Structural Characterization of Solids

  • R. E. Newnham
  • Rustum Roy
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 1)


In principle, a solid is characterized absolutely if one can list all the atoms or ions present, their spatial distribution, and the bonds holding them together. The dynamics of the atoms, and even possibly the electrons, might be added to this list. The goal of structural characterization is, in fact, no more than the description of the three-dimensional arrangements of the atoms (and electrons) in a solid. In so doing, it spans the range from the grossest features (such as the external morphology and cracks visible to the naked eye) down to the finest detail of atomic arrangement (such as the omission of single ions from their expected location in a periodic array).


Structural Characterization Neutron Diffraction Nuclear Quadrupole Resonance Unit Cell Dimension Phase Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. C. Phillips, An Introduction to Crystallography, Longmans, Green and Co., London (1946).Google Scholar
  2. 2.
    P. Groth, Chemische Krystallographie, Wilhelm Engelmann, Leipzig, Vol. I (1906).Google Scholar
  3. P. Groth, Chemische Krystallographie, Wilhelm Engelmann, Leipzig, Vol. II (1908).Google Scholar
  4. P. Groth, Chemische Krystallographie, Wilhelm Engelmann, Leipzig, Vol. III (1910).Google Scholar
  5. P. Groth, Chemische Krystallographie, Wilhelm Engelmann, Leipzig, Vol. IV (1917).Google Scholar
  6. P. Groth, Chemische Krystallographie, Wilhelm Engelmann, Leipzig, Vol. V (1919).Google Scholar
  7. 3.
    N. H. Hartshorne and A. Stuart, Crystals and the Polarizing Microscope, Edward Arnold, London (1960).Google Scholar
  8. 4.
    E. E. Wahlstrom, Optical Crystallography, Wiley, New York (1951).Google Scholar
  9. 5.
    A.N. Winchell, Elements of Optical Mineralogy, Part II. Descriptions of Minerals, Wiley, New York (1947).Google Scholar
  10. 6.
    E. S. Larsen and H. Berman, Microscopic Determination of the Nonopaque Minerals, U.S.G.S. Bulletin 848 (1934).Google Scholar
  11. 7.
    S. K. Kurtz and T. T. Perry, A powder technique for the evaluation of nonlinear optical materials, J. Appl Phys. 39, 3798–3813 (1968).CrossRefGoogle Scholar
  12. 8.
    V. Vand, K. Vedam, and R. Stein, The laser as a light source for ultramicroscopy and light scattering by imperfections in crystals, J. Appl. Phys. 37, 2551–2557 (1966).CrossRefGoogle Scholar
  13. 9.
    R. A. Heising, Quartz Crystals for Electrical Circuits, D. Van Nostrand, New York (1946).Google Scholar
  14. 10.
    M. F. Ehman, Surface Reactivity and Basic Etching Mechanisms, Ph.D. Thesis, The Pennsylvania State University (1970).Google Scholar
  15. 11.
    B. Obst, Anisotropie in kubischen Supraleitern, Phys. Stat. Sol. 45, 453–482 (1971).CrossRefGoogle Scholar
  16. 12.
    S. Tolansky, Multiple-Beam Interference Microscopy, Academic, New York (1970).Google Scholar
  17. 13.
    O. S. Heavens, Optical Properties of Thin Solid Films, Academic, New York (1955).Google Scholar
  18. 14.
    K. Vedam and S. S. So, Characterization of real surfaces by ellipsometry, Surface Sci. 29, 379–395 (1972).CrossRefGoogle Scholar
  19. 15.
    R. D. Young, Surface Microphotography, Physics Today 24, 42–49 (1971).CrossRefGoogle Scholar
  20. 16.
    G. A. Ratz, The mike for automated quantitative microscopy, Metals Progr. 1968 (August), 153-156.Google Scholar
  21. 17.
    E. W. White, K. Mayberry, and G. G. Johnson, Jr., Computer analysis of multichannel SEM and X-ray images from fine particles, Pattern Recognition 4, 173–193 (1972).CrossRefGoogle Scholar
  22. 18.
    Joint Committee on Powder Diffraction Standards, Index to the Powder Diffraction File, Swarthmore, Pa. (1972).Google Scholar
  23. 19.
