in “Galactosemia” (D. Y. Y. Hsia, ed.), p. 140, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  175. 175.
    V. E. Shih, H. L. Levy, B. A. Karolkewicz, S. Houghton, M. L. Efron, K. J. Isselbacher, E. Beutler, and R. A. MacCready, Galactosemia screening of newborns in Massachusetts, New Engl. J. Med. 284:753–757, 1971.Google Scholar
  176. 176.
    W. G. Ng, W. R. Bergren, and G. N. Donnell, A new galactose-1-phosphate uridylyl transferase: Los Angeles variant, in preparation.Google Scholar
  177. 177.
    T. F. Roe, J. G. Hallatt, G. N. Donnell, and W. G. Ng, Childbearing by a galactosemic woman, J. Pediat. 78:1026–1030. 1971.Google Scholar
  178. 178.
    J. A. Ritter and E. J. Cannon, Galactosemia with cataracts: Report of a case, with notes on physiopathology, New Engl. J. Med. 252:747–752, 1955.Google Scholar
  179. 179.
    P. Durand and F. Semach, Formes tardives attenuées de galactosemic chez deux frères, interprétation clinique et classement génétique de la maladie, Arch. Franc. Pediat. 12:958–971, 1955.Google Scholar
  180. 180.
    D. Y. Y. Hsia and F. A. Walker, Variability in the clinical manifestations of galactosemia, J. Pediat. 59:872–883, 1961.Google Scholar
  181. 181.
    R. Gitzelman, Deficiency of erythrocyte galactokinase in a patient with galactose diabetes, Lancet 11:670, 1965.Google Scholar
  182. 182.
    F. Eisenberg, Jr., K. J. Isselbacher, and H. M. Kalckar, Studies on metabolism of carbon-14-labeled galactose in a galactosemic individual, Science 125:116, 1957.Google Scholar
  183. 183.
    Y. J. Topper, L. Laster, and S. Segal, Galactose metabolism—phenotypic differences among tissues of a patient with congenital galactosemia, Nature 196:1006, 1962.Google Scholar
  184. 184.
    S. Segal, A. Blair, and H. Roth, The metabolism of galactose by patients with congenital galactosemia, Am. J. Med. 38:62, 1965.Google Scholar
  185. 185.
    L. Baker, W. J. Mellman, T. A. Tedesco, and S. Segal, Galactosemia: Symptomatic and asymptomatic homozygotes in one Negro sibship, J. Pediat. 68:551, 1966.Google Scholar
  186. 186.
    E. Beutler and M. Mitchell, UDP glucose consumption methods, in “Galactosemia” (D. Y. Y. Hsia, ed.), pp. 72–82, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  187. 187.
    W. R. Bergren, W. G. Ng, and G. N. Donnell, UDP gal-4-epimerase and galactose-1-phosphate uridylyl transferase assay in hemolysates from newborns, in “Galactosemia” (D. Y. Y. Hsia, ed.), pp. 83–88, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  188. 188.
    W. G. Ng, W. R. Bergren, and G. N. Donnell, Galactose-1-phosphate uridylyl transferase assay by use of radioactive galactose-1-phosphate, Clin. Chim. Acta 10:337, 1964.Google Scholar
  189. 189.
    H. Verachtert, S. T. Bass, J. Wilder, and R.G.Hansen, Ion-exchange paper chromatography of nucleoside diphosphate sugars and related nucleotides, Anal. Biochem. 11:197, 1965.Google Scholar
  190. 190.
    W. G. Ng, W. R. Bergren, and G. N. Donnell, An improved procedure for the assay of hemolysate galactose-1-phosphate uridylyl transferase activity by the use of C-14 labeled galactose-1-phosphate, Clin. Chim. Acta 14:489, 1967.Google Scholar
  191. 191.
    D. Bertoli and S. Segal, Developmental aspects and some characteristics of mammalian galactose-1-phosphate uridylyl transferase, J. Biol. Chem. 241:4023, 1966.Google Scholar
  192. 192.
    R. van Heyningen, Galactose cataract: A review, Exptl. Eye Res. 11:415–428, 1971.Google Scholar
  193. 193.
    C. P. Richter and J. R. Dick, Cataracts produced in rats by yogurt, Science 168:1372–1374, 1970.Google Scholar
  194. 194.
    J. S. Friedenwald and D. Rytel, Contribution of the histopathology of cataract, A.M.A. Arch. Ophthalmol. 53:825–883, 1955.Google Scholar
  195. 195.
    S. R. Gifford and J. Bellows, Histologic changes in the lens produced by galactose, A.M.A. Arch. Ophthalmol. 21:346–358, 1939.Google Scholar
  196. 196.
    J. H. Kinoshita, L. O. Merola, K. Satoh, and E. Dikmak, Osmotic changes caused by the accumulation of dulcitol in the lenses of rats fed with galactose, Nature 194:1085–1087, 1962.Google Scholar
  197. 197.
    J. H. Kinoshita and L. O. Merola, Hydration of the lens during various stages of galactose cataract, Invest. Ophthalmol. 3:577–584, 1964.Google Scholar
  198. 198.
    D. V. N. Reddy, Amino acid transport in relation to sugar cataracts, Invest. Ophthalmol. 4:700–708, 1965.Google Scholar
  199. 199.
    J. H. Kinoshita, G. W. Barber, L. O. Merola, and B. Tung, Changes in the levels of free amino acids and myoinositol in the galactose-exposed lens, Invest. Ophthalmol. 8:625–632, 1969.Google Scholar
  200. 200.
    J. H. Kinoshita, L. O. Merola, and S. Hayman, Osmotic effects on the amino acid concentrating mechanism in the rabbit lens, J.Biol. Chem. 240:310–315, 1965.Google Scholar
  201. 201.
    J. H. Kinoshita, L. O. Merola, and N. Tung, Changes in cation permeability in the galactose-exposed rabbit lens, Exptl. Eye Res. 7:80–90, 1968.Google Scholar
  202. 202.
    R. A. Thoft, L. O. Merola, and J. H. Kinoshita, The rate of potassium exchange of galactosemic rat lens, in “Biochemistry of the Eye,” p. 383, Karger, Basel, 1968.Google Scholar
  203. 203.
    J. H. Kinoshita, D. Dvornik, M. Kraml, and K. H. Gabbay, The effect of an aldose reductase inhibitor on the galactose-exposed rabbit lens, Biochim. Biophys. Acta 158:472–475, 1968.Google Scholar
  204. 204.
    H. J. Wells and W. W. Wells, Galactose toxicity and myoinositol metabolism in the developing rat brain, Biochemistry 6:1168–1173, 1967.Google Scholar
  205. 205.
    W. W. Wells, J. P. McIntyre, D. J. Schlichter, M. C. Wacholtz, and S. E. Spieker, Studies on myoinositol metabolism in galactosemia, Ann. N.Y. Acad. Sci. 165:599–608, 1969.Google Scholar
  206. 206.
    L. P. Kozak and W. W. Wells, Studies on the metabolic determinants of D-galactose-induced neurotoxicity in the chick, J.Neurochem. (in press).Google Scholar
  207. 207.
    R. H. Rigdon, J. R. Couch, C. R. Creger, and T. M. Ferguson, Galactose intoxication pathologic study in the chick, Experientia 19:349–352, 1963.Google Scholar
  208. 208.
    P. Handler, Biochemical defect underlying nutritional failure of rats on diets containing excessive quantities of lactose and galactose, J. Nutrition 33:221–233, 1947.Google Scholar
  209. 209.
    R. M. Broekhuyse, Lipids in tissues of the eye. V. Phospholipid metabolism in normal and cataractous lens, Biochim. Biophys. Acta 231:366–369, 1971.Google Scholar
  210. 210.
    K. H. Gabbay and J. J. Snider, Galactosemic neuropathy, personal communication.Google Scholar
  211. 211.
    G. N. Donnell, W. R. Bergren, G. Perry, and R. Koch, Galactose-1-phosphate in galactosemia, Pediatrics 31: 802, 1963.Google Scholar
  212. 212.
    G. N. Donnell, R. Koch, and W. R. Bergren, Observations on results of management of galactosemic patients, in “Galactosemia” (D. Y. Y. Hsia, ed.), pp. 247–268, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  213. 213.
    H. L. Nadler, T. Inouye, and D. Y. Y. Hsia, Classical galactosemia: A study of fifty-five cases, in “Galactosemia” (D. Y. Y. Hsia, ed.), pp. 127–139, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  214. 214.
    M. R. Yarmolinsky, H. Wiesmeyer, H. M. Kalckar, and E. Jordan, Hereditary defects in galactose metabolism in Escherichia coli mutants. II. Galactose-induced sensitivity, Proc. Natl. Acad. Sci. 45:1786–1791, 1959.Google Scholar
  215. 215.
    J. R. Miller, G. B. Gordon, and K. G. Bensch, The effect of galactose on galactosemic fibroblasts in vitro, Lab. Invest. 19:428–436, 1968.Google Scholar
  216. 216.
    J. B. Sidbury, in “Abstracts American Chemical Society,” Proc. Biol. Chem., 27C, 1957.Google Scholar
  217. 217.
    V. Ginsburg and E. Neufeld, in “Abstracts American Chemical Society,” Proc. Biol. Chem., 27C, 1957.Google Scholar
  218. 218.
    J. B. Sidbury, Jr., Investigations and speculations on the pathogenesis of galactosemia, in “Galactosemia” (D. Y. Y. Hsia, ed.), pp. 13–29, C. C. Thomas, Springfield, Ill., 1969.Google Scholar
  219. 219.
    D. R. Keppler, F. M. Rudigier, E. Bischoff, and K. F. A. Decker, The trapping of uridine phosphates by D-galactosamine, D-glucosamine and 2-deoxy-D-galactose: A study on the mechanism of galactosamine hepatitis, Europ. J. Biochem. 17:246–253, 1970.Google Scholar
  220. 220.
    J. S. Penington and T. A. J. Prankard, Studies of erythrocyte phosphate ester metabolism in galactosemia, Clin. Sci. 17:385, 1958.Google Scholar
  221. 221.
    D. W. Woolley and B. Gummi, Serotonin receptors. IV. Specific deficiency of receptors in galactose toxicity and its possible relationship to the idiocy of galactosemia, Proc. Nat. Acad. Sci. 52:14–19, 1964.Google Scholar
  222. 222.
    R. Koch, P. Acosta, N. Ragsdale, and G. N. Donnell, Nutrition in the treatment of galactosemia, J. Am. Diet Ass. 43: 216, 1963.Google Scholar
  223. 223.
    T. F. Roe, W. R. Bergren, W. G. Ng, and G. N. Donnell, Galactitol excretion patterns in galactosemia, Biochem. Medicine (in press).Google Scholar
  224. 224.
    G. M. Komrower and D. H. Lee, Long-term follow up of galactosemia, Arch. Dis. Child. 45: 241, 1970.Google Scholar
  225. 225.
    K. Fishier, G. N. Donnell, W. R. Bergren, and R. Koch, Psychological aspects of galactosemia, Pediatrics (in press).Google Scholar
  226. 226.
    L. Nye, Ph. D. dissertation, in preparation.Google Scholar

Copyright information

© Plenum Press, New York 1973

Authors and Affiliations

  • H. M. Kalckar
    • 1
    • 2
  • J. H. Kinoshita
    • 3
  • G. N. Donnell
    • 4
  1. 1.Biochemical Research DepartmentMassachusetts General HospitalBostonUSA
  2. 2.Department of Biological ChemistryHarvard Medical SchoolBostonUSA
  3. 3.National Eye InstituteNational Institutes of HealthBethesdaUSA
  4. 4.Childrens Hospital of Los Angeles and Department of PediatricsUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations