Inclusion Compounds

  • F. R. Gamble
  • T. H. Geballe


The inclusion concept in crystal chemistry arises because there exist a large number of crystal classes in which one can clearly identify a host structure that contains guest atoms, ions, or molecules. In these, geometric and topological effects are of very great importance, and the concept of inclusion is useful not only in determining whether a compound will form but also in predicting properties. The host is a crystal that can provide a tunnel, planar, or cagelike accommodation for a guest species, depending on whether these are found in one-, two-, or three-dimensional arrays. The restricted dimensionality of some of these systems often substantially affects their properties. The presence of the guest, typically over a variable concentration range, has little effect on the structure and lattice constants of the host in at least two dimensions. In layered compounds the third dimension increases to accommodate the guest, which is termed the “intercalate.” In all cases important aspects of the identity of both host and guest are preserved. The strength of the interaction between host and guest varies greatly. In the noble gas clathrates it is weak. At the other extreme it will be so great that the whole concept of guest and host loses intuitive value. Thus, there is no profit in considering TiS in the NiAs structure to be TiS2 in the CdI2 structure with Ti intercalated. There is obviously a high degree of arbitrariness as to what to include in this chapter.


Alkali Metal Inclusion Compound Intercalation Compound Tungsten Bronze Guest Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. M. Powell, in Non-Stoichiometric Compounds (L. Mandelcorn, ed.), Chapter 7, Academic Press, New York (1964).Google Scholar
  2. 2.
    R. M. Barrer, in Non-Stoichiometric Compounds (L. Mandelcorn, ed.., Chapter 6, Academic Press, New York (1964).Google Scholar
  3. 3.
    I. Nâray-Szabó and K. Popp, Die Darstellung und die Eigenscahften der Silber(II)-oxidphase, Z. Anorg. Allgem. Chem. 322 286–296 (1963).Google Scholar
  4. 4.
    Chou Kung-Du, The crystal structure of Ag+[Ag2Ag4O8]NO3 -, Sci. Sinica (Peking) 12 139–140 (1963).Google Scholar
  5. 5.
    I. Nâray-Szabó and G. Argay, The structure of the Ag(I, III) oxide phases, Acta Cryst. 19, 180–184 (1965).Google Scholar
  6. 6.
    M. B. Robin, K. Andres, T. H. Geballe, N. A. Kuebler, and D. B. McWhan, Metallic conductivity and superconductivity in some silver clathrate salts, Phys. Rev. Letters 17, 917–919 (1966).Google Scholar
  7. 7.
    A. C. Gossard, D. K. Hindermann, M. B. Robin, N. A. Kuebler, and T. H. Geballe, Nuclear magnetic resonance and superconductivity in the clathrate salt [Ag7O8]+HF2 -, J. Am. Chem. Soc. 89 7121–7123 (1967).Google Scholar
  8. 8.
    D. K. Hindermann, M. B. Robin, and N. A. Kuebler, An NMR study of bi-fluoride ion reorientation in the metallic salt [Ag7O8]+HF2 -, J. Mag. Res. 1 479–487 (1969).Google Scholar
  9. 9.
    M. B. Robin, private communication.Google Scholar
  10. 10.
    Mary M. Conway, Norman E Phillips, T. H. Geballe, and N. A. Kuebler, Low-temperature heat capacities of the clathrate salts Ag7O8NO3 and Ag7O8HF2, J. Phys. Chem. Solids 31 2673–2678 (1970).Google Scholar
  11. 11a.
    W. A. Phillips, Tunneling states in amorphous solids, J. Low Temp. Phys. 7, 351–360 (1972).Google Scholar
  12. 11b.
    P. W. Anderson, B. I. Halperin, and C. M. Varma, Anomalous low-temperature properties of glasses and spin glasses, Phil. Mag. 25 1–9 (1972).Google Scholar
  13. 12.
    R. J. Rollefson, Tunneling in NaBr:F- thermal and dielectric properties, Phys. Rev. B5 3235 (1972).Google Scholar
  14. 13.
    W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys,Wiley Interscience, New York (1972).Google Scholar
  15. 14.
    V. I. Matkovitch, R. F. Giese, and J. Economy, Z. Kristallogr. 122 116 (1965).Google Scholar
  16. 15.
    Stepehanie M. Richards and John S. Kasper, The crystal structure of YB66, Acta Cryst. B25 237–251 (1969).Google Scholar
  17. 16.
    Glen A. Slack, D. W. Oliver, and F. H. Horn, Thermal conductivity of boron and some boron compounds, Phys. Rev. B 4 1714–1720 (1971).Google Scholar
  18. 17.
    B. Post, in Boron, Metallo-Boron Compounds, Boranes, pp. 301–369, WileyInterscience, New York (1964).Google Scholar
  19. 18.
    J. L. Hoard and R. E. Hughes, in The Chemistry of Boron and Its Compounds (E. L. Muetterties, ed.), Wiley, New York (1967).Google Scholar
  20. 19.
    S. La Placa, quoted in Ref. 18, and private communication.Google Scholar
  21. 20.
    H. C. Longuet-Higgins and M. de V. Roberts, The electronic structure of the borides MB6, Proc. Roy. Soc. (London) A224 336–347 (1968).Google Scholar
  22. 21.
    Yu. B. Paderno and G. V. Samsonov, Dokl. Akad. Nark SSSR 137 646 (1960).Google Scholar
  23. 22.
    Robert W. Johnson and A. H. Daane, Electron requirements of bonds in metal borides; J. Chem. Phys. 38 425–432 (1963).Google Scholar
  24. 23.
    Z. Fisk, Ph.D. Dissertation, University of California, San Diego, 1969 (unpublished).Google Scholar
  25. 24.
    T. Niemyski and E. Kierzek-Pecold, Crystallization of lanthanum hexaboride, J. Cryst. Growth 3 162–165 (1968).Google Scholar
  26. 25.
    Yu. B. Paderno, S. Pokrzywnicki, and B. Stalinski, Magnetic properties of some rare earth hexaborides, Phys. Stat. Sol. 24 K73–K76 (1967).Google Scholar
  27. 26.
    B. T. Matthias, T. H. Geballe, K. Andres, E. Corenzwit, G. W. Hull, and J. P. Maita, Superconductivity and antiferromagnetism in boron-rich lattices, Science 159 530 (1968).Google Scholar
  28. 27.
    T. H. Geballe, B. T. Matthias, K. Andres, J. P. Maita, A. S. Cooper, and E. Corenzwit, Magnetic ordering in the rare-earth hexaborides, Science 160 1443–1444 (1968).Google Scholar
  29. 28.
    A. C. Gossard and V. Jaccarino, Boron nuclear magnetic resonance in rare earth intermetallic compounds, Proc. Phys. Soc. 80 877–881 (1962).Google Scholar
  30. 29.
    J. M. Lafferty, Boride cathodes, J. Appl. Phys. 22 299–309 (1951).Google Scholar
  31. 30.
    B. W. Roberts, Properties of Selected Superconductive Materials, NBS Technical Note 724, June 1972.Google Scholar
  32. 31.
    Jörg Wittig, Superconductivity of cerium under pressure, Phys. Rev. Letters 21 1250–1252 (1968).Google Scholar
  33. 32.
    T. F. Smith and W. E. Gardner, Pressure dependence of the superconducting transition temperature of dhcp and fcc lanthanum, Phys. Rev. 146 291–294 (1966).Google Scholar
  34. 33.
    M. R. MacPherson, G. E. Everett, D. Wohlleben, and M. B. Maple, Magnetic susceptibility of cerium metal under pressure, Phys. Rev. Letters 26 20–23 (1971)Google Scholar
  35. Howard Katzman and J. A. Mydosh, Electrical resistivity of exchange-enhanced x-cerium under pressure, Phys. Rev. Letters 29 998–1001 (1972).Google Scholar
  36. 34.
    J. Charles Nickerson and Robert M. White, Theory of the susceptibility of CeB6, J. Appl. Phys. 40 1011–1012 (1969).Google Scholar
  37. 35.
    C. Kittel, in Solid State Physics (F. Seitz, D. Turnbull, and H. Ehrenreich, eds.), Vol. 22, pp. 1–25, Academic Press, New York (1968).Google Scholar
  38. 36.
    K. N. Lee, Ph.D. Dissertation, Princeton University, 1971 (unpublished).Google Scholar
  39. 37.
    É. E. Vainshtein, S. M. Blokhin, and Yu. B. Paderno, X-ray spectral investigation of samarium hexaboride, Soviet Phys.—Solid State 6 2318–2320 (1965).Google Scholar
  40. 38.
    R. L. Cohen, M. Eibschütz, and K. M. West, Electronic and magnetic structure of SmB6, Phys. Rev. Letters 24 383–386 (1970)Google Scholar
  41. J. J. Rhyne, Mostly rare-earth compounds, J. Appl. Phys. 41 898–899 (1970).Google Scholar
  42. 39.
    J. C. Nickerson, R. M. White, K. N. Lee, R. Bachmann, T. H. Geballe, and G. W. Hull, Jr., Physical properties of SmB6, Phys. Rev. B 3 2030–2042 (1971).Google Scholar
  43. 40.
    A. Jayaraman, V. Narayanamurti, E. Bucher, and R. G. Maines, Continuous and discontinuous semiconductor-metal transition in samarium monochalcogenides under pressure, Phys. Rev. Letters 25 1430–1433 (1970)Google Scholar
  44. J. M. Rooymans, Ber. Bunsenges. Phys. Chem. 70 1036 (1966).Google Scholar
  45. 41.
    A. Menth, E. Buehler, and T. H. Geballe, Magnetic and semiconducting properties of SmB6, Phys. Rev. Letters 22 295–297 (1969).Google Scholar
  46. 41a.
    S. Doniach, private communication.Google Scholar
  47. 42.
    L. Pauling, The Nature of the Chemical Bond,Cornell University Press, Ithiaca, New York (1960), 3rd Ed.Google Scholar
  48. 43.
    D. E. Soule, J. W. McClure, and L. B. Smith, Study of the Shubnikov-de Haas effect. Determination of the Fermi surfaces in graphite, Phys. Rev. 134 A453–A470 (1964).Google Scholar
  49. 44.
    J. G. Hooley, in Chemistry and Physics of Carbon (P. Walker, ed.), Vol. 5, pp. 321–372, Pergamon Press, New York (1969).Google Scholar
  50. 45.
    Walter Rüdorff, Über die Einlagerung von unedlen Metallen in Graphit sowie in Metallchalkogenide vom Typ MeX2, Chimie 19 489–499 (1965).Google Scholar
  51. 46.
    G. R. Hennig, Progress in Inorganic Chemistry,Vol. 1, Interscience, New York (1959).Google Scholar
  52. 47.
    A. R. Ubbelohde and F. A. Lewis, Graphite and its Crystal Compounds,Oxford University Press, London (1960).Google Scholar
  53. 48.
    Karl Fredenhagen and Gustav Cadenbach, Die Binding von Kalium durch Kohlenstoff, Z. Anorg. Allgem. Chem. 158 249–263 (1926).Google Scholar
  54. 49.
    F. J. Salzano and S. Aronson, Thermodynamic properties of rubidium-graphite lamellar compounds, J. Chem. Phys. 45 4551–4555 (1966).Google Scholar
  55. 50.
    F. J. Salzano and S. Aronson, Stability of phases in the cesium-graphite system, J. Chem. Phys. 45 2221–2227 (1966).Google Scholar
  56. 51.
    N. B. Hannay, T. H. Geballe, B. T. Matthias, K. Andres, P. Schmidt, and D. MacNair, Superconductivity in graphitic compounds, Phys. Rev. Letters 14 225–226 (1965).Google Scholar
  57. 52.
    Daniel Balesdent, Bernard Carton, and Albert Hérold, Détermination des grandeurs thermodynamiques partielles et totales dans le systèm graphite-potassium, Revue de Chimie minérale 9 495–500 (1972).Google Scholar
  58. 53.