    W. Parrish, X-Ray Analysis Papers, Centrex, Eindhoven (1965).Google Scholar
  24. 20.
    W. L. Bond, Precision lattice constant determination, Acta Cry st. 13, 814–818 (1960).CrossRefGoogle Scholar
  25. 21.
    J. D. Bernal, Order and disorder and their expression in diffraction, Z. Krist. 112, 4–21 (1959).CrossRefGoogle Scholar
  26. 22.
    B. E. Warren and B. L. Averbach, The effect of cold-work distortion on X-ray patterns, J. Appl. Phys. 21, 595–599 (1950).CrossRefGoogle Scholar
  27. 23.
    P. B. Hirsch, Mosaic structure, Progr. Metal Phys. 6, 236–339 (1956).CrossRefGoogle Scholar
  28. 24.
    B. E. Warren, X-ray studies of deformed metals, Prog. Metal Phys. 8, 147–202 (1959).CrossRefGoogle Scholar
  29. 25.
    B. E. Warren and B. L. Averbach, in Imperfections in Nearly Perfect Crystals (W. Shockley, J. N. Holloman, R. Maurer, F. Seitz, eds.), pp. 152–172, Wiley, New York (1952).Google Scholar
  30. 26.
    A. Guinier and G. Fournet, Small Angle Scattering of X-rays, Wiley, New York (1955).Google Scholar
  31. 27.
    International Tables for X-ray Crystallography, Vol. I, Symmetry Groups, Kynoch Press, Birmingham, England (1952).Google Scholar
  32. 28.
    M. J. Buerger, Crystal-Structure Analysis, Wiley, New York (1960).Google Scholar
  33. 29.
    H. Lipson and W. Cochran, The Determination of Crystal Structures, Bell, London (1953).Google Scholar
  34. 30.
    L. Pauling and M. D. Shappell, The crystal structure of bixbyite and the modification of the sesquioxides, Z. Krist. 75, 128–142 (1930).Google Scholar
  35. 31.
    M. J. Buerger, Vector Space and Its Application in Crystal-Structure Investigation, Wiley, New York (1959).Google Scholar
  36. 32.
    M. M. Woolfson, Direct Methods in Crystallography, Oxford University Press, London (1961).Google Scholar
  37. 33.
    Structure Reports, Oosthoek, Utrecht (annual volumes).Google Scholar
  38. 34.
    R. G. Wyckoff, Crystal Structures, 2nd ed., Interscience, New York (1965).Google Scholar
  39. 35.
    S. C. Abrahams, L. E. Alexander, T. C. Furnas, W. C. Hamilton, J. Ladell, Y. Okaya, R. A. Young, and A. Zalkin, American Crystallographic Association Single-Crystal Intensity Project Report, Acta Cryst. 22, 1–6 (1967).CrossRefGoogle Scholar
  40. 36.
    J. Ladell, Refinement of the topaz structure, Norelco Reporter 12, 34–39 (1965).Google Scholar
  41. 37.
    N. A. Alston and J. West, The Structure of Topaz, [Al(F, OH)]2SiO4, Z. Krist. 69, 149–167 (1928).Google Scholar
  42. 38.
    J. Smit and H. P. J. Wijn, Ferrites, pp. 140–146, Wiley, New York (1959).Google Scholar
  43. 39.
    R. Srinivasan, Application of X-ray anomalous scattering in structural studies, Advances in Structure Research by Diffraction Methods (W. Hoppe and R. Mason, eds.), Vol. 4, pp. 105–197, Pergamon, Oxford (1972).Google Scholar
  44. 40.
    R. Brill, Determination of electron distribution in crystals by means of X-rays, Solid State Phys. 20, 1–35 (1967).CrossRefGoogle Scholar
  45. 41.
    H. Witte and E. Wölfel, Röntgenographische Bestimmung der Elektronenverteilung in Kristallen II, Z. Physik Chem. [N.F.] 3, 296–329 (1955).CrossRefGoogle Scholar
  46. 42.
    S. Gottlicher and E. Wölfel, Röntgenographische Bestimmung der Elektronem-verteilung in Kristallen, Z. Elektrochem. 63, 891–901 (1959).Google Scholar
  47. 43.
    R. T. Sanderson, The nature of ionic solids, J. Chem. Ed. 44, 516–523 (1967).CrossRefGoogle Scholar
  48. 44.
    Richard Weiss, X-ray Determination of Electron Distribution, Wiley, New York (1966).Google Scholar
  49. 45.
    I. Freund, Nonlinear x-ray diffraction. Determination of valence electron charge distributions, Chem. Phys. Letters 12, 583–588 (1972).CrossRefGoogle Scholar
  50. 46.
    E. A. Wood, Crystal Orientation Manual, Columbia University Press, New York (1963).Google Scholar
  51. 47.
    H. J. Goldschmidt, High-Temperature X-ray Diffraction Techniques, International Union of Crystallography (1964).Google Scholar
  52. 48.
    B. Post, Low-Temperature X-ray Diffraction, International Union of Crystallography (1964).Google Scholar
  53. 49.
    International Tables for X-ray Crystallography, Vol. III, Kynoch Press, Birmingham (1959).Google Scholar
  54. 50.
    D. W. J. Cruickshank, The determination of the anisotropic thermal motion of atoms in crystals, Acta Cryst. 9, 747–756 (1956).CrossRefGoogle Scholar
  55. 51.
    K. Lonsdale, Experimental studies of atomic vibrations in crystals and of their relationship to thermal expansion, Z. Krist. 112, 188–212 (1959).CrossRefGoogle Scholar
  56. 52.
    C. B. Walker, X-ray study of lattice vibrations in aluminum, Phys. Rev. 103, 547–557 (1956).CrossRefGoogle Scholar
  57. 53.
    B. E. Warren, X-Ray Diffraction, Addison-Wesley, Reading, Mass. (1968).Google Scholar
  58. 54.
    W. Klement and A. Jayaraman, Phase relations and structures of solids at high pressures, in Progress in Solid State Chemistry (A. Reiss, ed.), Vol. 3, Chapter 7, pp. 289–376, Pergamon Press, New York (1967).Google Scholar
  59. 55.
    R. M. Brugger, R. B. Bennion, T. G. Worlton, and W. R. Myers, Neutron diffraction at high pressures, Trans. Amer. Cryst. Assoc. 5, 141–154 (1969).Google Scholar
  60. 56.
    P. J. Freud and P. N. LaMori, Non-dispersive high pressure—high temperature X-ray diffraction analysis, Trans. Am. Cryst. Assoc. 5, 155–162 (1969).Google Scholar
  61. 57.
    W. W. Webb, X-ray diffraction topography, in Direct Observations of Dislocations (J. B. Newkirk and J. H. Wernick, eds.), Interscience, New York (1962).Google Scholar
  62. 58.
    M. Hart and V. Bonse, Interferometry with X-rays, Phys. Today 23(8), 26–31 (1970).CrossRefGoogle Scholar
  63. 59.
    R. D. Heidenreich, Fundamentals of Electron Transmission Microscopy, Inter-science, New York (1964).Google Scholar
  64. 60.
    G. Thomas, Transmission Electron Microscopy of Metals, Wiley, New York (1962).Google Scholar
  65. 61.
    S. Amelinckx, Direct Observations of Dislocations, Academic, New York (1964).Google Scholar
  66. 62.
    R. B. Nicolson, P. B. Hirsch, A. Howie, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals, Butterworth, London (1965).Google Scholar
  67. 63.
    H. Fernández-Morán, M. Ohstuki, A. Hibino, and C. Hough, Electron microscopy and diffraction of layered superconducting intercalation complexes, Science 174, 498–500 (1971).CrossRefGoogle Scholar
  68. 64.
    R. Nathan, Image processing for electron microscopy: I. Enhancement procedures, in Optical and Electron Microscopy, Vol. 4, pp. 85–125 (R. Barer and V. E. Cosslett, eds.) (1971).Google Scholar
  69. 65.
    G. W. Stroke, Spectroscopic implications of new holographic imaging methods, Physica 33(1), 253–267 (1967).CrossRefGoogle Scholar
  70. 66.
    Z. Pinsker, Electron Diffraction, Butterworth, London (1953).Google Scholar
  71. 67.
    J. M. Cowley, Crystal structure determination by electron diffraction, Prog. Mat. Sci. 13, 267–321 (1968).CrossRefGoogle Scholar
  72. 68.
    J. J. Lander, Low energy electron diffraction and surface structural chemistry, in Progress in Solid State Chemistry (H. Reiss, ed.), Vol. 2, pp. 26–116, Pergamon Press, Oxford (1965).Google Scholar
  73. 69.
    J. L. Beeby, The density of electrons in a perfect or imperfect lattice, Proc. Roy. Soc. A 302(1468), 113–136 (1967).CrossRefGoogle Scholar
  74. 70.
    E. G. McRae, Multiple-scattering treatment of low energy electron diffraction intensities, J. Chem. Phys. 45, 3258–3276 (1966).CrossRefGoogle Scholar
  75. 71.
    C. W. Oatley, W. C. Nixon, and R. F. W. Pease, Scanning electron microscopy, in Advances in Electronics and Electron Physics, Vol. XXI (L. Marton, ed.), Academic, New York (1956).Google Scholar
  76. 72.
    R. E. McMillan, G. G. Johnson, Jr., and E. W. White, Computer processing of binary maps of SEM images, in Proc. Scanning Electron Microscopy Symp. (O. Johari, ed.), pp. 439–444, IITRI, Chicago, Ill. (1969).Google Scholar
  77. 73.
    J. A. Becker, Study of surfaces by using new tools, Solid State Phys. 7, 379–424 (1958).CrossRefGoogle Scholar
  78. 74.
    E. W. Müller, Atom-probe field-ion microscopy, J. Vac. Sci. Tech. 8, 1–89 (1971).CrossRefGoogle Scholar
  79. 75.
    G. E. Bacon, Neutron Diffraction, Oxford Press, London (1962).Google Scholar
  80. 76.
    G. M. Brown and H. A. Levy, Sucrose: Precise determination of crystal and molecular structure by neutron diffraction, Science 141, 921–923 (1963).CrossRefGoogle Scholar
  81. 77.
    C.G. Shull and Y. Yamada, Magnetic electron configuration in iron, J. Phys. Soc. Japan 17(Suppl. B-III), 1–6 (1962).Google Scholar
  82. 78.
    R. P. Santoro, R. E. Newnham, and S. Nomura, Magnetic properties of Mn2SiO4 and Fe2SiO4, J. Phys. Chem. Solids 27, 655–666 (1966).CrossRefGoogle Scholar
  83. 79.
    B. N. Brockhouse, Phonons and Phonon Interactions, Benjamin, New York (1964).Google Scholar
  84. 80.
    P. A. Egelstaff, Thermal Inelastic Scattering, Academic, New York (1965).Google Scholar
  85. 81.
    J. D. Axe, Neutron studies of displacive structure phase transformations, Trans. Amer. Cryst. Assoc. 7, 89–106 (1971).Google Scholar
  86. 82.
    H. Boutin, G. J. Safford, and H. R. Danner, Low-frequency motions of H2O molecules in crystals, I, J. Chem. Phys. 40, 2670–2679 (1964).CrossRefGoogle Scholar
  87. 83.
    H. J. Prask and H. Boutin, Low-frequency motions of H2O molecules in crystals, II, J. Chem. Phys. 45, 699–705 (1966).CrossRefGoogle Scholar
  88. 84.
    K. Jorgenson, Absorption spectra and chemical bonding in complexes, Pergamon, New York (1962).Google Scholar
  89. 85.
    L. E. Orgel, Ion compression and the colour of ruby, Nature 179, 1348 (1957).CrossRefGoogle Scholar
  90. 86.
    D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors, Pergamon Press, London (1968).Google Scholar
  91. 87.
    J. J. Markham, F-Centers in alkali halides, Academic, New York, (1966).Google Scholar
  92. 88.
    N. L. Alpert, W. E. Keiser, and H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy, Plenum, New York (1970).Google Scholar
  93. 89.
    W. B. White and B. A. DeAngelis, Interpretation of the vibrational spectra of spinels, Spectrochim. Acta 23A, 985–995 (1967).Google Scholar
  94. 90.
    B. A. DeAngelis, R. E. Newnham and W. B. White, Factor group analysis of the vibrational spectra of metals: A review and consolidation, Am. Min. 57, 255–268 (1972).Google Scholar
  95. 91.
    R. E. Newnham, Crystal structure and optical properties of pollucite, Am. Min. 52, 1515–1518 (1967).Google Scholar
  96. 92.
    B. A. Scott and G. Burns, Determination of stoichiometric variations in LiNbO3 and LiTaO3 by Raman powder spectroscopy, J. Am. Ceram. Soc. 55, 225–230 (1972).CrossRefGoogle Scholar
  97. 93.
    S. P. S. Porto, Light scattering with laser sources, in Applied Solid State Physics (W. Low and M. Schieber, eds.), Chapter 3, Plenum Press, New York (1970).Google Scholar
  98. 94.
    E. W. White and G. V. Gibbs, Structural and chemical effects on the Al Kβ X-ray emission band among aluminum containing silicates and aluminum oxides, Am. Mineral. 54, 931–936 (1969).Google Scholar
  99. 95.
    H. Friedman, X-ray spectroscopy, in Advances in Spectroscopy (A. W. Thompson, ed.), Vol. 2, pp. 57–100, Interscience, New York (1961).Google Scholar
  100. 96.
    C. P. Slichter, Principles of Magnetic Resonance, Harper & Row, New York (1963).Google Scholar
  101. 97.
    B. Lax and K. Button, Microwave Ferrites and Ferrimagnetics, McGraw-Hill, New York (1962).Google Scholar
  102. 98.
    G. E. Pake, Nuclear magnetic resonance, Solid State Phys. 2, 1–92 (1956).Google Scholar
  103. 99.
    T. P. Das and E. L. Hahn, Nuclear Quadrupole Resonance Spectroscopy, Academic, New York (1968).Google Scholar
  104. 100.
    M. H. Cohen and F. Reif, Nuclear quadrupole effects in nuclear magnetic resonance, Solid State Phys. 5, 321–438 (1957).CrossRefGoogle Scholar
  105. 101.
    P. J. Bray and A. H. Silver, in Modern Aspects of the Vitreous State (J. D. MacKenzie, ed.), pp. 92–118, Butterworth, London (1960).Google Scholar
  106. 102.
    P. C. Taylor and P. J. Bray, Structural properties of glasses inferred from computer simulations of magnetic resonance spectra, Bull. Am. Ceram. Soc. 51, 234–239 (1972).Google Scholar
  107. 103.
    J. M. Baker, E. R. Davies, and T. R. Reddy, Detailed mapping of atomic positions using electron nuclear double resonance (ENDOR), Contemp. Phys. 13, 45–59 (1972).CrossRefGoogle Scholar
  108. 104.
    G. K. Wertheim, Mössbauer Effect: Principles and Applications, Academic Press, New York (1964).Google Scholar
  109. 105.
    V. I. Goldanskii and R. H. Herber, Chemical Applications of Mössbauer Spectroscopy, Academic Press, New York (1968).Google Scholar
  110. 106.
    K. Siegbahn, Atomic Molecular and Solid State Structure Studies by Means of Electron Spectroscopy, Almquist and Wilksells, Uppsala (1967).Google Scholar
  111. 107.
    D. M. Hercules, Electron spectroscopy, Anal. Chem. 42(1), 20A–40A (1970).CrossRefGoogle Scholar
  112. 108.
    L. A. Harris, Auger electron emission analysis, Anal. Chem. 40(12), 24A–34A (1968).CrossRefGoogle Scholar
  113. 109.
    R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Methods in Solid State Physics, Academic, New York (1969).Google Scholar
  114. 110.
    J. F. Nye, Physical Properties of Crystals, Clarendon Press, London (1957).Google Scholar
  115. 111.
    A. R. von Hippel, Dielectrics and Waves, Wiley, New York (1954).Google Scholar
  116. 112.
    T. C. Harmon and J. M. Honig, Thermoelectric and Thermomagnetic Effects and Applications, McGraw-Hill, New York (1967).Google Scholar
  117. 113.
    A. H. Morrish, Physical Principles of Magnetism, Wiley, New York (1965).Google Scholar
  118. 114.
    J. B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York (1963).Google Scholar
  119. 115.
    P. D. Garn, Thermoanalytical Methods of Investigation, Academic, New York (1965).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1921

Authors and Affiliations

  • R. E. Newnham
    • 1
  • Rustum Roy
    • 1
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations