Advertisement

The Structural Chemistry of Some Complex Oxides: Ordered and Disordered Extended Defects

  • LeRoy Eyring
  • Leung-Tak Tai

Abstract

The examples chosen to illustrate the role of extended defects in structural chemistry are dictated not so much by their practical importance as by the uneven state of existing knowledge and the predilection of the authors. While the systems discussed in this limited space are quite arbitrarily chosen, they do suggest the measure and diversity of structural variety existing in compounds possessing extended defects which occur disordered within a host structure or as an ordered feature of a new structure based on the host.

Keywords

Tetrahedral Site Pyrochlore Structure Defect Band Corner Sharing Block Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Magnéli, Structures of the ReO3-type with recurrent dislocations of atoms: Homologous series of molybdenum and tungsten oxides, Acta Cryst. 6, 495–500 (1953).CrossRefGoogle Scholar
  2. 2.
    A. D. Wadsley, Inorganic non-stoichiometric compounds, in Non-Stoichiometric Compounds ( L. Mandelcorn, ed.), pp. 98–209, Academic, New York (1964).Google Scholar
  3. 3.
    A. D. Wadsley and S. Andersson, Crystallographic shear and the niobium oxides and oxide fluorides in the composition region MXx, 2.4 x 2.7, in Perspectives in Structural Chemistry (J. D. Dunitz and J. A. Ibers, eds.), Vol. 3, pp. 1–58, Wiley, New York (1970).Google Scholar
  4. 4.
    L. A. Bursill and B. G. Hyde, Crystallographic shear in the higher titanium oxides: Structure, texture, mechanisms and thermodynamics, in Progress in Solid State Chemistry (H. Reiss and J. O. McCaldin, eds.), Vol. 7, pp. 177–251, Pergamon, Oxford (1972).Google Scholar
  5. 5.
    R. J. D. Tilley, Crystallographic shear in inorganic oxides, Int. Rev. Sci.: Inorg. Chem., Ser. One 10, 279–313 (1972).Google Scholar
  6. 6.
    G. Andersson, Studies on vanadium oxides. I. Phase analysis, Acta Chem. Scand. 8, 1599–1606 (1954).CrossRefGoogle Scholar
  7. 7.
    S. Andersson and L. Jahnberg, Crystal structure studies on the homologous series TiO2n 1, V„Oii, and Tin 2Cr2O2„ i, Ark. Kemi 21, 413–426 (1963).Google Scholar
  8. 8.
    L. Kihlborg, The structural chemistry of the higher molybdenum oxides, Ark. Kemi 21, 471–495 (1963).Google Scholar
  9. 9.
    A. D. Wadsley, Crystallographic shear and planar faults in solids, in Reactivity of Solids, Proc. 6th Int. Symp., pp. 1–15, Wiley, New York (1969).Google Scholar
  10. 10.
    S. Amelinckx and J. Van Landuyt, The use of electron microscopy in the study of extended defects related to nonstoichiometry, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 295–322, North-Holland, Amsterdam (1970).Google Scholar
  11. 11.
    J. G. Allpress, The application of electron optical technique to high temperature materials, in Proc. 5th Materials Res. Symp. (R. S. Roth and S. J. Schneider, Jr., eds.), pp. 87–111, National Bureau of Standards Special Publication 364 (1972).Google Scholar
  12. 12.
    J. M. Cowley, Crystal structure determination by electron diffraction, in Progress in Materials Science (B. Chalmers and W. Hume-Rothery, eds.), Vol. 13, No. 6, pp. 269–321, Pergamon, Oxford (1967).Google Scholar
  13. 13.
    S. Iijima, High-Resolution electron microscopy of crystal lattice of titanium—niobium oxide, J. Appl. Phys. 42, 5891–5893 (1971).CrossRefGoogle Scholar
  14. 14.
    S. Iijima, Structure analysis from high resolution EM images, in Proc. 30th Electron Microscopy Soc. Am. (C. J. Arceneaux, ed.), pp. 556–557, Claitor Publishing (1972).Google Scholar
  15. 15.
    S. Iijima, Direct observation of lattice defects in H—N13,05 by high resolution electron microscopy, Acta Cryst. A29, 18–24 (1973).CrossRefGoogle Scholar
  16. 16.
    E. W. Gorter, Classification, representation and prediction of crystal structures of ionic compounds, J. Solid State Chem. 1, 279–305 (1970).CrossRefGoogle Scholar
  17. 17.
    L. A. Bursill, Electron microscope study of an homologous series of shear structures based on molybdenum trioxides, Acta Cryst. A28, 187–191 (1972).Google Scholar
  18. 18.
    S. Andersson and J. Galy, Wadsley defects and crystallographic shear in hexagonally close-packed structures, J. Solid State Chem. 1, 576–582 (1970).CrossRefGoogle Scholar
  19. 19.
    I. E. Grey and A. F. Reid, Shear structure compounds (Cr, Fe)2Ti„202n1 derived from the a-PbO2 structure type, J. Solid State Chem. 4, 186–194 (1972).CrossRefGoogle Scholar
  20. 20.
    L. A. Bursill, B. G. Hyde, and D. K. Philp, New crystallographic shear families derived from the rutile structure and the possibility of continuous ordered solid solution, Phil. Mag. 23, 1501–1513 (1971).CrossRefGoogle Scholar
  21. 21.
    O. Terasaki and D. Watanabe, Electron microscopic study on the structure of TinO2n-1 (4 n 10) phases, Japan J. Appl. Phys. 10, 292–303 (1971).CrossRefGoogle Scholar
  22. 22.
    L. Kihlborg, The crystal chemistry of molybdenum oxides, in Nonstoichiometric Compounds (R. F. Gould, ed.), pp. 37–45, Advances in Chemistry Series, American Chemical Society, Washington, D.C. (1963).CrossRefGoogle Scholar
  23. 23.
    L. Kihlborg, The structural chemistry of the higher molybdenum oxides, Ark. Kemi 21, 471–495 (1963).Google Scholar
  24. 24.
    L. Kihlborg, The crystal structure of Mo „0„and the existence of homologous series of structures based on MoO3, Ark. Kemi 21, 443–460 (1963).Google Scholar
  25. 25.
    A. D. Wadsley, Mixed oxides of titanium and niobium. I, Acta Cryst. 14, 660–664 (1961).CrossRefGoogle Scholar
  26. 26.
    A. D. Wadsley, Mixed oxides of titanium and niobium. II. The crystal structures of the dimorphic forms of Ti2Nb10O29, Acta Cryst. 14, 664–670 (1961).CrossRefGoogle Scholar
  27. 27.
    B. M. Gatehouse and A. D. Wadsley, The crystal structure of the high temperature form of niobium pentoxide, Acta Cryst. 17, 1545–1554 (1964).CrossRefGoogle Scholar
  28. 28.
    R. S. Roth and A. D. Wadsley, Multiple phase formation in the binary system Nb205-WO3. IV. The block principle, Acta Cryst. 19, 42–47 (1965).CrossRefGoogle Scholar
  29. 29.
    S. Andersson, W. G. Mumme, and A. D. Wadsley, Multiple phase formation in the binary system Nb205-WO3. V. The structure of W4Nb26O77, an ordered inter-growth of the adjoining compounds WNb12O33 and W3Nb14O44, Acta Cryst. 21, 802–808 (1966).CrossRefGoogle Scholar
  30. 30.
    N. C. Stephenson, J. P. Beale, and D. C. Craig, The structure and intergrowth of the polymorphic forms of ZrO2 • 16Nb2O5, in Proc. 5th Materials Res. Symp. (R. S. Roth and S. J. Schneider, Jr., eds.), pp. 165–182, National Bureau of Standards Special Publication 364 (1972).Google Scholar
  31. 31.
    J. S. Anderson, J. M. Browne, and J. L. Hutchison, Electron microscopy of the niobium oxides. I. Twinning and defects in H-Nb2O5, J. Solid State Chem. 5, 419–431 (1972).CrossRefGoogle Scholar
  32. 32.
    B. G. Hyde and L. Eyring, On phase equilibria and phase reactions in TbOx O2 and related systems, in Rare Earth Research III (L. Eyring, ed.), pp. 623–664, Gordon and Breach, New York (1965).Google Scholar
  33. 33.
    J. O. Sawyer, B. G. Hyde, and L. Eyring, Fluorite-related homologous series in the rare earth oxides, Bull. Soc. Chim. Fr. 1965, 1190–1199.Google Scholar
  34. 34.
    B. G. Hyde, D. J. M. Bevan, and L. Eyring, A structural model of the rare earth oxides ROs (R = Ce, Pr, Tb; 1.5 x2.0), in Proc. Int. Conf. Electron Diffraction and Crystal Defects, Melbourne, 1965,IIC-4.Google Scholar
  35. 35.
    M. R. Thornber, D. J. M. Bevan, and J. Graham, Mixed oxides of the type MO2 (fluorite)-M2O3. III. Crystal structures of the intermediate phases Zr5Sc2O13 and Zr3Sc4O12, Acta Cryst. B24, 1183–1190 (1968).CrossRefGoogle Scholar
  36. 36.
    P. E. Caro, OM, Tetrahedra linkages and the cationic group (MOg+ in rare earth oxides and oxysalts, J. Less-Common Metals 16, 367–377 (1968).CrossRefGoogle Scholar
  37. 37.
    P. Caro, Anion centered coordination polyhedra and related physical properties in rare earth oxides and oxysalts, in Proc. 5th Materials Res. Symp. (R. S. Roth and S. J. Schneider, Jr., eds.), pp. 367–383, National Bureau of Standards Special Publication 364 (1972).Google Scholar
  38. 38.
    F. S. Galasso, Structure and Properties of Inorganic Solids, Pergamon, Oxford (1970).Google Scholar
  39. 39.
    B. G. Hyde, Crystallographic shear relations between the structure types -UO3,a CaF2, La203 and NaCI and a correlation of some lanthanide and actinide oxide structures, Acta Cryst. A27, 617–621 (1971).CrossRefGoogle Scholar
  40. 40.
    L. Eyring and B. Holmberg, Ordered phases and nonstoichiometry in the rare earth oxide system, in Advances in Chemistry Series, No. 39 (R. F. Gould, ed.), pp. 46–57, American Chemical Society, Washington, D.C. (1963).Google Scholar
  41. 41.
    B. T. M. Willis, Structures of UO2, UO2+x and U409 by neutron diffraction, J. Phys. - Rad. 25, 431–439 (1964).Google Scholar
  42. 42.
    A. K. Cheetham, B. E. F. Fender, D. Steele, R. I. Taylor, and B. T. M. Willis, Defect structure of fluoride compounds containing excess anions, Solid State Commun. 8 (3), 171–173 (1970).CrossRefGoogle Scholar
  43. 43.
    N. C. Baenziger, H. A. Eick, H. S. Schuldt, and L. Eyring, Terbium oxides. III. X-Ray diffraction studies of several stable phases, J. Am. Chem. Soc. 83, 2219–2223 (1961).CrossRefGoogle Scholar
  44. 44.
    S. F. Bartram, Crystal structure of the rhombohedral MO3 3R2O3 compounds (M = U, W or Mo) and their relation to ordered R,O12 phases, Inorg. Chem. 5, 749–754 (1966).CrossRefGoogle Scholar
  45. 45.
    M. Z. Lowenstein, L. Kihlborg, K. H. Lau, J. M. Haschke, and L. Eyring, Growth and X-ray studies of single crystals of higher oxides of praseodymium and terbium, in Proc. 5th Materials Res. Symp. (R. S. Roth and S. J. Schneider, Jr., eds.), pp. 343–351, National Bureau of Standards Special Publication 364 (1972).Google Scholar
  46. 46.
    A. F. Wells, Structural Inorganic Chemistry, Oxford Press, Oxford (1962).Google Scholar
  47. 47.
    A. W. Sleight, New ternary oxides of mercury with the pyrochlore structure, Inorg. Chem. 7, 1704–1708 (1968).CrossRefGoogle Scholar
  48. 48.
    A. W. Sleight and R. J. Bouchard, Precious metal pyrochlores, in Proc. 5th Materials Res. Symp. (R. S. Roth and S. J. Schneider, Jr., eds.), pp. 227–232, National Bureau of Standards Special Publication 364 (1972).Google Scholar
  49. 49.
    B. O. Loopstra and H. M. Rietveld, Structure of some alkaline-earth-metal uranates, Acta Cryst. B25, 787–791 (1969).CrossRefGoogle Scholar
  50. 50.
    D. Watanabe, O. Terasaki, A. Jostsons, and J. R. Castles, Electron microscopic study on the structure of low temperature modification of titanium monoxide phase, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 238–258, North-Holland, Amsterdam (1970).Google Scholar
  51. 51.
    H. Reuther and G. Brauer, Über das kubische vanadiummonoxid, Z. Annorg. Allg. Chem. 384, 155–159 (1971).CrossRefGoogle Scholar
  52. 52.
    P. S. Bell and M. H. Lewis, Non-stoichiometric vacancy order in vanadium monoxide, Phys. Stat. Sol. (a) 7, 431–439 (1971).CrossRefGoogle Scholar
  53. 53.
    B. Andersson and J. Gjennes, Ordered phases in the monoxide region of the vanadium—oxygen system, Acta Chem. Scand. 24, 2250–2252 (1970).CrossRefGoogle Scholar
  54. 54.
    P. Vallet and P. Raccah, Sur les limites du domaine de la Wüstite solide et le diagramme general qui en resulte, Compte. Rend. 258, 3679–3682 (1964).Google Scholar
  55. 55.
    F. Koch and J. B. Cohen, The defect structure of Fe 1-xO, Acta Cryst. B25, 275–287 (1969).CrossRefGoogle Scholar
  56. 56.
    W. L. Roth, Defects in the crystal and magnetic structures of ferrous oxide, Acta Cryst. 13, 140–149 (1960).CrossRefGoogle Scholar
  57. 57.
    G. Shirane, D. E. Cox, and S. L. Ruby, Mössbauer study of isomer shaft, quadrupole interaction and hyperfine field in several oxides containing Fe57, Phys. Rev. 125, 1158–1165 (1962).CrossRefGoogle Scholar
  58. 58.
    R. E. Carter and W. L. Roth, Conductivity and structure in calcia-stabilized zirconia, in Electrochemical Force Measurements in High Temperature Systems (C. B. Alcock, ed.), pp. 125–144, Institution of Mining Engineers, London (1968).Google Scholar
  59. 59.
    J. T. Kummer, ß-Alumina electrolytes, in Progress in Solid State Chemistry ( H. Reiss and J. O. McCaldin, eds.), pp. 141–175, Pergamon, Oxford (1972).Google Scholar
  60. 60.
    R. C. DeVries and W. L. Roth, Critical evaluation of the literature data on beta alumina and related phases: I. Phase equilibria and characterization of beta alumina phases, J. Em. Ceram. Soc. 52, 364–369 (1969).CrossRefGoogle Scholar
  61. 61.
    M. S. Wittingham and R. A. Huggins, Beta alumina—prelude to a revolution in solid state electrochemistry, in Proc. 5th Materials Res. Symp. (R. S. Roth and S. J. Schneider, Jr., eds.), pp. 139–154, National Bureau of Standards Special Publication 364 (1972).Google Scholar
  62. 62.
    C. R. Peters, M. Bettman, J. W. Moore, and M. D. Glick, Refinement of the structure of sodium ß-alumina, Acta Cryst. B27, 1826–1834 (1971).CrossRefGoogle Scholar
  63. 63.
    W. L. Roth, Stoichiometry and structure of the super ionic conductor silver beta-alumina, J. Solid State Chem. 4, 60–75 (1972).CrossRefGoogle Scholar
  64. 64.
    W. L. Roth, Observation in the electron microscope of lattice planes and migration of silver in beta alumina, in Proc. 5th Materials Res. Symp. (R. S. Roth and S. J. Schneider, Jr., eds.), pp. 129–138, National Bureau of Standards Special Publication 364 (1972).Google Scholar
  65. 65.
    H. Wiedersich and S. Geller, Properties of highly conducting halide and chalcogenide solid electrolytes, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 629–650, North-Holland, Amsterdam (1970).Google Scholar
  66. 66.
    S. Geller and M.D. Lind, Crystal structure of the solid electrolyte [(CH3)4N]Ag13I15, J. Chem. Phys. 52, 5854–5861 (1970).CrossRefGoogle Scholar
  67. 67.
    S. Andersson, in The Chemistry of Extended Defects in Non-Metallic Solids ( L. Eyring and M. O’Keefe, eds.), North-Holland, Amsterdam (1970).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • LeRoy Eyring
    • 1
  • Leung-Tak Tai
    • 1
  1. 1.Department of ChemistryArizona State UniversityTempeUSA

Personalised recommendations