    Robert Juze and Volker Wehle, Lithium-Graphit-Einlagerungsverbindungen, Naturwiss. 20 560 (1965).Google Scholar
  59. 54.
    Michel Rose, Claude Naccache, and Jean Golé, Étude par résonance paramagnétique électronique des composés d’insertion des métaux alcalins dans le graphite, Compt. Rend. 266 (Série C), 421–424 (1968).Google Scholar
  60. 55.
    Co-Minh-Duc, Michel Rose, and Jean-Pierre Pascault, Produits d’insertion ternaires graphite-métal alcalin-diméthoxyéthane. Étude radiocristallographique, Compt. Rend. 270 (Série C), 657–658 (1970).Google Scholar
  61. 56.
    W. T. Eeles and J. A. Turnbull, The crystal structure of graphite-bromine compounds, Proc. Roy. Soc. (London) A283, 179–193 (1965).Google Scholar
  62. 57.
    A. G. Freeman and J. H. Johnston, The intercalation of graphite by boron tri-chloride, Carbon 9 667–671 (1971).Google Scholar
  63. 58.
    Jean Mélin and Albert Hérold, Étude des composés graphite-pentachlorure d’antimoine, Compt. Rend. 269 (Série C), 887–879 (1969).Google Scholar
  64. 59.
    Hervé Fuzellier and Albert Hérold, Insertion de hémipentoxyde d’azote dans le graphite, Compt. Rend. 267 (Série C), 607–609 (1968).Google Scholar
  65. 60.
    D. E. Nixon and G. S. Parry, The expansion of the carbon-carbon bond length in potassium graphite, J. Phys. C 2 1732–1741 (1969).Google Scholar
  66. 61.
    M. J. Bottomley, G. S. Parry, and A. R. Ubbelohde, Thermal expansion of some salts of graphite, Proc. Roy. Soc. (London) A279 291–301 (1964).Google Scholar
  67. 62.
    A. R. Ubbelohde, G. S. Parry, and D. Dixon, Order-Disorder transformations in graphite nitrates, Nature 206 1352–1354 (1965).Google Scholar
  68. 63.
    D. E. Nixon, G. S. Parry, and A. R. Ubbelohde, Order-Disorder transformations in graphite nitrates, Proc. Roy. Soc. (London) A291 324–339 (1966).Google Scholar
  69. 64.
    F. R. M. McDonnell, R. C. Pink, and A. R. Ubbelohde, Some physical properties associated with “aromatic” electrons. Part III. The pseudo-metallic properties of potassium-graphite and graphite-bromine, J. Chem. Soc. (London) 1951 191–199.Google Scholar
  70. 65.
    J. G. Hooley, A recording vacuum thermobalance, Can. J. Phys. 35 374–380 (1957).Google Scholar
  71. 66.
    G. A. Saunders, A. R. Ubbelohde, and D. A. Young. The formation of graphite/ bromine I.Hysteresis of bromine insertion between the carbon hexagon layers, Proc. Roy. Soc. (London) A271 499–511 (1963).Google Scholar
  72. 67.
    J. G. Hooley and J. L. Smee, The mechanism of the bromination of graphite, Carbon 2 135–138 (1964).Google Scholar
  73. 68.
    J. G. Hooley, W. P. Garby, and J. Valentin, The effect of sample shape on the bromination of graphite, Carbon 3 7–16 (1965).Google Scholar
  74. 69.
    Tadashi Sasa, Yoichi Takahashi, and Takashi Mukaibo, Electrical conductivity of graphite bromine lamellar compound, Bull. Chem. Soc. Japan 43 34–38 (1970).Google Scholar
  75. 70.
    J. G. Hooley, private communication.Google Scholar
  76. 71.
    B. Bach, E. L. Evans, J. M. Thomas, and M. Barber, Monitoring changes in the band structure of graphite following chemical reaction: An X-ray-induced photoelectron study of intercalation, Chem. Phys. Letters 10 547–548 (1971).Google Scholar
  77. 72.
    J. K. Galt, W. A. Yager, and H. W. Dail, Jr., Cyclotron resonance effects in graphite, Phys. Rev. 103 1586–1587 (1956).Google Scholar
  78. 73.
    A. S. Bender and D. A. Young, Fermi surfaces in graphite-bromine, studied by Shubnikov-de Haas oscillations, J. Phys. C 5, 2163–2178 (1972).Google Scholar
  79. 74.
    A. R. Ubbelohde, Electronic anomalies in dilute synthetic metals, Proc. Roy. Soc. (London) A321 445–460 (1971).Google Scholar
  80. 75.
    A. R. Ubbelohde, Electrical anisotropy of synthetic metals based on graphite, Proc. Roy. Soc. (London) A327 289–303 (1972).Google Scholar
  81. 76.
    Alexander L. Fetter and Pierre C. Hohenberg, in Superconductivity (R. D. Parks, ed.), Vol. 2, pp. 817–923, Marcel Dekker, New York (1969).Google Scholar
  82. 77.
    J. Poitrenaud, Étude de la susceptibilité du composé CO(à basse temperature par résonance paramagnétique électronique, Revue de Physique Appliquée 5 275–281 (1970).Google Scholar
  83. 78.
    F. J. Salzano and Myron Strongin, Dimensionality of superconductivity in graphite lamellar compounds, Phys. Rev. 153 533–434 (1967).Google Scholar
  84. 79.
    K. A. Müller and R. Kleiner, Conduction carrier spin resonance in the alkalimetal-graphites C8Me and C24Me, Phys. Letters 1 98–100 (1962).Google Scholar
  85. 80.
    George Feher and A. F. Kip, Electron spin resonance absorption in metals. I. Experimental, Phys. Rev. 98 337–348 (1955)Google Scholar
  86. Freeman J. Dyson, Electron spin resonance absorption in metals. II.Theory of electron diffusion and the skin effect, Phys. Rev. 98 349–359 (1955).Google Scholar
  87. 81.
    J. M. Cowley and James A. Ibers, The structures of some ferric chloride-graphite compounds, Acta Cryst. 9 421–431 (1956).Google Scholar
  88. 82.
    B. V. Liengme, M. W. Bartlett, J. G. Hooley, and J. R. Sams, Mössbauer spectra of interlaminar FeC13-graphite compounds, Phys. Letters 25A 127–128 (1967).Google Scholar
  89. 83.
    J. G. Hooley, M. W. Bartlett, B. V. Liengme, and J. R. Sams, A. Mössbauer study of graphite iron chloride compounds, Carbon 6 681–685 (1968).Google Scholar
  90. 84.
    Yu. N. Novikov, M.E. Vol’pin, V. E. Prusakov, R. A. Strukan, V. I. Gol’danskii, V. A. Semion, and Yu. T. Struchkov, Preparation, structure, and nuclear gamma resonance spectra of laminated compounds of graphite with iron chlorides, J. Struct. Chem. 11 970–976 (1970).Google Scholar
  91. 85.
    Marceline L. Dzurus and Gerhart R. Hennig, Graphite compounds, J. Am. Chem. Soc. 79 1051–1054 (1957).Google Scholar
  92. 86.
    Yu. S. Karimov, A. V. Zvarykina, and Yu. N. Novikov, Two-dimensional ferromagnetism in layered compounds of graphite with iron chlorides, Soviet Phys.Solid State 13 2388–2391 (1972).Google Scholar
  93. 87.
    Yu. S. Karimov, M. E. Vol’pin, and Yu. N. Novikov, Layered compounds of NiCl2 and CoC12 with graphite as two dimensional heisenberg ferromagnets, JETP Letters 14 142–144 (1971).Google Scholar
  94. 88.
    M. K. Wilkinson, J. W. Cable, E. O. Wollan, and W. C. Koehler, Neutron diffraction investigations of the magnetic ordering in FeBr2, CoBr2, FeC12, and CoC12, Phys. Rev. 113 497–507 (1959). 159Google Scholar
  95. 89.
    J. W. Cable, M. K. Wilkinson, and E. O. Wollan, Neutron diffraction studies of the magnetic ordering in CrC13 and FeC13, Bull. Am. Phys. Soc. 4, 189 (1959).Google Scholar
  96. 90.
    W. B. Yelon and R. J. Birgeneau, Magnetic properties of FeC12 in zero field. II. Long-range order, Phys. Rev. B 5 2615–2621 (1972).Google Scholar
  97. 91.
    M. E. Lines, New approach to Green’s-function decoupling in magnetism with specific application to two-dimensional systems, Phys. Rev. B 3,1749–1763 (1971).Google Scholar
  98. 92.
    R. C. Chisholm and J. W. Stout, Heat capacity and entropy of CoC12 and MnC12 from 11° to 300°K. Thermal anomaly associated with antiferromagnetic ordering in CoC12, J. Chem. Phys. 36 972–979 (1962).Google Scholar
  99. 93.
    F. Hulliger, in Structure and Bonding (C. Jorgensen, ed.), Vol. 4, pp. 83–229, Springer-Verlag, Berlin (1968).Google Scholar
  100. 94.
    J. A. Wilson and A. D. Yoffe, The transition metal dichalcogenides: Discussion and interpretation of the observed optical, electrical, and structural properties, Adv. Phys. 18 193–335 (1969).Google Scholar
  101. 95.
    R. Huisman, R. De Jonge, C. Haas, and F. Jellinek, Trigonal-prismatic coordination in solid compounds of transition metals, J. Solid State Chem. 3 56–66 (1971).Google Scholar
  102. 96.
    J. C. McMenamin and W. E. Spicer, Photoemission studies of the layered dichalcogenides NbSe2 and MoS2 and a modification of the current band models, Phys. Rev. Letters 29 1501–1504 (1972).Google Scholar
  103. 97.
    P. M. Williams and F. R. Shepherd, He II photoemission studies of transition metal dichalcogenides, J. Phys. C 6 L36–L40 (1973).Google Scholar
  104. 98.
    L. F. Mattheiss, Band structures of transition-metal dichalcogenide layer compounds, Bull. Am. Phys. Soc. 18 386 (1973).Google Scholar
  105. 98a.
    A. H. Thompson, K. R. Pisharody, and R. F. Koehler, Jr., Experimental study of the solid solutions TixTTxS2, Phys. Rev. Letters 29 163–166 (1972).Google Scholar
  106. 98b.
    A. H. Thompson, F. R. Gamble, and J. R. Revelli, Transitions between semiconducting and metallic phases in 1T-TaS2, Solid State Commun. 9 981–985 (1971).Google Scholar
  107. 98c.
    J. A. Wilson, private communication.Google Scholar
  108. 99.
    W. Rüdorff and H. H. Sick, Einlagerungsverbindungen von Alkali-und Erdalkali-metallen in Molybdän-und Wolframdisulfid, Angew. Chem. 71 128 (1959).Google Scholar
  109. 100.
    Walter Rüdorff, Einlagerungsverbindungen mit Alkali-und Erdalkalimetallen, Angew. Chem. 71 487–491 (1959).Google Scholar
  110. 101.
    W. Rüdorff and W. Ostertag, in Proc. 4th Conf. on Rare Earth Research (L. Eyring, ed.), p. 117, Gordon and Breach, New York (1965).Google Scholar
  111. 102.
    M. Rüdorff, Reaktionen stark elektropositiver Metalle mit Graphit und mit Metalidichalkogeniden, Angew Chem. 78 948 (1966).Google Scholar
  112. 103.
    Annie Le Blanc, Michel Danot, and Jean Rouxel, Sur l’insertion de métaux alcalins, dans la structure CdI2 du disulfure d’étain, Bull. Soc. Chim. Fr. 1969 87–90.Google Scholar
  113. 104.
    Michel Danot, Annie Le Blanc, and Jean Rouxel, Les composés intercalaires KxTiS2, Bull. Soc. Chim. Fr. 1969 2670–2675.Google Scholar
  114. 105.
    Jean Rouxel, Michel Danot, and Jean Bichon, Les composés intercalaires NaxTiS2. Étude structurale générale des phases NaxTiS2 et KxTiS2, Bull. Soc. Chim. Fr. 1971.3930–3935.Google Scholar
  115. 106.
    Jean Rouxel, J. Cousseau, and Luc Trichet, Les Composés intercalaires—K„ZrS2 Compt. Rend. 273 243–246 (1971).Google Scholar
  116. 107.
    Annie Le Blanc and Jean Rouxel, Sur les types structuraux des composés intercalaires MSnS2 (M = Li, Na, K, Rb), Compt. Rend. 274 (Série C), 786–788 (1972).Google Scholar
  117. 108.
    G. V. Subba Rao, M. W. Shafer, and L. Tao, in Proc. Magnetism Coni., Boulder, Colorado, 1972.Google Scholar
  118. 109.
    J. R. Revelli, Jr., Bull. Am. Phys. Soc. 17, 22 (1972);Google Scholar
  119. J. R. Revelli, Jr., Ph.D. Dissertation, Stanford Univ., 1973 (unpublished).Google Scholar
  120. 110.
    R. B. Somoano and A. Rembaum, Superconductivity in intercalated molybdenum disulfide, Phys. Rev. Letters 27 402–404 (1971).Google Scholar
  121. 111.
    R. B. Somoano, V. Hadek, and A. Rembaum, J. Chem. Phys., in press.Google Scholar
  122. 112.
    F. R. Gamble and T. H. Geballe, unpublished.Google Scholar
  123. 113.
    J. V. Acrivos, W. Y. Liang, J. A. Wilson, and A. D. Yoffe, Optical studies of metal-semiconductor transmutations produced by intercalation, J. Phys. C 4, L18–L20 (1970).Google Scholar
  124. 114.
    W. Omloo and F. Jellinek, Intercalation compounds of alkali metals with niobium and tantalum dichalcogenides, J. Less-Common Metals 20 121–129 (1970).Google Scholar
  125. 115.
    Marcel Sergent and Jacques Prigent, Préparation de thiomolybdites, thiotungstites et thiochromites alcalins, Compt. Rend. 261 (Groupe 8), 5135–5137 (1965).Google Scholar
  126. 116.
    A. E. Van Arkel and C. Crevecoeur, Quelques sulfures et séléniures complexes, J. Less-Common Metals 5 177–180 (1963).Google Scholar
  127. 117.
    K. Koerts, The crystal structure of Cu0.65NbS2 and some related compounds, Acta Cryst. 16 432 (1963).Google Scholar
  128. 118.
    J. M. van den Berg and C. W. F. Kort, La structure de Cuo.65TaS2, J. Less-Common Metals 13 363–364 (1957).Google Scholar
  129. 119.
    J. M. Voorhoeve-van den Berg, On the ternary phases of AlxNbSe2 and CuxNbSe2, J. Less-Common Metals 26 399–402 (1972).Google Scholar
  130. 120.
    F. J. Di Salvo, G. W. Hull, L. H. Schwartz, J. M. Vooerhoeve, and J. V. Waszczak, to be published.Google Scholar
  131. 121.
    P. Gentile and T. Tracey, to be published.Google Scholar
  132. 122.
    Harry Hahn, Bernhard Harder, and Wolfgang Brockmüller, Versuche zur Umsetzung von Titansulfiden mit Sulfiden zweiwertiger Übergangsmetalle, Z. Anorg. Allgem. Chem. 288 260–268 (1956).Google Scholar
  133. 123.
    Gilbert Bérodias and Maurice Chevreton, Étude structurale de nouveaux séléniures ternaires, Compt. Rend. 261 (Groupe 6), 2202–2204 (1965).Google Scholar
  134. 124.
    R. H. Plovnick, M. Vlasse, and A. Wold, Preparation and structural properties of some ternary chalcogenides of titanium, Inorg. Chem. 7 127–129 (1968).Google Scholar
  135. 125.
    Michel Danot and Jean Rouxel, Études de systèmes MX TiS2 (M métal alcalin ou élément de transition de la première période, 0 < x < 1): les surstructures MTi4S8 et M3Ti4S8 (M = Fe, Co, Ni), Compt. Rend. 271 (Série C), 998–1001 (1970).Google Scholar
  136. 126.
    Michel Danot, Jean Bichon, and Jean Rouxel, Le système nickel-disulfure de titane, Mem. Soc. Chim. Fr. 1972 3063–3066.Google Scholar
  137. 127.
    Luc Trichet and Jean Rouxel, Étude du système nickel-ZrS2. Structure et sur-structure Ni0 50ZrS2, Compt. Rend. 269 (Série C), 1040–1043 (1969).Google Scholar
  138. 128.
    Luc Trichet, Joseph Cousseau, and Jean Rouxel, Les systèmes Fe-ZrS2 et Co-ZrS2. Structure MxZrS2, Compt. Rend. 274 (Série C), 394–397 (1972).Google Scholar
  139. 129.
    J. Rouxel, private communication.Google Scholar
  140. 130.
    J. M. van den Berg and P. Cossee, Structural aspects and magnetic behavior of NbS2 and TaS2 containing extra metal atoms of the first transition series, Inorg. Chim. Acta 2 143–148 (1968).Google Scholar
  141. 131.
    Annie Le Blanc and Jean Rouxel, Étude de systèmes MxNbS2 (M élément de transition de la première période): système TixNbS2 et surstructure Cr, 33NbS2, Compt. Rend. 270 (Série C), 1976–1979 (1970).Google Scholar
  142. 132.
    F. Hulliger and E. Pobitschka, On the magnetic behavior of new 2H—NbS2-type derivatives, J. Solid State Chem. 1, 117–119 (1970).Google Scholar
  143. 133.
    J. M. Voorhoeve and M. Robbins, Intercalation of the niobium diselenide layer structure by first row transition metals, J. Solid State Chem. 1 134–137 (1970).Google Scholar
  144. 134.
    K. Anzenhofer, J. M. van den Berg, P. Cossee, and J. N. Helle, The crystal structure and magnetic susceptibilities of MnNb3S6, CoNb3S6, and NiNb3S6, J. Phys. Chem. Solids 31 1057–1067 (1970).Google Scholar
  145. 135.
    B. van Laar, R. M. Turveld, and D. J. W. Ijdo, Magnetic and crystallographic structures of MexNbS2 and MexTaS2, J. Solid State Chem. 3 154–160 (1971).Google Scholar
  146. 136.
    J. Bernard and Y. Jeannin, in Symposium of Nonstoichiometric Compounds (Roland Ward, ed.), Adv. in Chem. Ser. No. 39, pp. 191–303, American Chemical Society, New York (1963).Google Scholar
  147. 137.
    R. Huisman, K. Kadijk, and F. Jellinek, The non-stoichiometric phases Nbl+xSe2 and Ta,+xSe2, J. Less-Common Metals 21 187–193 (1970).Google Scholar
  148. 138.
    Ye. A. Antonova, K. V. Kiseleva, and S. A. Medvedev, Superconductivity in lamellar structures of the NbSe2 type, Phys. Met. Metallog. 27 58–62 (1969).Google Scholar
  149. 139.
    Armin Weiss and R. Ruthardt, Über eine Schichteinlagerungs-Verbindung des Titandisulfids mit Hydrazin, Z. Naturforsch. 24b 256 (1969).Google Scholar
  150. 140.
    Armin Weiss and R. Ruthardt, Schichteinlagerungs-Verbindungen des Titandisulfids mit Säureamiden, Z. Naturforsch. 24b 355 (1969).Google Scholar
  151. 141.
    Armin Weiss and R. Ruthardt, Schichteinlagerungs-Verbindungen des Titandisulfids mit N-substituierten Carbonsäureamiden, Z. Naturforsch. 24b 1066 (1969).Google Scholar
  152. 142.
    F. R. Gamble, F. J. Di Salvo, R. A. Klemm, and T. H. Geballe, Superconductivity in layered structure organometallic crystals, Science 168 568–570 (1970).Google Scholar
  153. 143.
    F. R. Gamble, J. H. Osiecki, and F. J. Di Salvo, Some superconducting intercalalation complexes of TaS2 and substituted pyridines, J. Chem. Phys. 55 3525–3530 (1971).Google Scholar
  154. 144.
    F. R. Gamble, J. H. Osiecki, M. Cais, R. Pisharody, J. F. Di Salvo, and T. H. Geballe, Intercalation complexes of Lewis bases and layered sulfides: A large class of new superconductors, Science 174 493–500 (1971).Google Scholar
  155. 145.
    R. Schöllhorn and Armin Weiss, Layer intercalation compounds of dichalcogenides of transition metals of group IVb and Vb with ammonia, Z. Naturforsch. 27b 1273–1274 (1972).Google Scholar
  156. 146.
    R. Ruthardt, R. Schöllhorn, and Armin Weiss, Layer intercalation compounds of titanium disulfide with nitrogen heterocycles, Z. Naturforsch. 27b, 1275–1276 (1972).Google Scholar
  157. 147.
    R. Schöllhorn and Armin Weiss, Layer intercalation compounds of transition metal dichalcogenides with hydrazine and alkylsubstituted hydrazines, Z. Naturforsch. 27b 1277–1278 (1972).Google Scholar
  158. 148.
    R. Schöllhorn and Armin Weiss, Layer intercalation compounds of niobium and tantalum disulfide with nitrogen heterocycles, Z. Naturforsch. 27b 1278–1279 (1972).Google Scholar
  159. 149.
    R. Schöllhorn and Armin Weiss, Layer intercalation compounds of titanium disulfide, niobium disulfide and tantalum disulfide with N-oxides of heterocycles, Z. Naturforsch. 27b, 1428–1429 (1972).Google Scholar
  160. 150.
    A. H. Thompson, F. R. Gamble, and R. F. Koehler, Jr., Effects of intercalation on electron transport in tantalum disulfide, Phys. Rev. B 5, 2811–2816 (1972).Google Scholar
  161. 151.
    R. A. Bromley, A Fermi surface for 2H-NbSe2, Phys. Rev. Letters 29, 357–359 (1972).Google Scholar
  162. 152.
    E. Ehrenfreund, A. C. Gossard, F. R. Gamble, and T. H. Geballe, Absence of antiferromagnetism in NbSe2 and TaSe2, J. Appl. Phys. 42, 1491–1493 (1971).Google Scholar
  163. 153.
    M. Marezio, P. D. Dernier, A. Menth, and G. W. Hull, Jr., The crystal structure of NbSe2 at 15°K, J. Solid State Chem. 4, 425–429 (1972).Google Scholar
  164. 154.
    A. H. Thompson, private communication.Google Scholar
  165. 155.
    S. Foner, E. J. McNiff, Jr., A. H. Thompson, F. R. Gamble, T. H. Geballe, and F. J. Di Salvo, Anisotropic high field superconductors, in Low Temperature Physics LT-13 (Proc. 13th Int. Conf. Low Temp. Phys.), Plenum, New York (1973).Google Scholar
  166. 156.
    F. J. Di Salvo, R. Schwall, T. H. Geballe, F. R. Gamble, and J. H. Osiecki, Superconductivity in layered compounds with variable interlayer spacings, Phys. Rev. Letters 27, 310–313 (1971).Google Scholar
  167. 157.
    T. H. Geballe, A. Menth, F. J. Di Salvo, and F. R. Gamble, Precursor effects of superconductivity up to 35°K in layered compounds, Phys. Rev. Letters 27, 314–316 (1971).Google Scholar
  168. 158.
    D. E. Prober, M. Beasley, and R. E. Schwall, Fluctuation effects in the magnetic transition of superconducting layered compounds, in Low Temperature Physics LT-13 (Proc. 13th. Int. Conf. Low Temp. Phys.), Plenum, New York (1973).Google Scholar
  169. 159.
    F. J. Di Salvo, Magnetic susceptibility measurements of intercalated tantalum disulfide, in Low Temperature Physics LT-13,(Proc. 13th Int. Conf. Low Temp. Phys.), Plenum, New York (1973).Google Scholar
  170. 160.
    P. J. Bray and Enrique G. Sauer, N14 nuclear quadrupole resonance in compounds used as intercalates in superconducting complexes of TaS2, Solid State Commun. 11, 1239–1242 (1972).Google Scholar
  171. 161.
    M. R. Tubbs, The optical absorption spectra of metal iodides with layer structure, J. Phys. Chem. Solids 29, 1191–1203 (1968).Google Scholar
  172. 162.
    L. J. De Jongh, W. D. van Amstel, and A. R. Miedema, Magnetic measurements on (C2H5NH3)2CuC14, Physica 58, 277–304 (1972).Google Scholar
  173. 163.
    M. Eibschütz, H. J. Guggenheim, and L. Holmes, Magnetic behavior of a layer-type antiferromagnet RbFeF4, J. Appl. Phys. 42, 1485–1486 (1971);Google Scholar
  174. R. W. Grant, Magnetic structure of FeOCI, J. Appl. Phys. 42, 1619–1620 (1971).Google Scholar
  175. 164.
    F. Kanamaru, M. Shimada, M. Koizumi, M. Takano, and T. Takada, Mössbauer effect of FeOCI—pyridine complex, J. Solid State Chem: 7,297–299 (1973).Google Scholar
  176. 165.
    A. D. Wadsley, in Non-Stoichiometric Compounds (L. Mandelcorn, ed.), Chapter 3, Academic Press, New York (1964).Google Scholar
  177. 166.
    P. G. Dickens and M. S. Whittingham, The tungsten bronzes and related compounds, Quart. Rev. Chem. Soc. 22, 30–44 (1968).Google Scholar
  178. 167.
    M. S. Whittingham and R. A. Huggins, Electrochemical Preparation and Characterization of Alkali Metal Tungsten Bronzes, M„WO3, National Bureau of Standards Special Publication 364 (July 1972), pp. 51–61.Google Scholar
  179. 168.
    F. Wöhler, Ueber das Wolfram, Ann. Physik 2, 345–358 (1824).Google Scholar
  180. 169.
    Michael Kestigian and Roland Ward, The lanthanum—titanium—oxygen system, J. Am. Chem. Soc. 77, 6199–6200 (1955).Google Scholar
  181. 170.
    Sten Andersson and A. D. Wadsley, NazTi4O8, an alkali metal titanium dioxide bronze, Acta Cryst. 15 201–206 (1962).Google Scholar
  182. 171.
    R. P. Ozerov, Vanadium bronzes of elements in the first group of the periodic system, Russ. J. Inorg. Chem. 4, 476–479 (1959).Google Scholar
  183. 172.
    Dana Ridgley and Roland Ward, The preparation of a strontium—niobium bronze with the perovskite structure, J. Am. Chem. Soc. 77, 6132–6136 (1955).Google Scholar
  184. 173.
    A. Wold, W. Kunnmann, R. J. Arnott, and A. Ferretti, Preparation and properties of sodium and potassium molybdenum bronze crystals, Inorg. Chem. 3, 545–550 (1964).Google Scholar
  185. 174.
    Gunnar Haag and Arne Magneli, Recent structure investigations of oxygen compounds of molybdenum and tungsten, Rev. Pure Appl. Chem. (Australia) 4, 235–250 (1954).Google Scholar
  186. 175.
    H. W. Melville and J. C. Robb, The kinetics of the interaction of atomic hydrogen with olefines, Proc. Roy. Soc. (London) A196, 445–509 (1949).Google Scholar
  187. 176.
    S. Khoobiar, Particle to particle migration of hydrogen atoms on platinum—alumina catalysts from particle to neighboring particles, J. Phys. Chem. 68, 411 (1964).Google Scholar
  188. 177.
    R. Levy, Ph.D. Dissertation, Stanford Univ., 1973 (unpublished).Google Scholar
  189. 178.
    P. G. Dickens, private communication.Google Scholar
  190. 179.
    P. G. Dickens, D. J. Murphy, and T. K. Halstead, Pulsed NMR study of proton mobility in a hydrogen tungsten bronze, J. Solid State Chem. 6, 370–373 (1973).Google Scholar
  191. 180.
    D. J. Murphy, Ph.D. Dissertation, Oxford Univ., 1971.Google Scholar
  192. 181.
    M. S. Whittingham and R. A. Huggins, Electrochemical preparation and characterization of alkali metal tungsten bronzes, MosWO3, in Solid State Chemistry (R. S. Roth and S. J. Schneider, eds.), p. 51, NBS Special Publication 364 (1972).Google Scholar
  193. 182.
    M. Stanley Whittingham and Robert A. Huggins, Measurement of sodium ion transport in beta alumina using reversible solid electrodes, J. Chem. Phys. 54, 414–416 (1971).Google Scholar
  194. 183.
    A. T. Fromhold, Jr. and Albert Narath, Transient nuclear magnetic resonance study of the conduction band of metallic NaxWO3: 23Na relaxation, Phys. Rev. 136 A487–A493 (1964).Google Scholar
  195. 184.
    L. D. Clark, M. S. Whittingham, and R. A. Huggins, An NMR study of ionic motion in ammonium tungsten bronze, J. Solid State Chem. 5, 487–493 (1972).Google Scholar
  196. 185.
    M. J. Sienko, in Nonstoichiometric Compounds (R. F. Gould, ed.), Adv. in Chem. Ser. No. 39, p. 224, American Chemical Society, Washington, D.C. (1963).Google Scholar
  197. 186.
    John B. Goodenough, Narrow-band electrons in transition-metal oxides, Czech. J. Phys. B 17, 304–336 (1967).Google Scholar
  198. 187.
    Jerome H. Perlstein and M. J. Sienko, Single-crystal studies of electrical conductivity, Seebeck effect, and Hall voltage in sodium vanadium bronze and a crystal-field model of electron transport, J. Chem. Phys. 48, 174–181 (1968).Google Scholar
  199. 188.
    William Fogle and Jerome H. Perlstein, Semiconductor-to-metal transition in the blue potassium molybdenum bronze, K0.30MoO3: example of a possible excitonic insulator, Phys. Rev. B 6, 1402–1412 (1972).Google Scholar
  200. 189.
    A. R. Sweedler, Ch. J. Raub, and B. T. Matthias, Superconductivity of the alkali tungsten bronzes, Phys. Letters 15, 108–109 (1965).Google Scholar
  201. 190.
    J. P. Remeika, T. H. Geballe, B. T. Matthias, A. S. Cooper, G. W. Hull, and E. M. Kelly, Superconductivity in hexagonal tungsten bronzes, Phys. Letters 24A 565–566 (1967).Google Scholar
  202. 191.
    C. N. King, J. A. Benda, W. A. Phillips, and T. H. Geballe, Specific heat, optical, and transport properties of hexagonal tungsten bronzes, in Low Temperature Physics LT-13 (Proc. 13th Int. Conf. Low Temp. Phys., Boulder), Plenum, New York (1973).Google Scholar
  203. 192.
    M. J. Sienko and Sheila MacEnness Morehouse, Electrical and magnetic properties of potassium tungsten bronze and rubidium tungsten bronze, Inorg. Chem. 2 485–489 (1963).Google Scholar
  204. 193.
    L. D. Ellerbeck, H. R. Shanks, P. H. Sidles, and G. C. Danielson, Electrical resistivity of cubic sodium tungsten bronze, J. Chem. Phys: 35, 298–302 (1961).Google Scholar
  205. 194.
    F. F. Hubble, Joan M. Gulick, and W. G. Moulton, Superconductivity in the K, Rb, and Cs tungsten fluoroxide bronzes, J. Phys. Chem. Solids 32 2345–2350 (1971).Google Scholar
  206. 195.
    J. C. Gulick and M. J. Sienko, Fluorine-19 NMR relaxation studies in the tungsten fluoroxide bronzes, J. Solid State Chem. 1, 195–204 (1970).Google Scholar
  207. 196.
    E. Banks and A. Goldstein, The solution of lithium in hexagonal potassium tungsten bronze, Inorg. Chem. 7,966–969 (1968).Google Scholar
  208. 197.
    H. Krebs, Fundamentals of Inorganic Crystal Chemistry, McGraw-Hill, Berks., England (1968).Google Scholar
  209. 198.
    S. Aronson, F. J. Salzano, and D. Bellafiore, Thermodynamic properties of the potassium-graphite lamellar compounds from solid-state emf measurements, J. Chem. Phys. 49 434–439 (1968).Google Scholar
  210. 199.
    W. Rüdorff, Graphite intercalation compounds, Adv. Inorg. Radiochem. 1 223–266 (1959).Google Scholar
  211. 200.
    W. Rüdorff, E. Schulze, and O. Rubisch, Alakaliammingraphitverbindungen, Z. Anorg. Allgem. Chem. 282 232–240 (1955).Google Scholar
  212. 201.
    W. Rüdorff, V. Sils, and R. Zeller, Über das Verhalten von Graphit gegenüber Jodmonochlorid and Chromylchlorid, Z. Anorg. Allgem. Chem. 283 299–303 (1956).Google Scholar
  213. 202.
    W. Rüdorff, Kristallstrucktur der Säureverbindungen des Graphits, Z. Physik. Chem. (Leipzig) B45 42–68, 174 (1939).Google Scholar
  214. 203.
    W. Rüdorff and Herbert Schulz, Über die Einlagerung von Ferrichlorid in das Gitter von Graphit, Z. Anorg. Allgem. Chem. 245 121–156 (1940).Google Scholar
  215. 204.
    W. Rüdorff and A. Landel, Über die Einlagerung von Galliumchlorid und Indiumchlorid in Graphit, Z. Anorg. Allgem. Chem. 293 327–342 (1958).Google Scholar
  216. 205.
    W. Rüdorff and R. Zeller, Über Aluminumchlorid-Graphit-Einlagerungsverbindungen, Z. Anorg. Allgem. Chem. 279 182–193 (1955).Google Scholar
  217. 206.
    N. N. Zhuravlev, A. A. Stepanova, Y. B. Pademo, and G. V. Samsonov, Krystallografiya 6 636 (1962).Google Scholar
  218. 207.
    E. J. Felton, I. Binder, and B. Post, J. Am. Chem. Soc. 80 3479 (1958).Google Scholar
  219. 208.
    P. Blum and F. Bertaut, Acta Cryst. 7 81 (1954).Google Scholar
  220. 209.
    H. A. Eick and P. W. Gilles, J. Am. Chem. Soc. 81 5030 (1959).Google Scholar
  221. 210.
    G. V. Samsonov and Yu. B. Paderno, Bondes of the Rare Earth Metals, AEC-tr5264, U.S. Atomic Energy Commission, Division of Technical Information [Translation].Google Scholar
  222. 211.
    K. A. Gschneider, Jr. Rare Earth Alloys, pp. 127–128, van Nostrand, New York (1961).Google Scholar
  223. 212.
    H. Hacker, Y. Shimada, and K. S. Chung, Phys. Stat. Sol. 4, 459 (1971).Google Scholar
  224. 213.
    E. F. Westrum, Jr., H. L. Clever, J. T. S. Andrews, and G. Peick, in Rare Earth Research III (L. Eyring, ed.), p. 597, Gordon and Breach, New York (1966).Google Scholar
  225. 214.
    H. Hacker and M. S. Lind, Solid State Commun. 6, 379 (1968).Google Scholar
  226. 215.
    M. B. Robin and P. Day, in Advances in Inorganic Chemistry and Radiochemistry,Vol. 10, pp. 247–442 (H. J. Emeléus and A. G. Sharpe, eds.), Academic Press, New York (1967).Google Scholar
  227. 216.
    H. Fernandez-Moran, M. Ohstuki, A. Hibino, and C. Hough, Science 174, 498–500 (1971).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1976

Authors and Affiliations

  • F. R. Gamble
    • 1
  • T. H. Geballe
    • 2
    • 3
  1. 1.Corporate Research LaboratoryEsso Research and Engineering Co.LindenUSA
  2. 2.Department of Applied PhysicsStanford UniversityStanfordUSA
  3. 3.Bell LaboratoriesMurray HillUSA

Personalised recommendations