Advertisement

Organic Molecular Crystals: Anthracene

  • R. G. Kepler

Abstract

Interest in the electronic properties of organic solids has grown spectacularly in the last few years. The speculation that a superconducting transition was occurring near 60° K in a high-conductivity organic crystal(1) played a big role in focusing the attention of scientists on the field. More generally, however, it has been recognized that organic molecular crystals provide a medium for the study of excited molecular states and their interactions and that the knowledge gained from these studies will provide fundamental knowledge applicable to physical, chemical, and biological systems.

Keywords

Molecular Crystal Magnetic Field Effect Drift Mobility Impurity Molecule Triplet Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, and A. J. Heeger, Superconducting fluctuations and the Peierls instability in an organic solid, Solid State Commun. 12, 1125 (1973).Google Scholar
  2. R. K. Clayton, Physical mechanisms in photosynthesis: Past elucidations and current problems, Proc. Nat. Acad. Sci. (USA) 69, 44 (1972).Google Scholar
  3. M. Calvin, Solar energy by photosynthesis, Science 184, 375 (1974).Google Scholar
  4. H. Kuhn, Interaction of chromophores in monolayer assemblies, in Organic Solid State Chemistry-2 ( M. D. Cohen, ed.), Butterworths, London (1971), p. 421.Google Scholar
  5. C. W. Frank and L. A. Harrah, Excimer formation in vinyl polymers. II. Rigid solutions of poly(2-vinylnaphthalene) and polystyrene, J. Chem. Phys. 61, 1526 (1974).Google Scholar
  6. C. W. Frank, Observation of relaxation processes near the glass transition by means of excimer fluorescence, Macromolecules 8, 305 (1975).Google Scholar
  7. D. Emin, The formation and motion of small polarons, in Linear and Nonlinear Transport in Solids ( J. T. DeVreese, ed.), Plenum, New York (1976).Google Scholar
  8. R. M. Schaffert, A new high-sensitivity organic photoconductor for electrophotography, IBM J. Res. Dey. 15, 75 (1971);Google Scholar
  9. K. Morimoto and Y. Murakami, Organic photoconductive layers sensitized with triarylcarbonium salts, Appl. Opt. Suppl. 3, 50 (1969).Google Scholar
  10. A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett. 29, 277 (1974).Google Scholar
  11. E. F. Sheka, V. S. Makarova, and E. D. Simonovskaya, Spectroscopy of molecular crystals, Mol. Cryst. Liq. Cryst. 30, 239 (1975).Google Scholar
  12. G. J. Sloan, Definition and attainment of high purity of organic compounds, in Physics and Chemistry of the Organic Solid State, Vol. 1 ( D. Fox, M. M. Labes, and A. Weissberger, eds.), Interscience, New York (1963), p. 180;Google Scholar
  13. G. F. Reynolds, Crystal growth, in Physics and Chemistry of the Organic Solid State, Vol. 1 ( D. Fox, M. M. Labes, and A. Weissberger, eds.), Interscience, New York (1963), p. 224.Google Scholar
  14. F. R. Lipsett, On the production of single crystals of naphthalene and anthracene, Can. J. Phys. 35, 284 (1957).Google Scholar
  15. I. Nakada, The optical properties of anthracene single crystals, J. Phys. Soc. Japan 17, 113 (1962).Google Scholar
  16. D. W. J. Cruickshank, On the lattice vibrations of benzene, naphthalene, and anthracene, Rev. Mod. Phys. 30, 163 (1958);Google Scholar
  17. A detailed refinement of the crystal and molecular structure of anthracene, Acta Cryst. 9, 915 (1956);Google Scholar
  18. A detailed refinement of the crystal and molecular structure of anthracene, Acta Cryst. 10, 470 (1957).Google Scholar
  19. 15.
    G. S. Pawley, A model for the lattice dynamics of naphthalene and anthracene, Phys. Stat. Sol. 20, 347 (1967).Google Scholar
  20. 16.
    M. Ito, M. Suzuki, and T. Yokayama, Phonons: spectra and density of states, in International Symposium on Excitons. Magnons. and Photons in Molecular Crystals (A. B. Zahlan, ed. ), Cambridge University Press (1968), p. 1.Google Scholar
  21. 17.
    J. Frenkel, On the transformation of light into heat in solids-I, Phys. Rev. 37, 17 (1931);Google Scholar
  22. On the transformation of light into heat in solids II, Phys. Rev. 37, 1276 (1931).Google Scholar
  23. 18.
    R. E. Peierls, Theory of the absorption spectra of solid bodies, Ann. Physik 13, 905 (1932).Google Scholar
  24. 19.
    A. S. Davydov, Theory of adsorption spectra of molecular crystals, Zh. Eksp. Teor. Fiz. 18, 210 (1948).Google Scholar
  25. 20.
    D. P. Craig and S. H. Walmsley, Excitons in Molecular Crystals. W. A. Benjamin, New York (1968); Visible and ultraviolet absorption by molecular crystals, in Physics and Chemistry of the Organic Solid State, Vol. I ( D. Fox, M. M. Labes, and A. Weissberger, eds.), Interscience, New York (1965), p. 585.Google Scholar
  26. 21.
    S. A. Rice and J. Jortner, Comments on the theory of the exciton state of molecular crystals, in Physics and Chemistry of the Organic Solid State, Vol. III ( D. Fox, M. M. Labes, and A. Weissberger, eds.), Interscience, New York (1967), p. 199.Google Scholar
  27. 22.
    L. E. Lyons and G. C. Morris, The intensity of ultraviolet light absorption by monocrystals. III. Absorption by anthracene at 295 K, 90K, and 40K of plane-polarized light of wavelengths 1600–2750 A, J. Chem. Soc. II 1959, 1551.Google Scholar
  28. 23.
    D. P. Craig, The polarized spectrum of anthracene, Part II. Weak transitions and second-order crystal field perturbations, J. Chem. Soc. II 1955, 2302.Google Scholar
  29. 24.
