The Morphology of Crystalline Synthetic Polymers

  • F. Khoury
  • E. Passaglia

Abstract

Crystalline organic high polymers in their solid state have very complex morphologies. This is due to the chainlike nature of their constituent molecules, which leads to crystallization behavior and morphologies that are in most aspects only rarely encountered in more traditional “small molecule” solids, and in other aspects are unique to polymers. Moreover, this chainlike nature leads to a wealth of phenomena and a rich diversity of morphological behavior that is, on the one hand, a boon to the experimentalist, for it provides an almost endless source of study, and, on the other hand, a source of despair for those who, like ourselves, attempt to summarize the behavior of these materials. There is a real danger that too great a preoccupation with the details of the morphology of one or two individual polymers will both obscure important aspects of behavior common to all polymers and also mislead the reader into perceiving a simplicity that in fact does not exist.

Keywords

Hexagonal Vinyl Nylon Pyramid Copolymerization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.(a)
    W. T. Astbury, Fundamentals of Fiber Structure, Oxford University Press (1933);Google Scholar
  2. (b).
    P. H. Hermans, Physics and Chemistry of Cellulose, pp. 1–40, Elsevier, New York (1949).Google Scholar
  3. 2.
    C. W. Bunn, in Fibers from Synthetic Polymers ( R. Hill, ed.), pp. 240–300, Elsevier, New York (1953).Google Scholar
  4. 3.
    C. W. Bunn and T. C. Alcock, The texture of polyethylene, Trans. Faraday Soc. 41, 317–325 (1945).Google Scholar
  5. 4.
    R. Jaccodine, Observations of spiral growths in ethylene polymers, Nature 176, 305–306 (1955).Google Scholar
  6. 5.
    P. H. Till, Jr., The growth of single crystals of linear polyethylene, J. Polymer Sci. 24, 301–306 (1957).Google Scholar
  7. 6.
    A. Keller, A note on single crystals in polymers: Evidence for a folded chain conformation, Phil. Mag. 2, 1171–1175 (1957).Google Scholar
  8. 7.
    E. W. Fischer, Stufen und spiralförmiges Kristallwachstum bei Hochpolymeren, Z. Naturforsch. 12a, 753–754 (1957).Google Scholar
  9. 8.
    K. H. Storks, An electron diffraction examination of some linear high polymers, J. Am. Chem. Soc. 60, 1753–1761 (1938).Google Scholar
  10. 9.
    K. Ziegler, Folgen und Werdegang einer Erfindung (Nobel Prize Address), Angew. Chem. 76, 545–553 (1964).Google Scholar
  11. 10.
    G. Natta, Von der stereospezifischen Polymerisation zur asymmetrischen autokatalytischen Synthese von Makromolekülen (Nobel Prize Address), Angew. Chem. 76, 553–566 (1964).Google Scholar
  12. 11.
    J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, Jr. This Treatise Vol. 3, Chapter 7.Google Scholar
  13. 12.
    P. H. Geil, Polymer Single Crystals, Wiley, New York (1963).Google Scholar
  14. 13.
    B. Wunderlich, Macromolecular Physics: Vol. 1, Crystal Structure, Morphology, Defects, Academic Press, New York (1973).Google Scholar
  15. 14.
    A. Keller, in Growth and Perfection of Crystals (R. H. Doremus, B. W. Roberts, D. Turnbull, eds.), pp. 499–528, Wiley, New York (1958).Google Scholar
  16. 15.
    A. Keller, Polymer crystals, Rep. Prog. Phys. 31 (Part 2), 623–704 (1968).Google Scholar
  17. 16.
    A. Keller, Solution grown polymer crystals: A survey of problematic issues, Kolloid Z. Z. Polymere 231, 386–418 (1969).Google Scholar
  18. 17.
    A. Keller, in MTP International Review of Science, Vol. 8, Macromolecular Science ( C. E. H. Bawn, ed.), pp. 105–158, Butterworths, London (1972).Google Scholar
  19. 18.
    H. D. Keith, in Physics and Chemistry of the Organic Solid State (D. Fox, M. M. Labes, and A. Weissberger, eds.), pp. 461–542, Interscience, New York (1963).Google Scholar
  20. 19.
    H. D. Keith, Crystallization of polymers from the melt, and the structure of bulk semicrystalline polymers, Kolloid Z. Z. Polymere 231, 421–428 (1969).Google Scholar
  21. 20.
    P. Ingram and A. Peterlin, in Encyclopedia of Polymer Science and Technology (H. F. Mark and N. G. Gaylord, eds.), Vol. 9, pp. 204–274, Interscience, New York (1968).Google Scholar
  22. 21.
    D. V. Rees and D. C. Bassett, The texture of crystalline polymers: A brief review, J. Mater. Sci. 6, 1021–1035 (1971).Google Scholar
  23. 22.
    R. A. Fava, Polyethylene crystals, J. Polymer Sci. D: Macromolecular Reviews 5, 1–108 (1971).Google Scholar
  24. 23.
    G. E. Ham, in Copolymerization ( G. E. Ham, ed.), pp. 1–65, Interscience, New York (1964).Google Scholar
  25. 24.
    G. E. Ham (ed.). Copolymerization, Interscience, New York (1964).Google Scholar
  26. 25.
    A. J. Yu and R. D. Evans, Isomorphous replacement in copolyamide systems: Adipic and terephthalic acids, J. Polymer Sci. 42, 249–257 (1960).Google Scholar
  27. 26.
    M. Levin and S. C. Temin, Isomorphous replacement in a copolyamide system, J. Polymer Sci. 49, 241–246 (1961).Google Scholar
  28. 27.
    R. K. Eby, A copolymer with lamellar morphology, J. Res. Nat. Bur. Std. (U.S.) 68A, 269–272 (1964).Google Scholar
  29. 28.
    A. Skoulios and G. Finaz, La structure des colloides d’association. VII. Caractère amphipatique et phases mésomorphes des copolymères séquencés styrolène-oxide d’éthylène, J. Chim. Physique 59. 473–480 (1962).Google Scholar
  30. 29.
    R. Perret and A. Skoulios. Etude de la cristallisation des copolymères triséquencés poly-e-caprolactone polyoxyéthylène;’poly-e-caprolactone. I. Copolymères dont les séquences ont des longueurs très inégales. Makromol. Chemie 162, 147 162 (1972).Google Scholar
  31. 30.
    R. Perret and A. Skoulios. Etude de la cristallisation des copolymères trisequencés poly-E-caprolactone/polyoxyéthylène/poly-e-caprolactone. II. Copolymères dont les séquences ont des longueurs voisines, Makromol. Chemie 162, 163–177 (1972).Google Scholar
  32. 31.
    B. Lotz and A. J. Kovacs, Propriétés des copolymères biséquencés polyoxyéthylène-polystyrène. I. Preparation, composition et étude microscopique des monocristaux, Kolloid Z. Z. Polymere 209, 97–114 (1966).Google Scholar
  33. 32.
    B. Lotz, A. J. Kovacs, G. A. Bassett, and A. Keller, Properties, of copolymers composed of one poly(ethylene oxide) and one polystyrene block. II. Morphology of single crystals, Kolloid Z. Z. Polymere 209, 115–128 (1966).Google Scholar
  34. 33.
    A. J. Kovacs, J. A. Manson, and D. Lévy, Propriétés des copolymères biséquencés polyoxyéthylène-polystyrène. III. Cinétique de croissance des monocristaux en solution, Kolloid Z. Z. Polymere 214, 1–23 (1966).Google Scholar
  35. 34.
    E. Passaglia and H. K. Kevorkian, The heat capacity of linear and branched polyethylene. J. Appl. Polymer Sci. 7, 119–132 (1963).Google Scholar
  36. 35.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York (1953).Google Scholar
  37. 36.
    F. A. Bovey, High Resolution NMR of Macromolecules, Academic, New York (1972).Google Scholar
  38. 37.
    J. B. Lando and W. W. Doll, The polymorphism of poly(vinylidene fluoride). I. The effect of head-to-head structure, J. Macromol. Sci.-Phys. B2, 205–218 (1968).Google Scholar
  39. 38.
    G. Natta and F. Danusso, Nomenclature relating to polymers having sterically ordered structures, J. Polymer Sci. 34, 3–11 (1959).Google Scholar
  40. 39.
    R. L. Miller, in Polymer Handbook (J. Brandrup and E. H. Immergut, eds.), Chapter III, pp. 1–59, Interscience, New York (1966).Google Scholar
  41. 40.
    R. L. Miller, in X-ray Diffraction Methods in Polymer Science, L. E. Alexander, pp. 473–523, Wiley-Interscience, New York (1969).Google Scholar
  42. 41.
    L. E. Alexander, X-ray Diffraction Methods in Polymer Science, Wiley-Interscience, New York (1969).Google Scholar
  43. 42.
    M. Kakudo and U. Kasai, X-Ray Diffraction by Polymers, Elsevier, New York (1972).Google Scholar
  44. 43.
    G. Nattaiand F. Danusso (eds.), Stereoregular Polymers and Stereospecific Polymerizations, Vols. 1 and 2, Pergamon Press, New York (1967).Google Scholar
  45. 44.
    Y. Chatani, T. Uchida, H. Tadakoro, K. Hayashi, M. Niskii,and S. Okamura, X-ray crystallographic study of solid state polymerization of trioxane and tetraoxymethylene, J. Macromol. Sci.-Phys. B2, 567–590 (1968).Google Scholar
  46. 45.
    V. F. Holland and R. L. Miller, Isotactic polybutene-1 single crystals: Morphology, J. Appl. Phys. 35, 3241–3248 (1964).Google Scholar
  47. 46.
    F. J. Padden, Jr. and H. D. Keith, Spherulitic crystallization in polypropylene, J. Appl. Phys. 10, 1479–1484 (1959).Google Scholar
  48. 47.
    H. D. Keith, F. J. Padden, Jr., N. M. Walter, and H. W. Wyckoff, Evidence for a second crystal form of polypropylene, J. Appl. Phys. 30, 1485–1488 (1959).Google Scholar
  49. 48.
    H. Kiho, A. Peterlin, and P. H. Geil, Polymer deformation. VI Twinning and phase transformation of polyethylene single crystals as a function of stretching direction, J. Appl. Phys. 35, 1599–1603 (1964).Google Scholar
  50. 49.
    C. W. Bunn, The crystal structure of long-chain normal paraffin hydrocarbons. The “shape” of the CH2 group, Trans. Faraday Soc. 39, 482–491 (1939).Google Scholar
  51. 50.
    C. W. Bunn, Chemical Crystallography, p. 233, Oxford University Press (1949).Google Scholar
  52. 51.
    G. Natta and P. Corradini, Structure and properties of isotactic polypropylene, Nuovo Cimento 15 (Suppl. No. 1), 40–51 (1960).Google Scholar
  53. 52.
    G. Natta, Progress in stereospecific polymerization, Makromol. Chemie 35, 94131 (1960).Google Scholar
  54. 53.
    G. Natta, P. Corradini, and I. W. Bassi, Crystal structure of isotactic polystyrene, Nuovo Cimento 15 (Suppl. No. 1), 68–95 (1960).Google Scholar
  55. 54.
    F. C. Frank, A. Keller, and A. O’Connor, Observations on single crystals of an isotactic polyolefin: Morphology and chain packing in poly(4-methylpentene-1), Phil. Mag. 4, 200–214 (1959).Google Scholar
  56. 55.
    I. W. Bassi, O. Bonsignori, G. P. Lorenzi, P. Pino, P. Corradini, and P. A. Temussi, Structure and optical activity of a crystalline modification of isotactic poly-(S)4-methyl-l-hexene, J. Polymer Sci. A-2 9, 193–208 (1971).Google Scholar
  57. 56.
    G. Natta and P. Corradini, General considerations on the structure of crystalline polyhydrocarbons, Nuovo Cimento 15 (Suppl. No. 1), 9–39 (1960).Google Scholar
  58. 57.
    G. V. D. Tiers and F. A. Bovey, Polymer NMR spectroscopy. VII. The stereo-chemical configuration of polytrifluorochloroethylene, J. Polymer Sci. Al, 833–841 (1963).Google Scholar
  59. 58.
    H. S. Kaufman, X-ray examination of polychlorotrifluoroethylene, J. Am. Chem. Soc. 75, 1477–1478 (1953).Google Scholar
  60. 59.
    E. L. Gal Perrin, S. S. Dubov, E. V. Volkova, and M. P. Mlenick, The crystal structure of poly-trifluorochloroethylene, Soviet Phys.-Cryst. 9, 81–83 (1964).Google Scholar
  61. 60.
    Y. Miyamoto, C. Nakafuku, and T. Takemura, Crystallization of polychlorotrifluoroethylene, Polymer J. (Japan) 3, 122–128 (1972).Google Scholar
  62. 61.
    Z. Mencik, Crystal structure of polychlorotrifluoroethylene, J. Polymer Sci.: Polymer Phys. Ed. 11, 1585–1599 (1973).Google Scholar
  63. 62.
    A. H. Scott, D. J. Scheiber, A. J. Curtis, J. I. Lauritzen, Jr., and J. D. Hoffman, Dielectric properties of semi-crystalline polychlorotrifluoroethylene, J. Res. Nat. Bur. Std. (U.S.) 66A, 269–305 (1962).Google Scholar
  64. 63.
    J. M. Crissman and E. Passaglia, Mechanical relaxation in polychlorotrifluoroethylene, J. Polymer Sci. C 14, 237–245 (1966).Google Scholar
  65. 64.
    R. Hill and E. E. Walker, Polymer constitution and fiber properties, J. Polymer Sci. 3, 609–630 (1948).Google Scholar
  66. 65.
    R. W. J. Reynolds, in Fibers from Synthetic Polymers ( R. Hill, ed.), pp. 115–144, Elsevier, New York (1953).Google Scholar
  67. 66.
    C. W. Bunn and E. V. Garner, The crystal structure of two polyamides (`Nylons’), Proc. Roy. Soc. (London) A189, 39–68 (1947).Google Scholar
  68. 67.
    A. E. Smith, The crystal structure of normal paraffin hydrocarbons, J. Chem. Phys. 21, 2229–2231 (1953).Google Scholar
  69. 68.
    R. L. Miller, in Encyclopedia of Polymer Science and Technology (H. F. Mark, N. G. Gaylord, and N. M. Bikales, eds.), Vol. 4, pp. 449–528, Interscience, New York (1966).Google Scholar
  70. 69.
    T. Davidson and B. Wunderlich, Extended chain crystals II. Crystallization of polyethylene under elevated pressure, J. Polymer Sci. A-27, 2051–2059 (1969).Google Scholar
  71. 70.
    E. W. Fischer and R. Lorentz, Über Fehlordnungen in Polyäthylen-Einkristallen, Kolloid Z. Z. Polymere 189, 97–110 (1963).Google Scholar
  72. 71.
    J. B. Jackson, P. J. Flory, and R. Chiang, Thermodynamic stability of solution crystallized polyethylene, Trans. Faraday Soc. 59, 1906–1917 (1963).Google Scholar
  73. 72.
    G. M. Martin and E. Passaglia, Density of polyethylene crystals grown from solution, J. Res. Nat. Bur. Std. (U.S.) 70A, 221–224 (1966).Google Scholar
  74. 73.
    D. A. Blackadder and P. A. Lewell, The density of polyethylene single crystals, Polymer 9, 249–263 (1968).Google Scholar
  75. 74.
    R. K. Sharma and L. Mandelkern, The density of polyethylene crystallized in the bulk and from dilute solution, Macromolecules 2, 266–271 (1969).Google Scholar
  76. 75.
    E. Passaglia and G. M. Martin, Dependence of mechanical relaxation on morphology in isotactic polypropylene, J. Res. Nat. Bur. Std. (U.S.) 68A, 519–527 (1964).Google Scholar
  77. R. Hosemann, The paracrystalline state of synthetic polymers, Crit. Rev. in Macromol. Sci. 1,351–397 (1972).Google Scholar
  78. 77.
    D. C. Bassett and A. Keller, On the habits of polyethylene crystals, Phil. Mag. 7, 1553–1584 (1962).Google Scholar
  79. 78.
    A. Nakajima and F. Hamada, Influence of crystallization conditions on single crystal formation, Pure Appl. Chem. 31, 1–49 (1972).Google Scholar
  80. 79.
    F. Khoury and J. D. Barnes, The formation of curved polymer crystals: Poly(4-methylpentene-1), J. Res. Nat. Bur. Std. (U.S.) 76A, 225–252 (1972).Google Scholar
  81. 80.
    F. Khoury and J. D. Barnes, The formation of curved polymer crystals: Polyoxymethylene, J. Res. Nat. Bur. Std. (U.S.) 78A, 95–127 (1974).Google Scholar
  82. 81.
    T. Kawai and A. Keller, Some effects of molecular fractionation during single crystal growth of polyethylene, J. Polymer Sci. B 3, 333–337 (1964).Google Scholar
  83. 82.
    R. Koningsveld and A. J. Pennings, Crystallization fractionation of polymers, Rec. Tray. Chim. 83, 552–555 (1964).Google Scholar
  84. 83.
    D. M. Sadler, Fractionation during crystallization, J. Polymer Sci. A-29, 779–799 (1971).Google Scholar
  85. 84.
    I. C. Sanchez and E. A. DiMarzio, Dilute solution theory of polymer crystal growth, fractionation effects, J. Res. Nat. Bur. Std. (U.S.) 76A, 213–223 (1972).Google Scholar
  86. 85.
    A. J. Pennings, Fractionation of polymers by crystallization from solutions. II, J. Polymer Sci. C, 16(3), 1799–1812 (1967) (paper presented IUPAC Int. Symp. on Macromolecular Chemistry, Prague, 1965 ).Google Scholar
  87. 86.
    A. J. Pennings and A. M. Kiel, Fractionation by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution, Kolloid Z. Z. Polymere 205, 160–162 (1965).Google Scholar
  88. 87.
    A. J. Pennings, J. M. M. A. Van der Mark, and A. M. Kiel, Hydrodynamically induced crystallization of polymers from solution. III. Morphology, Kolloid Z. Z. Polymere 237, 336–358 (1970).Google Scholar
  89. 88.
    A. G. Wikjord and R. St. John Manley. Fibrillar crystals of isotactic polystyrene. I. Morphological aspects, J. Macromol. Sci. Phys. B4, 397–412 (1970).Google Scholar
  90. 89.
    S. Matsuzawa, K. Yamaura, and H. Yanagisawa, Stress induced crystallization of poly(vinyl alcohol) from its aqueous solution under steady-state flow, Kolloid Z. Z. Polymere 250, 20–26 (1972).Google Scholar
  91. 90.
    D. J. Blundell, A. Keller, and A. J. Kovacs, A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution, J. Polymer Sci. B 4, 481–486 (1966).Google Scholar
  92. 91.
    D. J. Blundell and A. Keller, Nature of self-seeding polyethylene crystal nuclei, J. Macromol. Sci.—Phys. B2, 301–336 (1968).Google Scholar
  93. 92.
    D. J. Blundell and A. Keller, Controlled crystal growing procedures in polyethylene involving self-seeding: Some novel twinning habits, J. Macromol. Sci.Phys. B2, 337–359 (1968).Google Scholar
  94. 93.
    A. J. Kovacs, B. Lotz, and A. Keller, Multiple twinning in polyethylene oxide single crystals—A scheme for the formation of growth twins from self-seeding nuclei, J. Macromol. Sci. Phys. B3, 385–425 (1969).Google Scholar
  95. 94.
    A. Keller and F. M. Wilimouth, Self-seeded crystallization and its potential for molecular weight characterization. I. Experiments on broad distributions, J. Polymer Sci. A-2 8, 1443–1456 (1970).Google Scholar
  96. 95.
    A. Keller and D. M. Sadler, Self-seeded crystallization and its potential for molecular weight characterization. II. Experiments on narrow fractions, J. Polymer Sci. A-2 8, 1457–1465 (1970).Google Scholar
  97. 96.
    S. H. Carr, A. Keller, and E. Baer, Relationship between self-seeded and epitaxial crystallization from polymer solutions: A potentially new method for molecular weight separation and a new decoration method for alkali halides, J. Polymer Sci. A-2 8, 1467–1490 (1970).Google Scholar
  98. 97.
    D. C. Bassett, Surface detachment from polyethylene crystals, Phil. Mag. 6, 1053–1056 (1961).Google Scholar
  99. 98.
    D. C. Bassett, A. Keller, and S. Mitsuhashi, New features in polymer crystal growth from concentrated solutions, J. Polymer Sci. A 1, 763–788 (1963).Google Scholar
  100. 99.
    F. Khoury, The spherulitic crystallization of isotactic polypropylene from solution: On the evolution of monoclinic spherulites from dendritic chain-folded crystal precursors, J. Res. Nat. Bur. Std. (U.S.) 70A, 29–61 (1966).Google Scholar
  101. 100.
    D. T. Grubb and A. Keller, Beam induced damage in polymers and its effect on the image formed in the electron microscope, in Proc. 5th European Congress on Electron Microscopy, pp. 554–560, Institute of Physics, London (1972).Google Scholar
  102. 101.
    A. Chapiro, Radiation Chemistry of Polymeric Systems, p. 352, Insterscience, Publishers, New York (1962).Google Scholar
  103. 102.
    D. C. Bassett, On moiré patterns in the electron microscopy of polymer crystals, Phil. Mag. 10, 595–615 (1964).Google Scholar
  104. 103.
    P. H. Geil, Jr., N. K. J. Symons, and R. G. Scott, Solution grown crystals of an acetal resin, J. Appl. Phys. 30, 1516–1517 (1959).Google Scholar
  105. 104.
    D. H. Reneker and P. H. Geil, Morphology of polymer crystals, J. Appl. Phys. 31, 1916–1925 (1960).Google Scholar
  106. 105.
    D. T. Grubb, A. Keller, and G. W. Groves, Origin of contrast effects in the electron microscopy of polymers. Part 1: Polyethylene single crystals, J. Mater. Sci. 7, 131–141 (1972).Google Scholar
  107. 106.
    P. Blais and R. St. John Manley, Crystallization of isotactic polystyrene from solution, J. Polymer Sci. A-2 4, 1022–1024 (1966).Google Scholar
  108. 107.
    H. D. Keith, R. G. Vadimsky, and F. J. Padden, Jr., Crystallization of isotactic polystyrene from solution, J. Polymer Sci. A-2 8, 1687–1696 (1970).Google Scholar
  109. 108.
    J. A. Sauer, D. R. Morrow, and G. C. Richardson, Morphology of solution-grown polypropylene crystal aggregates, J. Appl. Phys. 36, 3017–3021 (1965).Google Scholar
  110. 109.
    F. J. Padden, Jr. and H. D. Keith, Crystallization in thin films of isotactic polypropylene, J. Appl. Phys. 37, 4013 4020 (1966).Google Scholar
  111. 110.
    F. J. Padden, Jr. and H. D. Keith, Mechanism for lamellar branching in isotactic polypropylene, J. Appl. Phys. 44, 1217–1223 (1973).Google Scholar
  112. 111.
    V. A. Kargin, N. F. Bakeev, and L. Li-Shen, Investigation of polychlorotrifluoroethylene monocrystals (in Russian), Vysokomol. Soedin. 3, 1100–1101 (1961).Google Scholar
  113. 112.
    J. D. Barnes and F. Khoury, The formation of curved polymer crystals: Polychlorotrifluoroethylene, J. Res. Nat. Bur. Std. (U.S.) 78A, 363–373 (1974).Google Scholar
  114. 113.
    P. H. Geil, Nylon single crystals, J. Polymer Sci. 44, 449–458 (1960).Google Scholar
  115. 114.
    A. W. Agar, F. C. Frank, and A. Keller, Crystallinity effects in the electron microscopy of polyethylene, Phil. Mag. 4, 32–55 (1959).Google Scholar
  116. 115.
    A. Keller and A. O’Connor, Study of single crystals and their associations in polymers, Disc. Faraday Soc. 25, 114–121 (1958).Google Scholar
  117. 116.
    A. Keller, Electron microscope—electron diffraction investigations of the crystalline texture of polyamides, J. Polymer Sci. 36, 361–387 (1959).Google Scholar
  118. 117.
    K. Kobayashi and K. Sakaoku, The changes of polymer crystals due to irradiation with electrons accelerated at various voltages, Bull. Inst. Chem. Res. Kyoto Univ. 42, 473–493 (1964).Google Scholar
  119. 118.
    H. Orth and E. W. Fischer, Änderungen der Gitterstruktur hochpolymerer Einkristalle durch Bestrahlung in Electronenmicroskop, Makromol. Chem. 88, 188–214 (1965).Google Scholar
  120. 119.
    R. W. Ditchfield, D. T. Grubb, and M. J. Whelan, Electron energy loss studies of polymers during radiation damage, Phil. Mag. 27, 1267–1280 (1973).Google Scholar
  121. 120.
    E. L. Thomas and S. L. Sass, On the orthorhombic to hexagonal phase transformation in polyethylene single crystals, Makromol. Chem. 164, 333–341 (1973).Google Scholar
  122. 121.
    V. F. Holland, Dislocations in polyethylene single crystals, J. Appl. Phys. 35, 3235–3241(1964).Google Scholar
  123. 122.
    V. F. Holland, P. H. Lindenmeyer, R. Trivedi, and S. Amelinckx, Contrast effects at dislocation networks in very thin polyethylene single crystals observed in the electron microscope, Phys. Stat. Sol. 10, 543–569 (1965).Google Scholar
  124. 123.
    D. C. Bassett, On fold surfaces of polymer crystals, Phil. Mag. 17, 37–50 (1968).Google Scholar
  125. 124.
    N. Niinomi, K. Abe, and M. Takayanagi, Mechanism of formation of the inter-lamella dislocation network in polyethylene single crystals, J. Macromol. Sci. Phys. B2, 649–661 (1968).Google Scholar
  126. 125.
    D. M. Sadler and A. Keller, Polyethylene crystals with dislocation networks: Their origin, structure, and relevance to polymer crystallization, Kolloid Z. Z. Polymere 239, 641–654 (1970).Google Scholar
  127. 126.
    J. Peterman and H. Gleiter, Direct observation of dislocations in polyethylene crystals, Phil. Mag. 25, 813–816 (1972).Google Scholar
  128. 127.
    L. E. Thomas, C. J. Humphreys, W. R. Duff, and D. T. Grubb, Radiation damage of polymers in the million volt electron microscope, Radiation Effects 3, 89–91 (1970).Google Scholar
  129. 128.
    D. T. Grubb and G. W. Groves, Rate of damage of polymer crystals in the electron microscope: Dependence on temperature and beam voltage, Phil. Mag. 24, 815–828 (1971).Google Scholar
  130. 129.
    E. L. Thomas and S. Danyluk, A channelplate image intensifier for the electron microscope, J. Phys. E: Sci. Instrum. 4, 843–844 (1971).Google Scholar
  131. 130.
    D. R. Clarke, Review: Transmission scanning electron microscopy, J. Mater. Sci. 8, 279–285 (1973).Google Scholar
  132. 131.
    A. V. Crewe, Scanning transmission electron microscopy, J. Microscopy 100, 247–259 (1974).Google Scholar
  133. 132.
    R. L. Miller, Polymer crystal formation: On an analysis of the dilute solution lamellar thickness—crystallization temperature data for polyethylene, Kolloid Z. Z. Polymere 225, 62–69 (1968).Google Scholar
  134. 133.
    V. F. Holland, Morphology and electron diffraction of nylon 66 single crystals, Makromol Chem. 71, 204–206 (1964).Google Scholar
  135. 134.
    D. C. Bassett, F. C. Frank, and A. Keller, Evidence for distinct sectors in polymer single crystals, Nature 184, 810–811 (1959).Google Scholar
  136. 135.
    W. D. Niegisch and P. R. Swan, Hollow pyramidal crystals of polyethylene and a mechanism of growth, J. Appl. Phys. 31, 1906–1910 (1960).Google Scholar
  137. 136.
    D. C. Bassett and A. Keller, Some new habit features in crystals of long chain compounds. Part II. Polymers, Phil. Mag. 6, 345–358 (1961).Google Scholar
  138. 137.
    D. C. Bassett, F. C. Frank, and A. Keller, Some new habit features in crystals of long chain compounds. Part III. Direct observations of unflattened monolayer polyethylene crystals, Phil. Mag. 8, 1739–1751 (1963).Google Scholar
  139. 138.
    D. C. Bassett, F. C. Frank and A. Keller, Some new habit features in crystals of long chain compounds. Part IV. The fold surface geometry of monolayer polyethylene crystals and its relevance to fold packing and crystal growth, Phil. Mag. 8, 1753–1787 (1963).Google Scholar
  140. 139.
    T. Kawai and A. Keller, On the effect of the crystallization temperature on the habit and fold length of polyethylene single crystals, Phil. Mag. 11, 1165–1177 (1965).Google Scholar
  141. 140.
    B. Valenti and E. Pedemonte, Sulla morfologia di cristalli singoli di polietilene, La Chimiva e l’Industria 54, 112–116 (1972).Google Scholar
  142. 141.
    G. A. Carazzolo, Structure of the normal crystal form of polyoxymethylene, J. Polymer Sci. A 1, 1573–1583 (1963).Google Scholar
  143. 142.
    P. Sullivan and B. Wunderlich, The interference microscopy of crystalline linear high polymers, SPE Trans. 4, 113–119 (1964).Google Scholar
  144. 143.
    P. H. Geil and D. H. Reneker, Morphology of dendritic polyethylene crystals, J. Polymer Sci. 51, 569–582 (1961).Google Scholar
  145. 144.
    A. Keller, Crystal configurations and their relevance to the crystalline texture and crystallization mechanism in polymers, Kolloid Z. Z. Polymere 197, 98–115 (1964).Google Scholar
  146. 145.
    P. H. Lindemneyer, Crystallization in polymers, J. Polymer Sci. C 1, 5–39 (1963).Google Scholar
  147. 146.
    D. H. Reneker, Localized deformation of lamellar polyethylene crystals, J. Polymer Sci. A 3, 1069–1077 (1965).Google Scholar
  148. 147.
    K. Haas and P. H. Geil, Polymer deformation. XI. Biaxial deformation of polyethylene crystals, J. Polymer Sci. A-2 4, 289–298 (1966).Google Scholar
  149. 148.
    H. Gleiter and J. Peterman, Deformation of substrate-free polyethylene single crystals, J. Polymer Sci. B 10, 877–881 (1972).Google Scholar
  150. 149.
    D. C. Bassett, A note on sector boundaries in polymer crystals, Phil. Mag. 12, 907–914 (1965).Google Scholar
  151. 150.
    D. C. Bassett, F. R. Dammont, and R. Salovey, On the morphology of polymer crystals, Polymer (London) 5, 579–588 (1964).Google Scholar
  152. 151.
    F. C. Frank, Crystal growth and dislocations, Adv. Phys. 1, 91–109 (1952).Google Scholar
  153. 152.
    W. J. Barnes and F. P. Price, Morphology of polymer crystals: Screw dislocations in polyethylene, polymethylene oxide and polyethylene oxide, Polymer (London) 5, 283–292 (1964).Google Scholar
  154. 153.
    A. Keller, Regular rotation of growth terraces in polymer single crystals, Kolloid Z. Z. Polymere 219, 118–131 (1967).Google Scholar
  155. 154.
    S. Mitsuhashi and A. Keller, The morphology of multilayer polymer crystals, Polymer (London) 2, 109–112 (1961).Google Scholar
  156. 155.
    B. Wunderlich, E. A. James, and S. W. Shu, Crystallization of polyethylene from o-xylene, J. Polymer Sci. A 2, 2759–2769 (1964).Google Scholar
  157. 156.
    V. F. Holland, S. B. Mitchell, W. L. Hunter, and P. H. Lindemeyer, Crystal structure and morphology of polyacrylonitrile in dilute solution, J. Polymer Sci. 62, 145–151 (1962).Google Scholar
  158. 157.
    J. J. Klement and P. H. Geil, Growth and drawing of polyacrylonitrile crystals grown from solution, J. Polymer Sci. A-2 6, 1381–1399 (1968).Google Scholar
  159. 158.
    G. N. Patel and R. D. Patel, Single crystals of polymers by thin film formation, J. Polymer Sci. A-2 8, 47–59 (1970).Google Scholar
  160. 159.
    G. Hinrichsen and H. Orth, Zur Structur Verstrekter Folien and Fäden sowie aus Verdünnten Lösungen Hergesteller Einkristalle aus Polyacrylnitril, Kolloid Z. Z. Polymere 247, 844–850 (1971).Google Scholar
  161. 160.
    H. D. Keith, Habits of polyethylene crystals grown from paraffinic solvents and from the melt, J. Appl. Phys. 35, 3115–3126 (1964).Google Scholar
  162. 161.
    F. Khoury and F. J. Padden, Jr., On the growth habits of twinned crystals of polyethylene, J. Polymer Sci. 47, 455–468 (1960).Google Scholar
  163. 162.
    J. I. Lauritzen, Jr. and J. D. Hoffman, Theory of formation of polymer crystals with folded chains in dilute solution, J. Res. Nat. Bur. Std. (U.S.) MA, 73–102 (1960).Google Scholar
  164. 163.
    F. P. Price, The growth habit of single polymer crystals, J. Polymer Sci. 42, 49–56 (1960).Google Scholar
  165. 164.
    F. C. Frank and M. Tosi, On the theory of polymer crystallization, Proc. Roy. Soc. 263A, 323–339 (1961).Google Scholar
  166. 165.
    J. I. Lauritzen, Jr. and E. Passaglia, Kinetics of crystallization in multicomponent systems: II. Chain-folded polymer crystals, J. Res. Nat. Bur. Std. (U.S.) 71A, 261–275 (1967).Google Scholar
  167. 166.
    I. C. Sanchez and E. A. DiMarzio, Dilute solution theory of polymer crystal growth: A kinetic theory of chain folding, J. Chem. Phys. 55, 893–907 (1971).Google Scholar
  168. 167.
    R. St. Manley, Growth and morphology of single crystals of cellulose triacetate, J. Polymer Sci. A 1, 1875–1892 (1963).Google Scholar
  169. 168.
    A. Nakajima and S. Hayashi, Single crystals of polyvinyl chloride polymerized at various temperatures, Kolloid Z. Z. Polymere 228, 12–17 (1969).Google Scholar
  170. 169.
    R. Eppe, E. W. Fischer, and H. A. Stuart, Morphologische Strukturen in Polyäthylenen, Polyamiden and andern Kristallisierenden Hochpolymeren, J. Polymer Sci. 34, 721–740 (1959).Google Scholar
  171. 170.
    P. H. Geil, Lamellar crystallization of low density polyethylene, J. Polymer Sci. 51, S10–S14 (1961).Google Scholar
  172. 171.
    H. G. Kilian and E. W. Fischer, Morphologische Struktur von Copolymeren des Äthylens abhängig von den Gegebenheiten des Molekülbaues, Kolloid Z. Z. Polymere 211, 40–52 (1966).Google Scholar
  173. 172.
    R. J. Roe, H. F. Cole, and D. R. Morrow, in Advances in Polymer Science and Engineering ( K. D. Pae, D. R. Morrow, Y. Chen, eds.), pp. 27–41, Plenum, New York (1972).Google Scholar
  174. 173.
    P. J. Holdsworth and A. Keller, The crystallization of ethyl and methyl branched copolymers of polyethylene from dilute solution, J. Polymer Sci. B 5, 605–612 (1967).Google Scholar
  175. 174.
    T. Kawai, K. Ujihara, and H. Maeda, Fold structure of solution grown crystals of alkyl-branched copolymers of polyethylene, Makromol. Chem. 132, 87–111 (1970).Google Scholar
  176. 175.
    D. H. Jones, A. J. Latham, A. Keller, and M. Girolamo, Fold length of single crystals of polystyrene: A conflict with crystallization theories at high supersupercoolings, J. Polymer Sci.: Polymer Phys. Ed. 11, 1759–1767 (1973).Google Scholar
  177. 176.
    L. Mandelkern, in Progress in Polymer Science (A. D. Jenkins, ed.), Vol. 2, pp. 165–200, Pergamon, New York (1970).Google Scholar
  178. 177.
    A. Keller and J. D. Priest, Experiments on the location of chain ends in mono-layer single crystals of polyethylene, J. Macromol. Sci.—Phys. B2, 479–495 (1968).Google Scholar
  179. 178.
    M. I. Bank and S. Krimm, Infrared study of lamellar linking by cilia in polyethylene single crystal mats, J. Appl. Phys. 40, 4248–4253 (1969).Google Scholar
  180. 179.
    P. J. Flory, On the morphology of the crystalline state in polymers, J. Am. Chem. Soc. 84, 2857–2867 (1962).Google Scholar
  181. 180.
    M. I. Bank and S. Krimm, Mixed crystal infrared study of chain folding in crystalline polyethylene, J. Polymer Sci. A-27, 1785–1809 (1968).Google Scholar
  182. 181.
    S. Krimm and J. H. C. Ching, Infrared spectra of polyethylene–poly(ethylene-d4) mixed crystal systems, Macromolecules 5, 209–211 (1972).Google Scholar
  183. 182.
    T. Williams, J. D. Blundell, A. Keller, and I. M. Ward, Gel permeation chromatographic studies of the degradation of polyethylene with fuming nitric acid. I. Single crystals, J. Polymer Sci. A-2 6, 1613–1619 (1968).Google Scholar
  184. 183.
    D. J. Priest, Fold surface of polyethylene single crystals as assessed by selective degradation. I. Ozone degradation method, J. Polymer Sci. A-2 9, 1777–1791 (1971).Google Scholar
  185. 184.
    A. Keller and Y. Udagawa, Fold surface of polyethylene crystals as assessed by selective degradation studies. II. Refinements of the nitric acid degradation method, J. Polymer Sci. A-2 9, 1793–1805 (1971).Google Scholar
  186. 185.
    A. Keller, E. Martucelli, D. J. Priest, and Y. Udagawa, Fold surface of polyethylene single crystals as assessed by selective degradation studies. III. Application of the improved techniques to single crystals, J. Polymer Sci. A-2 9, 1807–1837 (1971).Google Scholar
  187. 186.
    E. W. Fischer and G. F. Schmidt, Long periods in drawn polyethylene, Angew. Chem. Int. Ed. 1,488–499 (1962) [Angew Chem. 74, 551–562 (1962)].Google Scholar
  188. 187.
    E. W. Fisher, H. Goddar, and G. F. Schmidt, A remark on the surface structure of polyethylene single crystals, J. Polymer Sci. B 5, 619–624 (1967).Google Scholar
  189. 188.
    E. W. Fischer, H. Goddar, and R. Salovey, Effect of filtration conditions on the apparent density of the intercrystalline layers of polyethylene single crystal mats, J. Polymer Sci. B 7, 307–311 (1969).Google Scholar
  190. 189.
    E. W. Fischer and F. Kloos, Proof of the existence of a glass transition in the surface layers of polyethylene single crystals, J. Polymer Sci. B 8, 685–693 (1970).Google Scholar
  191. 190.
    E. W. Fischer and G. Hinrichsen. Schmelz-und Rekristallisationsvorgänge bei Polyäthylen-Einkristallen. IV. Schmelzenthalpie und Grenzflächenenergie von Polyäthylen-Einkristallen, Kolloid Z. Z. Polymere 247, 858–866 (1971).Google Scholar
  192. 191.
    P. Dreyfuss and A. Keller, Chain folding in polyamides: A study of nylons 6.6, 6.10, and 6.12 as crystallized from solution, J. Macromol. Sci.-Phys. B4, 811–836(1970).Google Scholar
  193. 192.
    P. Dreyfuss, A. Keller, and F. M. Willmouth, Novel diffraction effects in the combined wide-angle and low-angle x-ray diffraction patterns of solution-grown nylon crystals, J. Polymer Sci. A-2 10, 857–861 (1972).Google Scholar
  194. 193.
    E. D. T. Atkins, A. Keller, and D. M. Sadler, Structure analysis of chain-folded lamellar polyamide crystals from x-ray diffraction, J. Polymer Sci. A-2 10, 863–875 (1972).Google Scholar
  195. 194.
    A. F. Burmester, P. Dreyfuss, P. H. Geil, and A. Keller, On the annealing of polyamide crystal mats, J. Polymer Sci. B 10, 769–775 (1972).Google Scholar
  196. 195.
    P. Dreyfuss and A. Keller, Invariance of the long spacing-crystallization temperature dependence of polyamides precipitated from solution, J. Polymer Sci.: Polymer Phys. Ed. 11, 193–200 (1973).Google Scholar
  197. 196.
    P. Dreyfuss, Survey of the long spacing of polyamides crystallized from solution, J. Polymer Sci.: Polymer Phys. Ed. 11, 201–216 (1973).Google Scholar
  198. 197.
    C. W. Bunn, in Fibers from Synthetic Polymers ( R. Hill, ed.), pp. 311–314, Elsevier, New York (1953).Google Scholar
  199. 198.
    W. P. Slichter, Molecular motion in polyamides, J. Polymer Sci. 35, 77–92 (1958).Google Scholar
  200. 199.
    W. P. Slichter, Crystal structures in polyamides made from w-amino acids, J. Polymer Sci. 36, 259–266 (1959).Google Scholar
  201. 200.
    J. L. Koenig and M. C. Agboatwalla, Infrared studies of chain folding in polymers. V. Polyhexamethylene adipamide, J. Macromol. Sci. Phys. B2, 391–420 (1968).Google Scholar
  202. 201.
    L. E. Alexander, Chain folding conformations in polyamides: Models from the structures of cyclic oligomers, J. Polymer Sci. B 10, 759–767 (1972).Google Scholar
  203. 202.
    G. Hinrichsen, Untersuchungen zu Struktur und Eigenschaften der Polyamide. 2. Einkristalle aus Polyamid 6.6, Makromol. Chem. 166, 291–306 (1973).Google Scholar
  204. 203.
    H. W. Starkweather and R. E. Moynihan, Density, infrared absorption, and crystallinity in 6.6 and 6.10 nylons, J. Polymer Sci. 22, 363–368 (1956).Google Scholar
  205. 204.
    I. C. Sanchez and R. K. Eby, Crystallization of random copolymers, J. Res. Nat. Bur. Std. (U.S.) 77A, 353–358 (1973).Google Scholar
  206. 205.
    P. J. Flory, Theory of crystallization in copolymers, Trans. Faraday Soc. 51, 848–857 (1955).Google Scholar
  207. 206.
    P. J. Holdsworth, A. Keller, I. M. Ward, and T. Williams, Investigations of the structure of ethylene-propylene and ethylene-butene copolymer crystals. Part I. The molecular weight distribution of degraded copolymer crystals, Makromol. Chem. 125, 70–81 (1969).Google Scholar
  208. 207.
    P. J. Holdsworth and A. Keller, Investigations of the structure of ethylene-propylene and ethylene-butene copolymer crystals. Part II. The removal of branches by nitric acid, Macromol. Chem. 125, 82–93 (1969).Google Scholar
  209. 208.
    P. J. Holdsworth and A. Keller, Investigations of the structure of ethylene-propylene and ethylene-butene copolymer crystals. Part III. The effects of nitric acid on the physical properties of single crystal mats of ethylene copolymers, Makromol. Chem. 125, 94–107 (1969).Google Scholar
  210. 209.
    J. I. Lauritzen, Jr. and J. D. Hoffman, Extension of theory of growth of chain-folded polymer crystals to large undercoolings, J. Appl. Phys. 44, 4340–4352 (1973).Google Scholar
  211. 210.
    H. D. Keith, G. Giannoni, and F. J. Padden, Jr., Single crystals of poly(L-glutamic acid), Biopolymers 7, 775–792 (1969).Google Scholar
  212. 211.
    P. Cerra, D. R. Morrow, and J. A. Sauer, Deformation of polypropylene single crystals, J. Macromol. Sci. Phys. B3, 33–51 (1969).Google Scholar
  213. 212.
    D. R. Morrow and B. A. Newman, Crystallization of low-molecular-weight polypropylene fractions, J. Appl. Phys. 39, 494–4950 (1968).Google Scholar
  214. 213.
    F. J. Padden, Jr. and H. D. Keith, Private communicationGoogle Scholar
  215. 214.
    K. Sakaoku and A. Peterlin, Poly(vinylidene fluoride) single crystals, J. Macromol. Sci. Phys. BI, 401–406 (1967).Google Scholar
  216. 215.
    C. Sella and J. J. Trillat, Structures périodiques dans les polyéthylènes, Compt. Rend. 248, 410–413 (1959).Google Scholar
  217. 216.
    R. D. Burbank, Molecular structure in crystal aggregates of linear polyethylene, Bell System Tech. J. 39, 1627–1663 (1960).Google Scholar
  218. 217.
    J. C. Wittman and A. J. Kovacs, Vielartige Zwillinge in Polyäthylene-Einkristallen, Ber. Bunsenges. Phys. Chem. 74, 901–904 (1970).Google Scholar
  219. 218.
    R. M. Gohil, K. C. Patel, and R. D. Patel, Twinning in polyacrylonitrile, Makro-mol. Chem. 169, 291–300 (1973).Google Scholar
  220. 219.
    M. Kojima, Morphology of polypropylene crystals. II. Twinning of lamellar crystals, J. Polymer Sci. A-2 5, 615–622 (1967).Google Scholar
  221. 220.
    G. W. Bailey, Electron microscope studies on polyethylene and polypropylene, J. Polymer Sci. 62, 241–249 (1962).Google Scholar
  222. 221.
    F. L. Binsbergen and B. G. M. De Lang, Morphology of polypropylene crystallized from the melt, Polymer 9, 23–40 (1968).Google Scholar
  223. 222.
    P. Allan, E. B. Crellin, and M. Bevis, Stress-induced twinning and phase transformations in polyethylene single crystals, Phil. Mag. 27, 127–145 (1973).Google Scholar
  224. 223.
    W. Cross, Constitution and origin of spherulites in acid eruptive rocks, Bull. Phil. Soc. Washington 11, 411–443 (1891).Google Scholar
  225. 224.
    A. Johannsen, A Descriptive Petrography of Igneous Rocks,University of Chicago Press, Chicago, Illinois (19,).Google Scholar
  226. 225.
    J. P. Iddings, Spherulitic crystallization, Bull. Phil. Soc. Washington 11, 445–463 (1891).Google Scholar
  227. 226.
    F. Wallerant, Sur les enroulements hélicoïdaux dans les corps cristalisés, Bull. Soc. Fr. Mineral. 30, 43–60 (1907).Google Scholar
  228. 227.
    F. Bernauer, Gedrillte Kristalle, Bornträger, Berlin (1929).Google Scholar
  229. 228.
    H. D. Keith and F. J. Padden, Jr., A phenomenological theory of spherulitic crystallization, J. Appl. Phys. 34, 2409–2421 (1963).Google Scholar
  230. 229.
    H. D. Keith and F. J. Padden, Jr., Spherulitic crystallization from the melt. I. Fractionation and impurity segregation and their influence on crystalline morphology, J. App!. Phys. 35, 1270–1285 (1964).Google Scholar
  231. 230.
    H. D. Keith and F. J. Padden, Jr., Spherulitic crystallization from the melt. II. Influence of fractionation and impurity segregation on the kinetics of crystallization, J. Appl. Phys. 35, 1286–1296 (1964).Google Scholar
  232. 231.
    M. Herbst, Röntgenographische Untersuchung an Sphärolithen in PolyamidSpritzgussmassen, Z. Electrochem. 54, 318–320 (1950).Google Scholar
  233. 232.
    J. J. Point, Enroulement hélicoïdal dans les sphérolithes de polyéthylène, Bull. Acad. Roy. Belg. 41, 982–990 (1955).Google Scholar
  234. 233.
    A. Keller, The spherulitic structure of crystalline polymers, Part II. The problem of molecular orientation in polymer spherulites, J. Polymer Sci. 17, 351–364 (1955).Google Scholar
  235. 234.
    Y. Fujiwara, The superstructure of melt-crystallized polyethylene. I. Screwlike orientation of unit cell in polyethylene spherulites with periodic extinction rings, J. Appl. Polymer Sci. 4, 10–15 (1960).Google Scholar
  236. 235.
    J. J. Point, Sphérolithes de polyadipate de glycol, Bull. Acad. Roy. Belge. 39, 435–441 (1953).Google Scholar
  237. 236.
    J. Mann and L. Roldan-Gonzalez, Orientation in nylon spherulites: A study by x-ray diffraction. J. Polymer Sci. 60. 1–20 (1962).Google Scholar
  238. 237.
    J. H. Magill. Formation of spherultes in polyamide melts: Part III. Even-even polyamides, J. Polymer Sci. A-2 4, 243–265 (1966).Google Scholar
  239. 238.
    F. J. Baltä Calleja, I. L. Hay, and A. Keller, Diffraction effects in single crystals and spherulites of poly(ethylene oxide), Kolloid Z. Z. Polymere 209, 128–135 (1966).Google Scholar
  240. 239.
    C. W. Bunn and R. de P. Daubeny, The polarizabilities of carbon-carbon bonds, Trans. Faraday Soc. 50, 1173–1177 (1954).Google Scholar
  241. 240.
    D. A. Keedy, J. Powers. and R. S. Stein, A theoretical calculation of the birefringence of polypropylene crystals, J. Appl. Phys. 31, 1911–1915 (1960).Google Scholar
  242. 241.
    F. L. Saunders, Observations on spherulite structure in poly(4-methylpentenel-), J. Polymer Sci. B 2, 755–760 (1964).Google Scholar
  243. 242.
    I. Kirshenbaum, R. B. Isaacson, and W. C. Feist, The effect of molecular motion on the birefringence-temperature curve of poly(4-methylpentene-1), J. Polymer Sci. B 2, 897–901 (1964).Google Scholar
  244. 243.
    A. Keller, Morphology of crystallizing polymers, Nature 169, 913–914 (1952).Google Scholar
  245. 244.
    H. D. Keith and F. J. Padden, Jr., The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation, J. Polymer Sci. 39, 101–122 (1959).Google Scholar
  246. 245.
    H. D. Keith and F. J. Padden, Jr., The optical behavior of spherulites in crystalline polymers. Part II. The growth and structure of the spherulites, J. Polymer Sci. 39, 123–138 (1959).Google Scholar
  247. 246.
    F. P. Price, On extinction patterns of polymer spherulites, J. Polymer Sci. 39, 139–150 (1959).Google Scholar
  248. 247.
    A. Keller, Investigations on banded spherulites, J. Polymer Sci. 39, 151–173 (1959).Google Scholar
  249. 248.
    J. J. Point, Structure fibreuse et phénomènes de cristallisation rayonnante dans les hauts polymères sphérolithiques, Bull. Acad. Roy. Belg. 41, 974–981 (1955).Google Scholar
  250. 249.
    M. Takayanagi and T. Yamashita, Growth rate and structure of spherulites in fractionated poly(ethylene adipate), J. Polymer Sci. 22, 552–555 (1956).Google Scholar
  251. 250.
    P. H. Lindenmeyer and V. F. Holland, Relationship between molecular weight, radial growth rate, and the width of extinction bands in polyethylene spherulites, J. Appl. Phys. 35, 55–58 (1964).Google Scholar
  252. 251.
    H. D. Keith and F. J. Padden Jr., Deformation mechanisms in crystalline polymers, J. Polymer Sci. 41, 525–528 (1959).Google Scholar
  253. 252.
    H. D. Keith and F. J. Padden, Jr., Note on the origin of twisting orientation in fibrillar crystals, J. Polymer Sci. 51 (Issue 156), S4 - S7 (1971).Google Scholar
  254. 253.
    J. D. Hoffman and J. I. Lauritzen, Jr., Crystallization of bulk polymers with chain folding: Theory of growth of lamellar spherulites, J. Res. Nat. Bur. Std. (U.S.) 65A, 297–336 (1961).Google Scholar
  255. 254.
    J. R. Burns, Mechanism for twisting in polyethylene spherulites, J. Polymer Sci. A-2 7, 593–600 (1969).Google Scholar
  256. 255.
    S. Sato and T. Seto, Effect of crystallization temperature on the period of lamellar twist in polymer spherulites, Rep. Prog. Polymer Phys. Japan 12, 161–164 (1969).Google Scholar
  257. 256.
    J. M. Schultz and D. R. Kinloch, Transverse screw dislocations: A source of twist in crystalline polymer ribbons, Polymer (London) 10, 271–278 (1969).Google Scholar
  258. 257.
    P. D. Calvert and D. R. Uhlmann, Surface stresses and crystal twisting in hippuric acid and in polymers, J. Polymer Sci.: Polymer Phys. Ed. 11, 457–465 (1973).Google Scholar
  259. 258.
    P. H. Geil, Small angle x-ray scattering from bulk crystalline polymers, J. Polymer Sci. C 13, 149–163 (1966).Google Scholar
  260. 259.
    C. Reinhold, E. W. Fischer, and A. Peterlin, Evaluation of small-angle x-ray scattering of polymers, J. Appl. Phys. 35, 71–74 (1964).Google Scholar
  261. 260.
    K. H. Illers and H. Hendus, Lamellendicke and Röntgen-Kleinwinkel-Perioden von Polyäthylen, Kolloid Z. Z. Polymere 218, 56–58 (1967).Google Scholar
  262. 261.
    B. Crist, Small angle x-ray scattering of semicrystalline polymers. I. Review of Existing models, J. Polymer Sci.: Polymer Phys. Ed. 11, 635–661 (1973).Google Scholar
  263. 262.
    B. Crist and N. Morosoff, Small angle x-ray scattering of semicrystalline polymers. II. Analysis of experimental scattering curves, J. Polymer Sci.: Polymer Phys. Ed. 11, 1023–1045 (1973).Google Scholar
  264. 263.
    C. G. Vonk and G. Kortleve, X-ray small-angle scattering of bulk polyethylene, Kolloid Z. Z. Polymere 220, 19–24 (1967).Google Scholar
  265. 264.
    G. Kortleve and C. G. Vonk, X-ray small-angle scattering of bulk polyethylene, Kolloid Z. Z. Polymere 225, 124–131 (1968).Google Scholar
  266. 265.
    R. G. Brown and R. K. Eby, Effect of crystallization conditions on polyethylene: Lamellar thickness, melting temperature, and density, J. Appl. Phys. 35, 1156–1161 (1964).Google Scholar
  267. 266.
    F. R. Anderson, Morphology of isothermally bulk-crystallized linear polyethylene, J. Appl. Phys. 35, 64–70 (1964).Google Scholar
  268. 267.
    R. P. Palmer and A. J. Cobbold, The texture of melt crystallized polyethylene as revealed by selective oxidation, Makromol. Chemie 74, 174–189 (1964).Google Scholar
  269. 268.
    A. Keller and S. Sawada, On the interior morphology of bulk polyethylene, Makromol. Chemie 74, 190–221 (1964).Google Scholar
  270. 269.
    I. C. Sanchez, J. P. Colson, and R. K. Eby, Theory and observations of polymer crystal thickening, J. Appl. Phys. 44, 4332–4339 (1973).Google Scholar
  271. 270.
    E. W. Fischer, Effect of annealing and temperature on the morphological structure of polymers, Pure and Appl. Chem. 31, 113–131 (1972).Google Scholar
  272. 271.
    M. Avrami, Kinetics of phase change I. General theory, J. Chem. Phys. 7, 1103–1112 (1939); Kinetics of phase change II. Transformation-time relations for random distribution of nuclei, J. Chem. Phys. 8, 212–224 (1940).Google Scholar
  273. 272.
    F. P. Price, Some comments on the “Avrami” equation, J. Appl. Phys. 36, 3014–3016 (1965).Google Scholar
  274. 273.
    A. Peterlin, Secondary crystallization and annealing of polyethylene, J. Appl. Phys. 35, 75–81 (1964).Google Scholar
  275. 274.
    A. J. Kovacs, Cinétique de crystallization du polyéthylène, Ric. Sci. 25 (Suppl. A: Papers given at IUPAC Int. Symp. Macromol. Chem., Milan—Turin, 1954), pp. 668–685 (1955).Google Scholar
  276. 275.
    H. G. Zachmann and H. H. Stuart, Schmelz-and Kristallisationserscheinungen bei Makromolekularen Substanzen. IV. Haupt-and Nachkristallisation von Terylen aus dem Glaszustand, Makromol. Chemie 41, 131–147 (1960); Schmelz-und Kristallisationserscheinungen bei M akromolekularen Substanzen. V. Partielles Schmelzen and Neuekristallisieren von Terylen, Makromol. Chemi 41, 148–173 (1960).Google Scholar
  277. 276.
    F. Rybnikar, Secondary crystallization of polymers, J. Polymer Sci. 44, 517–522 (1960).Google Scholar
  278. 277.
    F. Rybnikar, Mechanism of secondary crystallization in polymers, J. Polymer Sci. A 1, 2031–2038 (1963).Google Scholar
  279. 278.
    J. M. Schultz and R. D. Scott, Temperature dependence of secondary crystallization in linear polyethylene, J. Polymer Sci. A-27, 659–666 (1969).Google Scholar
  280. 279.
    W. A. Tiller, K. A. Jackson, J. W. Rutter, and B. Chalmers, The redistribution of solute atoms during the solidification of metals, Acta Met. 1, 428–437 (1953).Google Scholar
  281. 280.
    R. L. Parker, Crystal growth mechanisms: Energetics, kinetics and transport, in Solid State Physics, Vol. 25, p. 260 ( D. Turnbull and F. Seitz, eds.), Academic, New York (1970).Google Scholar
  282. 281.
    J. W. Rutter and B. Chalmers, A prismatic substructure formed during solidification of metals, Can. J. Phys. 31, 15–39 (1953).Google Scholar
  283. 282.
    G. Lofgren, Spherulitic texture in glassy and crystalline rocks, J. Geophys. Res. 76, 5635–5640 (1971).Google Scholar
  284. 283.
    J. H. Magill and D. J. Plazek, Physical properties of aromatic hydrocarbons. II. Solidification behavior of 1,3,5-tri-a-naphthylbenzene, J. Chem. Phys. 46, 3757–3769 (1967).Google Scholar
  285. 284.
    P. H. Geil, Polyhedral structures in polymers grown from the melt, in Growth and Perfection of Crystals (R. H. Doremus, B. W. Roberts, and D. Turnbull, eds.), pp. 579–585, Wiley, New York (1958).Google Scholar
  286. 285.
    H. D. Keith, On the relation between different morphological forms in high polymers, J. Polymer Sci. A 2, 4339–4360 (1964).Google Scholar
  287. 286.
    F. Khoury and J. D. Barnes, Phenomenon of curved-crystal formation and the evolution of spherulitic structures in polymers, Bull. Am. Phys. Soc. 11, 248 (FA 11) (1966).Google Scholar
  288. 287.
    H. D. Keith, F. J. Padden, Jr., and R. G. Vadimsky, Intercrystalline links in polyethylene crystallized from the melt, J. Polymer Sci. A-2 4, 267–281 (1966).Google Scholar
  289. 288.
    H. A. Davis, Interlamella ties, J. Polymer Sci. A-2 4, 1009–1010 (1966).Google Scholar
  290. 289.
    E. S. Clark, Molecular orientation in injection molded acetal homopolymer, SPE J. 23 (7), 46–49 (1967).Google Scholar
  291. 290.
    Y. Hase and P. H. Geil, Swelling, deformation and retraction of poly(4-methylpentene-1). I. Morphological observations, Polymer J. (Japan) 2, 560–580 (1971).Google Scholar
  292. 291.
    Y. Hase and P. H. Geil, Swelling, deformation, and retraction of poly(4-methylpentene-I). II. Mechanical properties in the swollen state, Polymer J. (Japan) 2, 581–592 (1971).Google Scholar
  293. 292.
    F. Rybnikar and P. H. Geil, Lamellar structure of isothermally crystallized poly(4-methylpentene-1), J. Macromol. Sci.—Phys. B7, 1–17 (1973).Google Scholar
  294. 293.
    H. D. Keith, F. J. Padden and R. G. Vadimsky, Intercrystalline links: Critical evaluation, J. App]. Phys. 42, 4585–4592 (1971).Google Scholar
  295. 294.
    P. H. Geil, F. R. Anderson, B. Wunderlich, and T. Arakawa, Morphology of polyethylene crystallized from the melt under pressure, J. Polymer Sci. A 2, 3707–3720 (1964).Google Scholar
  296. 295.
    B. Wunderlich and T. Davidson, Extended chain crystals. I. General crystallization conditions and review of pressure crystallization of polyethylene, J. Polymer Sci. A-27, 2043–2050 (1969).Google Scholar
  297. 296.
    R. B. Prime and B. Wunderlich, Extended chain crystals. III. Size distribution of polyethylene crystals grown under elevated pressure, J. Polymer Sci. A-27, 2061–2072 (1969).Google Scholar
  298. 297.
    R. B. Prime and B. Wunderlich, Extended chain crystals. IV. Melting under equilibrium conditions, J. Polymer Sci. A-27, 2073–2089 (1969).Google Scholar
  299. 298.
    R. B. Prime, B. Wunderlich, and L. Melillo, Extended chain crystals. V. Thermal analysis and electron microscopy of the melting process in polyethylene, J. Polymer Sci. A-27, 2091–2097 (1969).Google Scholar
  300. 299.
    C. L. Gruner, B. Wunderlich, and R. C. Bopp, Extended chain crystals. VI. Annealing of polyethylene under elevated pressure, J. Polymer Sci. A-27, 2099–2113 (1969).Google Scholar
  301. 300.
    B. Wunderlich and L. Melillo, Morphology and growth of extended chain crystals of polyethylene, Makromol. Chem. 118, 250–264 (1968).Google Scholar
  302. 301.
    M. Yasuniwa, C. Nakafuku, and T. Takemura, Melting and crystallization process of polyethylene under high pressure, Polymer J. (Japan) 4, 526–533 (1973).Google Scholar
  303. 302.
    D. C. Bassett, B. A. Khalifa, and B. Turner, Chain-extended crystallization of polyethylene, Nature, Phys. Sci. 239, 106–108 (1972).Google Scholar
  304. 303.
    D. C. Bassett and B. Turner, Chain-extended crystallization of polyethylene: Evidence for a new, high pressure phase, Nature, Phys. Sci. 240, 146–148 (1972).Google Scholar
  305. 304.
    D. C. Bassett and B. Turner, On chain-extended and chain-folded crystallization of polyethylene, Phil. Mag. 29, 285–307 (1974).Google Scholar
  306. 305.
    D. C. Bassett and B. Turner, On the phenomenology of chain-extended crystallization in polyethylene, Phil. Mag. 29, 925–955 (1974).Google Scholar
  307. 306.
    D. C. Bassett, S. Block, and G. J. Piermarini, A high pressure phase of polyethylene and chain extended growth, J. Appl. Phys. 45, 4146–4150 (1974).Google Scholar
  308. 307.
    J. F. Jackson, T. S. Hsu, and J. W. Brasch, Direct microscopic observations of the crystallization process of polyethylene at high pressure: Acicular bladed crystals, J. Polymer Sci. B 10, 207–224 (1972).Google Scholar
  309. 308.
    L. Melillo and B. Wunderlich, Extended chain crystals. VIII. Morphology of polytetrafluoroethylene, Kolloid Z. Z. Polymere 250, 417–425 (1972).Google Scholar
  310. 309.
    J. D. Hoffman and J. J. Weeks, X-ray study of isothermal thickening of lamellae in bulk polyethylene at the crystallization temperature, J. Chem. Phys. 42, 4301–4302 (1965).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • F. Khoury
    • 1
  • E. Passaglia
    • 1
  1. 1.Institute for Materials ResearchNational Bureau of StandardsUSA

Personalised recommendations