    D. P. Craig and P. C. Hobbins, The polarized spectrum of anthracene. Part III. The system at 3800 A, J. Chem. Soc. III, 1955, 2309.Google Scholar
  30. 24a.
    J. Ferguson and W. D. Schneider, Absorption spectrum of crystalline anthracene. Measurements on the absorption edge, J. Chem. Phys. 28, 761 (1958).Google Scholar
  31. 25.
    G. C. Morris and M. G. Sceats, Exciton dynamics in molecular crystals from line shape analysis. Spectral moments and correlation functions, Chem. Phys. 1, 259 (1973);Google Scholar
  32. Exciton dynamics in molecular crystals from line shape analysis. Effects of crystal strain, Chem. Ph vs. 1, 376 (1973).Google Scholar
  33. 26.
    G. C. Morris, S. A. Rice, M. G. Sceats, and A. E. Martin, Absorption band profile of the origin region of the b polarized 4000 A anthracene crystal transition, J. Chem. Phys. 55, 5610 (1971).Google Scholar
  34. 27.
    G. C. Morris, S. A. Rice, and A. E. Martin, Study of the reflection spectrum of crystalline anthracene: Evidence for the existence of defects, J. Chem. Phys. 52, 5149 (1970).Google Scholar
  35. 28.
    L. B. Clark and M. R. Philpott, Anisotropy of the singlet transitions of crystalline anthracene, J. Chem. Phys. 53, 3790 (1970).Google Scholar
  36. 29.
    M. S. Brodin, S. V. Marisova, and S. A. Shturkhetskaya, The form of dispersion, absorption, and reflection curves of an anthracene crystal and the character of exciton–phonon interaction, Ukr. Phys. J. 13, 249 (1968).Google Scholar
  37. 30.
    E. E. Koch and A. Otto, Optical properties of anthracene single crystals in the excitonic region of the spectrum between 4 and 10.5 eV, Chem. Phys. 3, 370 (1974).Google Scholar
  38. 31.
    I. Nakada, The optical absorption of anthracene crystal near 4000 A, J. Phys. Soc. Japan 20, 346 (1965).Google Scholar
  39. 32.
    A. Matsui, The polarized absorption edge and the Davydov splitting of anthracene, J. Phys. Soc. Japan 21, 2212 (1966).Google Scholar
  40. 33.
    M. V. Kurik, N. N. Spendiarov, P. I. Savchinskii, and E. K. Frovola, Urbach Law in anthracene at low temperatures, Soy. Phys-Solid State 12, 1132 (1970).Google Scholar
  41. 34.
    E. K. Frolova and M. V. Kurik, Urbach Rule in 9.10 Dichloranthracene, Phys. Stat. Sol. 33, K99 (1969).Google Scholar
  42. 35.
    M. V. Kurik, V. S. Manzhara, and L. I. Tsikora, Exciton–phonon interaction in naphthacene, Soy. Phys. —Solid State 13, 591 (1971).Google Scholar
  43. 36.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92, 1324 (1953).Google Scholar
  44. 37.
    M. G. Sceats and S. A. Rice, Applicability of Urbach’s rule to molecular crystals, Chem. Phys. Lett. 25, 9 (1974).Google Scholar
  45. 38.
    G. C. Morris and M. G. Sceats, Surface excitons in crystal anthracene, Mol. Cryst. Liq. Cryst. 25, 339 (1974).Google Scholar
  46. 39.
    V. I. Sugakov, On surface states in anthracene, Ukr. Fiz. Zh. 15, 2060 (1970).Google Scholar
  47. 40.
    M. S. Brodin, M. A. Dudinski, and S. V. Marisova, Spectral evidence of surface states in the anthracene crystal, Opt. Spectrosc. 31, 401 (1971).Google Scholar
  48. 41.
    P. Avakian, E. Abramson, R. G. Kepler, and J. C. Caris, Indirect observation, of singlet–triplet absorption in anthracene crystals, J. Chem. Phys. 39, 1127 (1963).Google Scholar
  49. 42.
    G. C. Smith, Triplet exciton phosphorescence in crystalline anthracene, Phys. Rev. 166, 839 (1968).Google Scholar
  50. 43.
    J. H. Sharp and W. G. Schneider, Photoconduction in anthracene induced by triplet excitons, J. Chem. Phys. 41, 3657 (1964).Google Scholar
  51. 44.
    R. R. Clarke and R. M. Hochstrasser, Electronic Zeeman effect in anthracene. J. Chem. Phys. 46, 4532 (1967).Google Scholar
  52. 45.
    J. Jortner, S. A. Rice, and J. L. Katz, Triplet excitons in crystals of aromatic molecules, J. Chem. Phys. 42, 309 (1965).Google Scholar
  53. 46.
    S. Choi, J. Jortner, S. A. Rice, and R. Silbey, Charge-transfer exciton states in aromatic molecular crystals, J. Chem. Phys. 41, 3294 (1964).Google Scholar
  54. 47.
    G. T. Wright, Ultraviolet properties of crystalline anthracene, Chem. Rev. 67, 581 (1967).Google Scholar
  55. 48.
    R. C. Powell, Thermal and sample-size effects on the fluorescence lifetime and energy transfer in tetracene-doped anthracene, Phys. Rev. B 2, 2090 (1970).Google Scholar
  56. 49.
    D. P. Craig and S. H. Walmsley, Fluorescence, in Excitons in Molecular Crystals, W. A. Benjamin, New York (1968), Chapter 8, p. 150.Google Scholar
  57. 50.
    L. E. Lyons and L. J. Warren, Anthracene fluorescence at low temperatures. I. Purified single crystals, Aust. J. Chem. 25, 1411 (1972).Google Scholar
  58. 51.
    E. Glockner and H. C. Wolf, The fluorescence spectrum of anthracene crystals, Z. Naturf. A 24, 943 (1969).Google Scholar
  59. 52.
    L. A. Limareva, A. S. Cherkasov, and V. I. Shirkov, Evidence of the radiating-centers inhomogeneity of crystalline anthracene in fluorometric phase spectra, Opt. Spectrosc. 25, 132 (1968).Google Scholar
  60. 53.
    L. E. Lyons and L. J. Warren, Anthracene fluorescence at low temperatures. II. Doped single crystals, Aust. J. Chem. 25, 1427 (1972).Google Scholar
  61. 54.
    E. Glockner and H. C. Wolf, Flashover spectra of the mixed crystal system anthracene–perdeuteroanthracene. Mixed exciton band, Chem. Phys. Lett. 27, 161 (1974).Google Scholar
  62. 55.
    J. B. Birks, The fluorescence and scintillation decay times of crystalline anthracene, Proc. Phys. Soc. 79, 494 (1962).Google Scholar
  63. 56.
    T. Förster, Intermolecular energy transference and fluorescence, Ann. Physik 2, 55 (1948); Experimental and theoretical investigation of the intermolecular transition of electron excitation energy, Z. Naturf. 49, 321 (1949).Google Scholar
  64. 57.
    D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836 (1953).Google Scholar
  65. 58.
    V. M. Agranovich and Yu. V. Konobeev, The diffusion of excitons in molecular crystals, Soy. Phys.—Solid State 5, 999 (1962).Google Scholar
  66. 59.
    S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15, 1 (1943).Google Scholar
  67. 60.
    M. Yokata and O. Tanimoto, Effects of diffusion on energy transfer by resonance, J. Phys. Soc. Japan 22, 779 (1967).Google Scholar
  68. 61.
    Y. A. Kurskii and A. S. Selivanenko, On the theory of luminescence quenching in liquid solutions, Opt. i Spektros. 8, 340, 643 (1960).Google Scholar
  69. 62.
    M. Trlifaj, The theory of diffusion of “localized” excitons in solids, J. Phys. 6, 533 (1956);Google Scholar
  70. The diffusion of the excitation energy in molecular crystals, J. Phys. 8, 510 (1958).Google Scholar
  71. 63.
    H. C. Wolf, Energy transfer in organic molecular crystals: A survey of experiments, in Advances in Atomic and Molecular Physics (D. R. Bates and I. Estermann,), Academic Press (1967), p. 119.Google Scholar
  72. 64.
    R. C. Powell, private communication. Organic Molecular Crystals: AnthraceneGoogle Scholar
  73. 65.
    O. Simpson, Electronic properties of aromatic hydrocarbons. III. Diffusion of excitons, Proc. Roy. Soc. A 238, 402 (1956).Google Scholar
  74. 66.
    V. V. Eremenko and V. S. Medvedev, Dependence of the photoconductivity and the intensity of luminescence of anthracene crystals on the excitation wavelength, Fiz. Tverd. Tela 2, 1572 (1960) [English transl.: Sou. Phys. —Solid State 2, 1426 (1960)];Google Scholar
  75. B. J. Mulder and J. de Jonge, Exciton diffusion and the photoconductivity spectrum of anthracene, pyrene, and perylene, Philips Res. Repts. 21, 188 (1966).Google Scholar
  76. 67.
    B. J. Mulder. Mean diffusion path of excitons in crystals of anthracene doped with tetracene, Philips Res. Rpts. 21, 283 (1966).Google Scholar
  77. 68.
    M. V. Kurik and Yu. P. Piryatinskii, Diffusion length of singlet excitons in anthracene single crystals, Sou. Phis. Solid State 13, 2421 (1922).Google Scholar
  78. 69.
    N. A. Tolstoi and A. P. Abramov, Interactions of excitons in anthracene, Sou. Phys. Solid State 9, 255 (1967).Google Scholar
  79. 70.
    A. Bergman, M. Levine, and J. Jortner, Collision ionization of singlet excitons in molecular crystals, Phys. Rev. Leu. 18, 593 (1967).Google Scholar
  80. 71.
    a) R. C. Powell and R. G. Kepler, Energy transfer in doped organic cystals, J. Mol. Cryst. Liq. Cryst. 11, 349 (1970);Google Scholar
  81. (b).
    Evidence for long range excitonimpurity interaction in tetracene doped anthracene crystals, Phys. Rev. Lett. 22, 636 (1969);Google Scholar
  82. (c).
    Evidence for long-range exciton–impurity interaction in tetracenedoped anthracene crystals, Phys. Rev. Leu. 22, 1232 (1969);Google Scholar
  83. (d).
    On the question of singlet exciton diffusion in anthracene, J. Luminescence 1, 254 (1970);Google Scholar
  84. (e).
    R. C. Powell, Host-sensitized energy transfer in molecular crystals, Phys. Rev. B 2, 1159;Google Scholar
  85. f) Thermal and sample-size effects on the fluorescence lifetime and energy transfer in tetracene-doped anthracene, Phys. Rev. B 2, 2090 (1970).Google Scholar
  86. 72.
    Z. G. Soos and R. C. Powell, Generalized random-walk model for singlet-exciton energy transfer, Phys. Rev. B 6, 4035 (1972).Google Scholar
  87. 73.
    R. C. Powell and Z. G. Soos, Singlet exciton energy transfer in organic solids, J. Luminescence 11, 1 (1975).Google Scholar
  88. 74.
    H. Callmann, G. Vaubel, and H. Baessler, Interaction of singlet excitons in organic materials with an absorbing surface, Phys. Stat. Sol. B 44, 813 (1971);Google Scholar
  89. H. Killesreiter and H. Baessler, Exciton reaction at an anthracene/metal interface. Charge transfer, Chem. Phys. Lett. 11, 411 (1971);Google Scholar
  90. G. Vaubel, H. Baessler, and D. Moebius, Reaction of singlet excitons at an anthracene/metal interface. Energy transfer, Chem. Phys. Lett. 10, 334 (1971).Google Scholar
  91. 75.
    M. Pope, J. Burgos, and J. Wotherspoon, Singlet exciton–trapped carrier interaction in anthracene, Chem. Phys. Lett. 12, 140 (1971); N. Wakayama and D. F. Williams, Singlet exciton–charge carrier interaction in anthracene, Chem. Phys. Lett. 9, 45 (1971).Google Scholar
  92. 76.
    S. D. Babenko, V. A. Benderskii, V. I. Goldanskii, A. G. Lavrushko, and V. P. Tychinskii, Singlet exciton annihilation in anthracene crystals, Phys. Stat. Sol. B 45, 91 (1971);Google Scholar
  93. V. A. Benderskii, V. Kh. Brikenshtein, and A. G. Lavrushko, Nonlinear quenching of fluorescence in anthracene crystals at low temperatures, Fiz. Tverd. Tela 15, 270 (1973).Google Scholar
  94. 77.
    G. C. Nieman and G. W. Robinson, Rapid triplet excitation migration in organic crystals, J. Chem. Phys. 37, 2150 (1962);Google Scholar
  95. H. Sternlicht, G. C. Nieman, and G. W. Robinson, Triplet–triplet annihilation and delayed fluorescence in molecular aggregates, J. Chem. Phys. 38, 1326 (1963).Google Scholar
  96. 78.
    R. G. Kepler, J. C. Caris, P. Avakian, and E. Abramson, Triplet excitons and delayed fluorescence in anthracene crystals, Phys. Rev. Lett. 10, 400 (1963).Google Scholar
  97. 79.
    S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider, Laser generation of excitons and fluoresence in anthracene crystals, J. Chem. Phvs. 42, 330 (1965);Google Scholar
  98. S. Z. Weisz, A. B. Zahlan, M. Silver, and R. C. Jarnagin, Radiation-less transition rate constant determination from delayed fluorescence, Phys. Rev. Lett. 12, 71 (1964).Google Scholar
  99. 80.
    R. C. Hughes and Z. G. Soos, Yield of singlet and triplet excitons from x-ray and ruby laser excitation of anthracene single crystals, J. Chem. Phys. 63, 1122 (1975).Google Scholar
  100. 81.
    J. L. Hall, D. A. Jennings, and R. N. McClintock, Study of anthracene fluorescence excited by the ruby giant-pulse laser, Phys. Rev. Lett. 11, 364 (1963).Google Scholar
  101. 82.
    P. Avakian and R. E. Merrifield, Triplet excitons in anthracene crystals—A review, Mol. Cryst. 5, 37 (1968).Google Scholar
  102. 83.
    R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B. Flippen, Effects of magnetic fields on the mutual annihilation of the triplet excitons in molecular crystals, Phvs. Rev. Lett. 19, 285 (1967).Google Scholar
  103. 84.
    R. E. Merrifield, Theory of magnetic field effects on the mutual annihilation of triplet excitons, J. Chem. Phys. 48, 4318 (1968).Google Scholar
  104. 85.
    R. E. Merrifield, Magnetic effects on triplet exciton interactions, Pure Appl. Chem. 27, 481 (1971).Google Scholar
  105. 86.
    P. Avakian and A. Suna, Unusual magnetic field effects in organic solids, Mater. Res. Bull. 6, 891 (1971).Google Scholar
  106. 87.
    P. Avakian, R. P. Groff, R. E. Kellogg, R. E. Merrifield, and A. Suna, Magnetic field dependence of the triplet–triplet fusion rate constant for anthracene in solution, in Organic Scintillatoos and Liquid Scintillation Counting (Proc. International Conference 1970, D. L. Horrocks, ed.), Academic Press, New York (1971), p. 499.Google Scholar
  107. 88.
    P. Avakian and R. E. Merrifield, Experimental determination of the diffusion length of triplet excitons in anthracene crystals, Phys. Rev. Lett. 13. 541 (1964).Google Scholar
  108. 89.
    V. Em, P. Avakian, and R. E. Merrifield, Diffusion of triplet excitons in anthracene V, Phys. Rev. 148, 862 (1966):Google Scholar
  109. 90.
    V. Ern, Anisotropy of triplet exciton diffusion in anthracene, Phys. Rey. Lett. 22, 343 (1969).Google Scholar
  110. 91.
    V. Em, A. Suna, Y. Tomkiewicz, P. Avakian, and R. P. Groff, Temperature dependence of triplet–exciton dynamics in anthracene crystals, Phys. Rev. B 5, 3222 (1972).Google Scholar
  111. 92.
    R. G. Kepler and A. C. Switendick, Diffusion of triplet excitons in anthracene, Phys. Rev. Lett. 15 56 (1965).Google Scholar
  112. 93.
    D. F. Williams and J. Adolph, Diffusion length of triplet excitons in anthracene crystals, J. Chem. Phys. 46, 4252 (1967);Google Scholar
  113. D. C. Hoesterey and G. W. Robinson, Diffusion coefficient of triplet excitons in anthracene, J. Chem. Phys. 54, 1709 (1971);Google Scholar
  114. M. Drew and D. F. Williams, Diffusion coefficient of triplet excitons in anthracene, J. Chem. Phys. 54, 1844 (1971).Google Scholar
  115. 94.
    B. Nickel and H. Maxdorf, New method for the determination of the diffusion coefficient of triplet excitons in the c’ direction of crystalline anthracene, Chem. Phys. Lett. 9, 555 (1971).Google Scholar
  116. 95.
    H. Kolb and H. C. Wolf, NMR studies of exciton motion in molecular crystals, J. Magn. Resonance 7, 374 (1972).Google Scholar
  117. 96.
    D. Haarer and H. C. Wolf, ESR—investigations of triplet-excitons in anthracene and naphthalene single crystals, Mol. Cryst. 10, 359 (1970).Google Scholar
  118. 97.
    A. H. Francis and C. B. Harris, Coherent triplet excitons and density of states functions in molecular crystals, Chem. Phvs. Lett. 9, 188 (1971);Google Scholar
  119. H. Francis and C. B. Harris, Relation between microwave spectroscopy, coherent triplet excitons, and density of state functions in molecular crystals, Chem. Phvs. Lett. 9, 181 (1971).Google Scholar
  120. 98.
    V. Ern and A. R. McGhie, Quenching of triplet excitons in anthracene crystals by internal /3-irradiation, Mol. Crust. Liq. Cryst. 15, 277 (1971);Google Scholar
  121. E. Ya. Danil’chenko and E. L. Frankevich, Fluorescence of anthracene during slow-electron excitation, Khim. Vys. Energ. 7, 113 (1973);Google Scholar
  122. D. W. Pearson and P. R. Moran, Fast neutron radiation damage in anthracene as a possible dosimeter, Nucl. Sci. Abstr. 25, 5096 (1971).Google Scholar
  123. 99.
    H. Bouchriha, G. Delacote, P. Delannoy, and M. Schott, Interaction of triplet excitons with trapped and free holes in crystalline anthracene. Exciton quenching current enhancement and magnetic field effects, J. Phys. (Paris) 35, 577 (1974);Google Scholar
  124. S. Z. Weisz, J. Levinson, and A. Cobas, Interaction of triplet excitons with trapped electrons in anthracene crystals, Proceedings of the Third International Conference on Photoconductivity (E. K. Pell, ed.), Pergamon, Oxford (1971), p. 297; V. ErnGoogle Scholar
  125. H. Bouchriha, J. Fourney, and G. Delacote, Triplet exciton–trapped hole interaction in anthracene crystals, Solid State Commun. 9, 1201 (1971); E. L. FrankevichGoogle Scholar
  126. A. Sokolik, and L. V. Lukin, Triplet exciton–charge carrier interaction in anthracene, Phys. Stat. Sol. B54, 61 (1972);Google Scholar
  127. N. Wakayama and D. F. Williams, Carrier–exciton interactions in crystalline anthracene, J. Chem. Phys. 57, 1770 (1972).Google Scholar
  128. 100.
    J. Füenfschilling and I. Zschokke-Gräenacher, Triplet–triplet exciton annihilation in tetracene-doped anthracene crystals, Hely. Phvs. Acta 43, 768 (1970);Google Scholar
  129. M. Chabr, J. Füenfschilling, and I. Zschokke-Gräenacher, Magnetic field effects on exciton annihilation processes in tetracene doped anthracene crystals, Chem. Phys. Lett. 25, 387 (1974);Google Scholar
  130. D. Goode, Y. Lupien, W. Siebrand, D. F. Williams, J. M. Thomas, and J. O. Williams, Triplet excitons as probes for structural imperfections in crystalline anthracene, Chem. Phvs. Lett. 25, 308 (1974).Google Scholar
  131. 101.
    R. P. Groff, R. E. Merrifield, A. Suna, and P. Avakian, Magnetic hyperfine modulation of dye-sensitized delayed fluorescence in an organic crystal, Phvs. Rer. Lett. 29, 429 (1972);Google Scholar
  132. B. Nickel, Intensity dependence of the sensitized delayed fluorescence of anthracene single crystals, Mol. Cryst. Liquid Cryst. 18, 263 (1972);Google Scholar
  133. B. Nickel, Sensitized photoconduction and sensitized delayed fluorescence of anthracene single crystals, Mol. Cryst. Liquid Cryst. 18, 227 (1972).Google Scholar
  134. 102.
    N. Geacintov, M. Pope, and F. Vogel, Effect of magnetic field on the fluorescence of tetracene crystals: Exciton fission, Phys. Rev. Lett. 22, 593 (1969);Google Scholar
  135. R. E. Merrifield, P. Avakian, and R. P. Groff, Fission of singlet excitons into pairs of triplet excitons in tetracene crystals, Chem. Phys. Lett. 3, 155 (1969);Google Scholar
  136. Errata, Chem. Phys. Lett. 3, 728 (1969).Google Scholar
  137. 103.
    H. P. Schwob, Charge-transfer exciton fission in anthracene crystals, Chem. Phvs. Lett. 13, 581 (1972);Google Scholar
  138. H. P. Schwob and D. F. Williams, Charge transfer exciton fission in anthracene crystals, J. Chem. Phys. 58, 1542 (1973);Google Scholar
  139. G. Klein, R. Voltz, and M. Schott, Magnetic field effect on prompt fluorescence in anthracene. Evidence for singlet exciton fission, Chem. Phys. Lea. 16, 340 (1972).Google Scholar
  140. 104.
    G. Klein, R. Voltz, and M. Schott, Singlet exciton fission in anthracene and tetracene at 77°K, Chem. Phys. Lett. 19, 391 (1973).Google Scholar
  141. 105.
    C. E. Swenberg and N. E. Geacintov, Exciton interactions in organic solids, Org. Mol. Photophys. 18, 489 (1973).Google Scholar
  142. 106.
    O. H. LeBlanc, Hole and electron drift mobilities in anthracene, J. Chem. Phys. 33, 626 (1960).Google Scholar
  143. 107.
    R. G. Kepler, Charge carrier production and mobility in anthracene crystals, Phys. Rev. 119, 1226 (1960).Google Scholar
  144. 108.
    R. G. Kepler, Charge carrier mobility and production in anthracene, in Organic Semiconductors (J. J. Brophy and J. W. Buttrey. ), Macmillan (1962), p. 1.Google Scholar
  145. 109.
    P. W. Bridgman, The compression of sixty-one solid substances to 25000 kg/cm’, determined by a new rapid method, Proc. Am. Acad. Arts Sci. 76, 9 (1945).Google Scholar
  146. 110.
    O. H. LeBlanc, Band structure and transport of holes and electrons in anthracene, J. Chem. Phys. 35, 1275 (1961).Google Scholar
  147. 111.
    J. L. Katz, J. Jortner, S.-I. Choi, and S. A. Rice, On the excess electron and hole band structures and carrier mobility in naphthalene, anthracene, and several polyphenyls, J. Chem. Phys. 39, 1683 (1963).Google Scholar
  148. 112.
    R. Silbey, J. Jortner, S. A. Rice, and M. T. Vala, Exchange effects on the electron and hole mobility in crystalline anthracene and naphthalene, J. Chem. Phys. 42, 733 (1965);Google Scholar
  149. Erratum: Exchange effects on the electron and hole mobility in crystalline anthracene and naphthalene, J. Chem. Phys. 43, 2925 (1965);Google Scholar
  150. R. M. Glaeser and R. S. Berry, Mobilities of electrons and holes in organic molecular solids. Comparison of band hopping models, J. Chem. Phys. 44, 3797 (1966).Google Scholar
  151. 113.
    S. H. Glarum, Electron mobilities in organic semiconduconductors, J. Phys. Chem. Solids 24, 1577 (1963).Google Scholar
  152. 114.
    W. Siebrand, Polaron band structure and carrier mobility in crystal of diatomic molecules and aromatic hydrocarbons, J. Chem. Phys. 41, 3574 (1964).Google Scholar
  153. 115.
    L. Friedman, Electron—phonon interaction in organic molecular crystals, Phvs. Rev. 140, A1649 (1965).Google Scholar
  154. 116.
    P. Gosar and S.-I. Choi, Linear-reponse theory of the electron mobility in anthracene crystals, Phys. Rev. 150, 529 (1966).Google Scholar
  155. 117.
    R. W. Munn and W. Seibrand, Theory of charge carrier transport in aromatic hydrocarbon crystals, J. Chem. Phys. 52, 6391 (1970).Google Scholar
  156. 118.
    R. W. Munn and W. Siebrand, Theory of electron—phonon interactions in organic crystal, Disc. Faraday Soc. 51, 17 (1971).Google Scholar
  157. 119.
    L. Friedman, Small polaron transport and narrow band semiconduction similarities and differences, in Conduction in Low Mobility Materials ( N. Klein, M. Pollak, and D. S. Tannhauser, eds.), Taylor and Francis, London (1971).Google Scholar
  158. 120.
    I. Vilfan, Small polaron model of the electron motion in organic molecular crystals, Phys. Stat. Sol. B 59, 351 (1973).Google Scholar
  159. 121.
    O. H. LeBlanc, Jr., Band theory and the Hall effect in organic crystals, J. Chem. Phvs. 39, 2395 (1963).Google Scholar
  160. 122.
    L. Friedman, Transport properties of organic semiconductors, Phys. Rev. A 133, 1668 (1964).Google Scholar
  161. 123.
    G. C. Smith, Nonanomalous photo-Hall mobility in anthracene at room temperature, Phys. Rev. 185, 1133 (1969).Google Scholar
  162. 124.
    R. W. Munn and W. Siebrand, Sign of the Hall effect for hopping transport in molecular crystals, Phys. Rev. B 2, 3435 (1970);Google Scholar
  163. D. Emin, The Hall mobility of a small polaron in a square lattice, Ann. Phys. 64, 336 (1971).Google Scholar
  164. 125.
    D. Emin, Correlated small-polaron hopping motion, Phys. Rev. Lett. 25, 1751 (1970).Google Scholar
  165. 126.
    D. C. Hoesterey and G. M. Letson, The trappings of photocarriers in anthracene by anthraquinone, anthracene, and naphthalene, J. Phys. Chem. Solids 24, 1609 (1963).Google Scholar
  166. 127.
    W. Shockley and W. T. Read, Jr., Statistics of recombinations of holes and electrons, Phys. Rev. 87, 835 (1952).Google Scholar
  167. 128.
    W. Helfrich and W. G. Schneider, Recombination radiation in anthracene crystals, Phys. Rev. Lett. 14, 229 (1965);Google Scholar
  168. M. Silver, Carrier recombination and generation in anthracene, Bull. Am. Phys. Soc. 11, 269 (1966).Google Scholar
  169. 129.
    H. S. W. Massey and E. H. S. Burphop, Recombination, in Electronic and Ionic Impact Phenomena, Oxford University Press, New York (1952), Chapter X.Google Scholar
  170. 130.
    R. G. Kepler and D. C. Hoesterey, High field mobility in anthracene crystals, Phys. Rev. B 9, 27–43 (1974).Google Scholar
  171. 131.
    J. W. Steketee and J. de Jonge, Photoconductance and spectral absorption of anthracene, Philips Res. Rpt. 17, 363 (1962).Google Scholar
  172. 132.
    V. V. Eremenko and V. S. Medvedev, Dependence of the photoconductivity and the intensity of luminescence of anthracene crystals on the excitation wavelength, Sov. Phys. Solid State 2, 1426 (1961).Google Scholar
  173. 133.
    W. H. Wright, Variations in the efficiency of fluorescence excitation in anthracene, J. Chem. Phys. 45, 874 (1966).Google Scholar
  174. 134.
    B. J. Mulder and J. de Jonge, Exciton diffusion and the photoconductivity spectrum of anthracene, pyrene, and perylene, Philips Res. Rpts. 21, 188 (1966).Google Scholar
  175. 135.
    R. G. Kepler and F. N. Coppage, Generation and recombination of holes and electrons in anthracene, Phys. Rev. 151, 610 (1966).Google Scholar
  176. 136.
    L. Onsager, Initial recombination of ions, Phys. Rev. 54, 554 (1938).Google Scholar
  177. 137.
    A. Hummel, A. O. Allen, and F. H. Watson, Jr., Ionization of liquids by radiation. II. Dependence of the zero-field ion yield on temperature and dielectric constant, J. Chem. Phys. 44, 3431 (1966).Google Scholar
  178. 138.
    A. Hummel, A. O. Allen, and F. H. Watson, Jr., Ionization of liquids by radiation.I. Methods for determination of ion mobilities and ion yields at low voltage, J. Chem. Phys. 44, 3426 (1966).Google Scholar
  179. 139.
    W. F. Schmidt and A. O. Allen, Free-ion yields in sundry irradiated liquids, J. Chem. Phys. 52, 2345 (1970).Google Scholar
  180. 140.
    G. Castro and J. F. Hornig, Multiple-charge-carrier generation processes in anthracene, J. Chem. Phys. 42, 1459 (1965).Google Scholar
  181. 141.
    R. H. Batt, C. L. Braun, and J. F. Hornig, Field and temperature dependent recombination in anthracene, Appl. Opt. Suppl. 3, 20 (1969);Google Scholar
  182. Electric-field and temperature dependence of photoconductivity, J. Chem. Phys. 49, 1967 (1968).Google Scholar
  183. 142.
    N. E. Geacintov and M. Pope, Intrinsic photoconductivity in organic crystals, in Proceedings of the Third International Photoconductivity Conference (E. M. Pell, ed. ), Pergamon Press (1969), p. 289.Google Scholar
  184. 143.
    D. C. Northrup and O. Simpson, Electronic properties of aromatic hydrocarbons. IV. Photo-electric effects, Proc. Roy. Soc. A 244, 377 (1958).Google Scholar
  185. 144.
    M. Silver, D. Olness, M. Swicord, and R. C. Jarnigan, Photogeneration of free carriers in organic crystals via exciton-exciton interactions, Phys. Rev. Lett. 10, 12 (1963).Google Scholar
  186. 145.
    C. L. Braun, Singlet exciton-exciton interactions in anthracene, Phys. Rev. Lett. 21, 215 (1968);Google Scholar
  187. M. Schott and J. Berrehar, Charge carrier generation by singlet-singlet exciton interaction in crystalline anthracene under weakly absorbed light illumination, Phys. Stat. Sol. B 59, 175 (1973).Google Scholar
  188. 146.
    A. Bergman, M. Levine, and J. Jortner, Collision ionization of singlet excitons in molecular crystals, Phys. Rev. Lett. 18, 593 (1967);Google Scholar
  189. N. Tolstoi and A. P. Abramov, Interaction of excitons in anthracene, ’Soy. Phys.—Solid State 9, 255 (1967).Google Scholar
  190. 147.
    R. G. Kepler, Photoionization of excitons in anthracene, Phys. Rev. Lett. 18, 951 (1967).Google Scholar
  191. 148.
    E. Courtens, A. Bergman, and J. Jortner, Photoionization of two-photon excited singlet excitons in anthracene—E, Phys. Rev. 156, 948 (1967).Google Scholar
  192. 149.
    W. L. Peticolas, J. P. Goldsborough, and K. E. Rieckhoff, Double photon excitation in organic crystals, Phys. Rev. Lett. 10, 43 (1963).Google Scholar
  193. 150.
    D. Fröhlich and H. Mahr, Two-photon spectroscopy in anthracene, Phys. Rev. Lett. 16, 895 (1966).Google Scholar
  194. 151.
    I. Webman and J. Jortner, Energy dependence of two-photon-absorption cross sections in anthracene, J. Chem. Phys. 50, 2706 (1969).Google Scholar
  195. 152.
    A. Bergman and J. Jortner, Two-photon spectroscopy utilizing dye lasers, Chem. Phys. Lett. 15, 309 (1972).Google Scholar
  196. 153.
    R. G. Kepler, unpublished results.Google Scholar
  197. 154.
    F. C. Strome, Jr., Direct two-photon photocarrier generation in anthracene, Phys. Rev. Lett. 20, 3 (1968).Google Scholar
  198. 155.
    A. Bergman and J. Jortner, Photoconductivity of crystalline anthracene induced by tunable dye lasers, Phys. Rev. B 9, 4560 (1974).Google Scholar
  199. 156.
    R. G. Kepler, Two photon transitions to highly excited states in anthracene crystals, Phys. Rev. B 9, 4468 (1974).Google Scholar
  200. 157.
    N. E. Geacintov and M. Pope, Generation of charge carriers in anthracene with polarized light, J. Chem. Phys. 47, 1194 (1966);Google Scholar
  201. S. D. Druger, Photoionization and photogeneration of carriers in anthracene, Chem. Phys. Lett. 17, 603 (1972).Google Scholar
  202. 158.
    J. P. Hernandez, Photo-ionization of crystalline anthracene, Phys. Rev. 169, 746 (1968).Google Scholar
  203. 159.
    D. Emin, The formation and motion of small polarons, in Linear and Nonlinear Electronic Transport in Solids ( J. T. DeVresse, ed.), Plenum, New York (1975).Google Scholar
  204. 160.
    N. Karl, Organic semiconductors, in Festkörper Probleme X IV Advances in Solid State Physics (H. J. Queisser, ed.), Pergamon Press (1974).Google Scholar
  205. 161.
    K. H. Probst and N. Karl, Energy levels of electron and hole traps in the band gap of doped anthracene crystals, Phys. Stat. Sol. A 27, 499 (1975).Google Scholar
  206. 162.
    J. Singh and H. Baessler, Theory of exciton dissociation in molecular crystals at the interface of a metal, Phys. Stat. Sol. B 62, 147 (1974);Google Scholar
  207. H. Baessler and H. Killesreiter, Hot carrier injection into crystals and its relevance to the field dependence of photocurrents, Phys. Stat. Sol. B 53, 183 (1972);Google Scholar
  208. H. Killesreiter and H. Baessler, Field dependence of exciton-induced, contact-limited photocurrents in molecular crystals, Phys. Stat Sol. B 53, 193 (1972);Google Scholar
  209. H. Baessler, H. Killesreiter, and G. Vaubel, Exciton-induced photocurrents in molecular crystals, Disc. Faraday Soc. 51, 48 (1971).Google Scholar
  210. 163.
    M. E. Michel-Beyerle, W. Harengel, R. Haberkorn, and J. Kinder, Role of image forces at organic crystal-electrode interfaces, Mol. Cryst. Liquid Cryst. 25, 323 (1974).Google Scholar
  211. 164.
    R. R. Chance and A. Prock, Role of singlet and triplet excitons in extrinsic photo-current production in the anthracene-gold system, Phys. Stat. Sol. B 57, 597 (1973).Google Scholar
  212. 165.
    F. Vogel, N. E. Geacintov, and M. Pope, Photoinjection of holes into anthracene crystals using aqueous triiode (13) solutions. Magnetic field effects, J. Chem. Soc., Faraday Trans. 2 69 (Pt. 8), 1208 (1973).Google Scholar
  213. 166.
    J. M. Hale and W. Mehl, Quenching of excited states at the interface, molecular crystal/electrolyte, Disc. Faraday Soc. 51, 54 (1971).Google Scholar
  214. 167.
    G. W. Robinson, Electronic and vibrational excitons in molecular crystals, Ann. Rev. Phys. Chem. 21, 429 (1970).Google Scholar
  215. 168.
    G. Wannier, The structure of excitation levels in insulating crystals, Phys. Reu. 52, 191 (1937).Google Scholar
  216. 169.
    R. S. Knox, Theory of Excitons, Academic Press, New York (1963).Google Scholar
  217. 170.
    M. Pope and J. Burgos, Charge-transfer exciton state and ionic energy levels in anthracene crystals, Mol. Cryst. 1, 395 (1966).Google Scholar
  218. 171.
    D. Haarer and G. Castro, Exciton induced photoemission in anthracene, Chem. Phys. Lett. 12, 277 (1971).Google Scholar
  219. 172.
    D. S. McClure, Electronic spectra of molecules and ions in crystals. Part I. Molecular crystals, in Solid State Physics. Vol. 8 ( F. Seitz and D. Turnbull. ), Academic Press (1959), p. 1.Google Scholar
  220. 173.
    R. Silbey, J. Jortner, and S. A. Rice, On the singlet-exciton states of crystalline anthracene, J. Chem. Phys. 42, 1515 (1965).Google Scholar
  221. 174.
    M. R. Philpott, Exciton transitions in crystalline anthracene for k perpendicular to the b axis, J. Chem. Phys. 59, 4406 (1973).Google Scholar
  222. 175.
    J. L. Katz, J. Jortner, S. Choi, and S. A. Rice, Atom-molecule reaction of hydrogen studied by molecular beams, J. Chem. Phys. 39, 1897 (1963);Google Scholar
  223. Triplet energy transfer and triplet-triplet interaction in aromatic crystals, Phys. Rev. Lett. 11, 323 (1963);Google Scholar
  224. Triplet excitons in crystals of aromatic molecules, J. Chem. Phys. 42, 309 (1965).Google Scholar
  225. 176.
    P. Avakian, V. Ern, R. E. Merrifield, and A. Suna, Spectroscopic approach to triplet exciton dynamics in anthracene, Phys. Rev. 165, 974 (1968).Google Scholar
  226. 177.
    G. C. Morris and M. G. Sceats, Exciton dynamics in molecular crystals from line shape analysis. Time response function of singlet excitons in crystal anthracene, Chem. Phys. 3, 332 (1974);Google Scholar
  227. Exciton dynamics in molecular crystals from line shape analysis. Spectral moment analysis of the origin region of the 4000 A transition of crystal anthracene, Chem. Phys. 3, 342 (1974).Google Scholar
  228. 178.
    V. M. Kenkee, Relations among theories of exciton transfer, Phys. Rev. B 11, 1741 (1975);Google Scholar
  229. M. Grover and R. Silbey, Exciton migration in molecular crystals, J. Chem. Phys. 54, 4843 (1971);Google Scholar
  230. H. Haken and G. Strobl, An exactly soluble model for coherent and incoherent exciton motion, Z. Phys. 262, 135 (1973);Google Scholar
  231. H. Haken and P. Reineker, A coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption, Z. Phys. 249, 253 (1972);Google Scholar
  232. R. W. Munn, Direct calculation of exciton diffusion coefficient in molecular crystals, J. Chem. Phys. 58, 3230 (1972).Google Scholar
  233. 179.
    T. Holstein, Studies of polaron motion, Part II. The small polaron, Ann. Phys. 8, 343 (1959).Google Scholar
  234. 180.
    J. M. Robertson, Rev. Mod. Phys. 30, 155 (1958).Google Scholar
  235. 181.
    C. D. Akon and D. P. Craig, Trans. Faraday Soc. 62, 1673 (1966).Google Scholar
  236. 182.
    K. W. Benz and H. C. Wolf, Z. Naturforsch. 19a, 177 (1964).Google Scholar

Recommended Reading

  1. D. S. McClure, Electronic spectra of molecules and ions in crystals. Part I. Molecular crystals, in Solid State Physics, Vol. 8 (F. Seitz and D. Turnbull.), Academic Press (1959), p. 1.Google Scholar
  2. H. C. Wolf, The electronic spectra of aromatic molecular crystals, in Solid State Physics, Vol. 9 ( F. Seitz and D. Turnbull. ), Academic Press (1960), p. 1.Google Scholar
  3. D. P. Craig and S. H. Walmsley, Excitons in molecular crystals, in Physics and Chemistry of the Organic Solid State, Vol. I ( D. Fox, M. M. Labes, and A. Weissberger, eds.), Interscience, New York (1963), p. 586.Google Scholar
  4. S. A. Rice and J. Jortner, Comments on the theory of the exciton states of molecular crystals, in Physics and Chemistry of the Organic Solid State, Vol. III (D. Fox, M. M. Labes, and A. Weissberger.), Intersceicne, New York (1967), p. 199.Google Scholar
  5. P. Avakian and R. E. Merrifield, Triplet excitons in anthracene crystals—A review, Mol. Cryst. 5, 37 (1968).Google Scholar
  6. J. Kommandeur, Conductivity, in Physics and Chemistry of the Organic Solid State. Vol. II ( D. Fox, M. M. Labes, and A. Weissberger, eds.), Interscience, New York (1965), p. 1.Google Scholar
  7. H. LeBlanc, Conductivity, in Physics and Chemistry of the Organic Solid State. Vol. III ( D. Fox, M. M. Labes, and A. Weissberger, eds.), Interscience, New York (1967), p. 133.Google Scholar

Books

  1. D. P. Craig and S. H. Walmsley, Excitons in Molecular Crystals. W. A. Benjamin, New York (1968).Google Scholar
  2. S. Davydov, Theory of Molecular Excitions, McGraw-Hill, New York (1962).Google Scholar
  3. R. S. Knox, Solid State Physics, Theory of Excitons, Suppl. 5, Academic Press, New York (1963).Google Scholar
  4. F. Gutman and L. E. Lyons, Organic Semiconductors, John Wiley and Sons (1967).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • R. G. Kepler
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations