Characterization of Solids—Chemical Composition

  • W. Wayne Meinke
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 1)


In any series of studies, experimental or theoretical, in the chemistry, the physical chemistry, or the chemical physics of solids it is very important that there be reliable, descriptive, analytical information available about the materials used in the studies.(1,2) Such information is obtained through the process called “characterization,” which has been given the following definition by the National Academy of Sciences—National Research Council Committee on Characterization of the Materials Advisory Board:(3)

“Characterization describes those features of the composition and structure (including defects) of a material that are significant for a particular preparation, study of properties, or use, and suffice for reproduction of the material.”


Electron Spin Resonance Neutron Activation Standard Reference Material Government Printing Isotope Dilution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. B. Hannay, Trace characterization and the properties of materials, in Trace Characterization, Chemical and Physical (W. W. Meinke and B. F. Scribner, eds.), pp. 5–38, NBS Monograph 100, U.S. Government Printing Office, Washington, D.C. (1967).Google Scholar
  2. 2.
    R. A. Laudise, Opportunities for analytical chemistry in solid state research and electronics, in Analytical Chemistry: Key to Progress on National Problems (W. W. Meinke and J. K. Taylor, eds.), pp. 19–64, NBS Special Publication 351, U.S. Government Printing Office, Washington, D.C. (1972).Google Scholar
  3. 3.
    The Committee on Characterization of Materials, Materials Advisory Board, Division of Engineering, National Research Council, National Academy of Sciences, National Academy of Engineering, Characterization of Materials, MAB-229-M, U.S. Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia (1967).Google Scholar
  4. 4.
    G. E. F. Lundell, The chemical analysis of things as they are, Ind. and Eng. Chem. (Anal. Ed.) 5, 221–225 (1933).Google Scholar
  5. 5.
    P. Albert, A combination of chemical and physiochemical methods for a systematic separation of large numbers of radioisotopes on one experimental analysis of aluminum, iron, and zirconium by radioactivation, in Modern Trends in Activation Analysis (Proc. 1961 Int. Conf. on Modern Trends in Activation Analysis, College Station, Texas, December 1961), pp. 86–94, Texas A & M University, College Station, Texas (1962).Google Scholar
  6. 6.
    I. M. Kolthoffand P. J. Elving (eds.), Treatise on Analytical Chemistry, A Comprehensive Account in three parts, Part I: Theory and Practice (10 vols.), Part II: Analytical Chemistry of the Elements (14 vols.), Part III: Analysis of Industrial Products (2 vols.), Interscience, New York (1959-1971).Google Scholar
  7. 7.
    W. W. Meinke and B. F. Scribner (eds.), Trace Characterization, Chemical and Physical (Proc. 1st Materials Research Symp., October 1966), NBS Monograph 100, U. S. Government Printing Office, Washington, D.C. 20402 (1967).Google Scholar
  8. 8.
    Analytical reviews 1972, Fundamentals, Anal. Chem. 44(5), 1R–572R (1972).CrossRefGoogle Scholar
  9. 9.
    Analytical reviews 1971, Applications, Anal. Chem. 43(5), IR–388R (1971).Google Scholar
  10. 10.
    W. W. Meinke, Is radiochemistry the ultimate in trace analysis?, Proc. Int. Conf. on Analytical Chemistry, Kyoto, Japan, April 1972, Pure and Appl. Chem. 34, 93–104 (1973).CrossRefGoogle Scholar
  11. 11.
    W. W. Meinke, The ultimate contribution of nuclear activation analysis, Proc. of 4th Int. Conf. on Modern Trends in Activation Analysis, Saclay, France, October 1972, J. Radioanalytical Chem. (in press).Google Scholar
  12. 12.
    W. F. Hillebrand, G. E. F. Lundell, H. A. Bright, and J. I. Hoffman, Applied Inorganic Analysis, 2nd ed., Wiley, New York (1953).Google Scholar
  13. 13.
    I. M. Kolthoffand P. J. Elving (eds.), Treatise on Analytical Chemistry, Part 1, Vol. 1; Part 2, Vols. 1-14, Wiley—Interscience, New York (1959-1971).Google Scholar
  14. 14.
    L. Erdey, L. Pólos, and R. A. Chalmers, Development and publication of new gravimetric methods of analysis, Talanta 17, 1143–1155 (1970).CrossRefGoogle Scholar
  15. 15.
    E. B. Sandell, Errors in chemical analysis, in Treatise on Analytical Chemistry (I. M. Kolthoffand P. J. Elving, eds.), Part 1, Vol. 1, pp. 19–46, The Interscience Encyclopedia, Inc., New York (1959).Google Scholar
  16. 16.
    A. Ringbom, Complexation in Analytical Chemistry, Interscience, New York (1963).Google Scholar
  17. 17.
    J. R. Bacon and R. B. Ferguson, Gravimetric and coulometric analysis of beryllium samples using 2-methyl-8-quinolinol, Anal. Chem. 44, 2149–2152 (1972).CrossRefGoogle Scholar
  18. 18.
    R. S. Danchik, Analytical reviews 1971/Applications: Nonferrous metallurgy. 1. Light metals: aluminum, beryllium, titanium, and magnesium, Anal. Chem. 43(5), 109R–145R (1971).CrossRefGoogle Scholar
  19. 19.
    R. P. Buck, Analytical reviews 1972/Fundamentals: Ion-selective electrodes, potentiometry, and potentiometric titrations, Anal. Chem. 44(5), 270R–295R (1972).CrossRefGoogle Scholar
  20. 20.
    G. Marinenko and C. E. Champion, High-precision coulometric titrations of boric acid, J. Res. NBS (U.S.), 75A (Phys. and Chem.), 421–428 (1971).Google Scholar
  21. 21.
    C. E. Champion, G. Marinenko, J. K. Taylor, and W. E. Schmidt, Determination of submicrogram amounts of chromium by coulometric titrimetry, Anal. Chem. 42, 1210–1213 (1970).CrossRefGoogle Scholar
  22. 22.
    G. Marinenko and J. K. Taylor, High-precision coulometric iodimetry, Anal. Chem. 39, 1568–1571 (1967).CrossRefGoogle Scholar
  23. 23.
    G. Marinenko, Gallium arsenide stoichiometry, in Electrochemical Analysis Section, Summary of Activities, July 1970 to June 1971 (R. A. Durst, ed.), pp. 24–29, NBS Technical Note 583, U. S. Government Printing Office, Washington, D.C. (1973).Google Scholar
  24. 24.
    G. Marinenko and J. K. Taylor, Electrochemical equivalents of benzoic and oxalic acid, Anal. Chem. 40, 1645–1651 (1968).CrossRefGoogle Scholar
  25. 25.
    G. Marinenko and R. T. Foley, A new determination of the atomic weight of zinc, J. Res. NBS (U.S.), 75A (Phys. and Chem.), 561–564 (1971).Google Scholar
  26. 26.
    K. M. Sappenfield, G. Marinenko, and J. L. Hague, Standard Reference Materials: Comparison of Redox Standards, NBS Special Publication 260-24, U.S. Government Printing Office, Washington, D. C. (1972).Google Scholar
  27. 27.
    R. A. Durst (ed.), Ion-Selective Electrodes (Proc. of a Symp. on Ion-Selective Electrodes, January 1969), NBS Special Publications 314, U.S. Government Printing Office, Washington, D.C. (1969).Google Scholar
  28. 28.
    J. Koryta, Theory and applications of ion-selective electrodes, Anal. Chim. Acta 61, 329–411 (1972).CrossRefGoogle Scholar
  29. 29.
    R. A. Durst, Ion-selective electrodes in science, medicine, and technology, Am. Scientist 59, 353–361 (1971).Google Scholar
  30. 30.
    L. Meites, Polarographic Techniques, 2nd ed., Interscience, New York (1965).Google Scholar
  31. 31.
    D. D. Gilbert, Electroanalytical methods, in Guide to Modern Methods of Instrumental Analysis (T. H. Gouw, ed.), pp. 393–431, Wiley—Interscience, New York (1972).Google Scholar
  32. 32.
    E. J. Maienthal, Polarographic analysis at NBS, Am. Laboratory 4(6), 12–21 (1972).Google Scholar
  33. 33.
    T. M. Florence, Anodic stripping voltammetry with a glassy carbon electrode mercury-plated in situ, J. Electroanal. Chem. 27, 273–281 (1970).CrossRefGoogle Scholar
  34. 34.
    E. J. Maienthal and J. K. Taylor, Improvement of polarographic precision by a comparative technique, Mikrochim. Acta 1967, 939-945.Google Scholar
  35. 35.
    Certificates of analysis (provisional): Trace elements in a glass matrix, standard reference materials 610 and 611 (trace element concentration 500 ppm); 612 and 613 (trace element concentration 50 ppm); 614 and 615 (trace element concentration 1 ppm); and 616 and 617 (trace element concentration 0.02 ppm); August 5, 1970, revised August 8, 1972; available from Office of Standard Reference Materials, National Bureau of Standards, Washington, D.C.Google Scholar
  36. 36.
    I. L. Barnes, B. S. Carpenter, E. L. Garner, J. W. Grämlich, E. C. Kuehner, L. A. Machlan, E. J. Maienthal, J. R. Moody, L. J. Moore, T. J. Murphy, P. J. Paulsen, K. M. Sappenfield, and W. R. Shields, Isotopic abundance ratios and concentrations of selected elements in Apollo 14 samples, Proc. Third Lunar Science Conf., Geochim. Cosmochim. Acta, Supplement 3, Vol. 2, pp. 1465–1472, MIT Press, Cambridge, Mass. (1972).Google Scholar
  37. 37.
    E. J. Maienthal, Analysis of botanical standard reference materials by cathode ray polarography, J. Assoc. Official Analytical Chemists 55, 1109–1113 (1972).Google Scholar
  38. 38.
    T. S. West, Chemical spectrophotometry in trace characterization, in Trace Characterization, Chemical and Physical (W. W. Meinke and B. F. Scribner, eds.), pp. 215–301, NBS Monograph 100, U.S. Government Printing Office, Washington, D.C. (1967).Google Scholar
  39. 39.
    J. D. Ingle, Jr. and S. R. Crouch, Pulse overlap effects on linearity and signal-to-noise ratio in photon counting systems, Anal. Chem. 44, 777–783 (1972).CrossRefGoogle Scholar
  40. 40.
    S. Shibata, M. Furukawa, and K. Goto, Dual-wavelength spectrophotometry. Part II. The determination of mixtures, Anal. Chim. Acta 53, 369–377 (1971).CrossRefGoogle Scholar
  41. 41.
    T. J. Porro, Double-wavelength spectroscopy, Anal. Chem. 44(4), 93A–103A (1972).CrossRefGoogle Scholar
  42. 42.
    D. M. Dodd, D. L. Wood, and R. L. Barns, Spectrophotometric determination of chromium concentration in ruby, J. Appl. Phys. 35, 1183–1186 (1964).CrossRefGoogle Scholar
  43. 43.
    C. E. White and R. J. Argauer, Fluorescence Analysis, Marcel Dekker, New York (1970).Google Scholar
  44. 44.
    R. Mavrodineanu, J. I. Shultz, and O. Menis (eds.), Accuracy in spectrophotometry and luminescence measurements, Part 2. Luminescence, Proc. Conf. on Accuracy in Spectrophotometry and Luminescence Measurements, March 1972, J. Res. NBS (U.S.), 76A (Phys. and Chem.), 547–654 (1973); also NBS Special Publication 378, U. S. Government Printing Office, Washington, D.C. (1973).Google Scholar
  45. 45.
    C. A. Parker, Spectrophosphorimeter microscopy: an extension of fluorescence microscopy, The Analyst 94, 161–176 (1969).CrossRefGoogle Scholar
  46. 46.
    S. Udenfriend, Fluorescence Assay in Biology and Medicine, Vols. I, II, Academic, New York (1962, 1969).Google Scholar
  47. 47.
    J. P. Dixon, Modern Methods of Organic Microanalysis, Van Nostrand, Princeton, New Jersey (1968).Google Scholar
  48. 48.
    G. Tölg, Ultramicro Elemental Analysis, Wiley-Interscience New York (1970).Google Scholar
  49. 49.
    H. Weisz, Microanalysis by the Ring-Oven Technique, 2nd ed., Pergamon, New York (1970).Google Scholar
  50. 50.
    F. Feigl, Spot Tests in Organic Analysis, 7th ed., Elsevier, Amsterdam (1966).Google Scholar
  51. 51.
    E. Stahl, Thin-Layer Chromatography, Springer-Verlag, New York (1969).Google Scholar
  52. 52.
    A. Niederwieser and G. Pataki (eds.), Progress in Thin-Layer Chromatography and Related Methods, Vol. I (1970), Vol. II (1970), Vol. III (1972), Ann Arbor-Humphrey Science Publishers, Ann Arbor.Google Scholar
  53. 53.
    S. Dal Nogare and R. S. Juvet, Jr., Gas—Liquid Chromatography, Theory and Practice, Interscience, New York (1962).Google Scholar
  54. 54.
    A. E. Pierce, Silylation of Organic Compounds, Pierce Chemical Co., Rockford, Illinois (1968).Google Scholar
  55. 55.
    R. W. McKinney, Pyrolysis gas chromatography, in Ancillary Techniques of Gas Chromatography (L. S. Ettre and W. H. McFadden, eds.), pp. 55–87, Wiley-Interscience, New York (1969).Google Scholar
  56. 56.
    M. Beroza and M. N. Inscoe, Precolumn reactions for structure determination, in Ancillary Techniques of Gas Chromatography (L. S. Ettre and W. H. McFadden, eds.), pp. 89–144, Wiley-Interscience, New York (1969).Google Scholar
  57. 57.
    A. J. Raymond, D. M. G. Lawrey, and T. J. Mayer, Acquisition and processing of gas Chromatographic data using a time-shared computer, J. Chromatog. Sci. 8, 1–12 (1970).Google Scholar
  58. 58.
    J. J. Kirkland, Modern Practice of Liquid Chromatography, Wiley-Interscience, New York (1971).Google Scholar
  59. 59.
    J. J. Kirkland, Columns for modern analytical liquid chromatography, Anal. Chem. 43(12), 36A–48A (1971).CrossRefGoogle Scholar
  60. 60.
    H. Veening, Liquid chromatography detectors, J. Chem. Ed. 47, A549–A568, A675-A686, A749-A762 (1970).Google Scholar
  61. 61.
    P. Kruger, Principles of Activation Analysis, Wiley-Interscience, New York (1971).Google Scholar
  62. 62.
    J. R. DeVoe and P. D. LaFleur (eds.), Modern Trends in Activation Analysis (Proc. 1968 Int. Conf. on Modern Trends in Activation Analysis, October 1968), NBS Special Publication 312, Vols. I and II, U.S. Government Printing Office, Washington, D.C. (1969).Google Scholar
  63. 63.
    G. J. Lutz, R. J. Boreni, R. S. Maddock, and J. Wing (eds.), Activation Analysis: A Bibliography Through 1971, NBS Technical Note 467, U.S. Government Printing Office, Washington, D.C. (1972).Google Scholar
  64. 64.
    D. DeSoete, R. Gijbels, and J. Hoste, Neutron Activation Analysis, Wiley, New York (1972).Google Scholar
  65. 65.
    G. J. Lutz, Photon activation analysis—a review, Anal. Chem. 43, 93–103 (1971).CrossRefGoogle Scholar
  66. 66.
    E. A. Schweikert and H. L. Rook, Determination of oxygen in silicon in the sub-part-per-million range by charged-particle activation analysis, Anal. Chem. 42, 1525–1527 (1970).CrossRefGoogle Scholar
  67. 67.
    W. S. Horton and C. C. Carson, Gas analysis: Determination of gases in metals, in Treatise on Analytical Chemistry (I. M. Kolthoffand P. J. Elving, eds.), Part I, Vol. 10, Section E, Chapter 103, pp. 6017–6144, Wiley, New York (1972).Google Scholar
  68. 68.
    O. Menis and J. T. Sterling, Standard Reference Materials: Determination of Oxygen in Ferrous Metals—SRM 1090, 1091 and 1092, National Bureau of Standards Misc. Publ. 260-14, U.S. Government Printing Office, Washington, D.C. (1966).Google Scholar
  69. 69.
    K. W. Guardipee, Two methods for separation of surface and bulk gases in vacuum-fusion analysis of metals, Anal. Chem. 42, 469–473 (1970).CrossRefGoogle Scholar
  70. 70.
    J. W. Frazer, Digital control computers in analytical chemistry, Anal. Chem. 40(8), 26A–40A (1968).Google Scholar
  71. 71.
    P. D. Garn, Thermoanalytical Methods of Investigation, Academic, New York (1965).Google Scholar
  72. 72.
    R. F. Schwenker, Jr. and P. D. Garn (eds.), Thermal Analysis, Vol. 1, Instrumentation, Organic Materials, and Polymers, Vol. 2, Inorganic Materials and Physical Chemistry, Academic, New York (1969).Google Scholar
  73. 73.
    O. Menis (ed.), Status of Thermal Analysis (Proc. Symp. on the Current Status of Thermal Analysis, April 1970), NBS Special Publication 338, U.S. Government Printing Office, Washington, D.C. (1970).Google Scholar
  74. 74.
    H. G. Wiedemann (ed.), Thermal Analysis, Vol. 1, Advances in Instrumentation, Vol. 2, Inorganic Chemistry, Vol. 3, Organic and Macromolecular Chemistry, Ceramics, Earth Science, Birkhäuser, Basel, Switzerland (1972).Google Scholar
  75. 75.
    C. B. Murphy, Analytical reviews 1972/Fundamentals: Thermal analysis, Anal. Chem. 44(5), 513R–524R (1972).CrossRefGoogle Scholar
  76. 76.
    H. A. Liebhafsky, H. G. Pfeiffer, E. H. Winslow, and P. D. Zemany, X-Ray Absorption and Emission in Analytical Chemistry, Wiley, New York (1960).Google Scholar
  77. 77.
    R. O. Müller, Spectrochemical Analysis by X-Ray Fluorescence (K. Keil, transi.), Plenum, New York (1972).CrossRefGoogle Scholar
  78. 78.
    C. L. Luke, Determination of trace elements in inorganic and organic materials by x-ray fluorescence spectroscopy, Anal. Chim. Acta 41, 237–250 (1968).CrossRefGoogle Scholar
  79. 79.
    L. S. Birks, Analytical reviews 1972/Fundamentals: X-ray absorption and emission, Anal. Chem. 44(5), 557R–562R (1972).CrossRefGoogle Scholar
  80. 80.
    R. D. Giauque and J. M. Jaklevic, Rapid quantitative analysis by x-ray spectrometry, in Advances in X-ray Analysis (K. F. J. Heinrich, C. S. Barrett, J. B. Newkirk, and C. O. Ruud, eds.), Vol. 15, pp. 164–175, Plenum, New York (1972).Google Scholar
  81. 81.
    R. Brown, M. L. Jacobs, and H. E. Taylor, A survey of the most recent applications of spark source mass spectrometry, Am. Laboratory 4(11), 29–40 (1972).Google Scholar
  82. 82.
    R. A. Bingham and R. M. Elliott, Accuracy of analysis by electrical detection in spark source mass spectrometry, Anal. Chem. 43, 43–54 (1971).CrossRefGoogle Scholar
  83. 83.
    P. J. Paulsen, R. Alvarez, and C. W. Mueller, Spark source mass spectrographic analysis of ingot iron for Ag, Cu, Mo, and Ni by isotope dilution and for Co by an internal standard technique, Anal. Chem. 42, 673–675 (1970).CrossRefGoogle Scholar
  84. 84.
    E. C. Kuehner, R. Alvarez, P. J. Paulsen, and T. J. Murphy, Production and analysis of special high-purity acids purified by sub-boiling distillation, Anal. Chem. 44, 2050–2056 (1972).CrossRefGoogle Scholar
  85. 85.
    C. C. McMullen and H. G. Thode, Isotope abundance measurements and their application to chemistry, in Mass Spectrometry (A. McDowell, ed.), pp. 375–441, McGraw-Hill, New York (1963).Google Scholar
  86. 86.
    I. L. Barnes, E. L. Garner, J. W. Gramlich, L. J. Moore, T. J. Murphy, L. A. Machlan, W. R. Shields, M. Tatsumoto, and R. J. Knight, The determination of lead, uranium, thorium and thallium in silicate glass standard materials, Anal. Chem. 45, 880–885 (1973).CrossRefGoogle Scholar
  87. 87.
    Certificates of analysis (provisional): Orchard leaves, standard reference material 1571 (October 1, 1971); Bovine liver, Standard Reference material 1577 (April 15, 1972); available from the Office of Standard Reference Materials, National Bureau of Standards, Washington, D.C.Google Scholar
  88. 88.
    B. F. Scribner and M. Margoshes, Emission spectroscopy, in Treatise on Analytical Chemistry (I. M. Kolthoffand P. J. Elving, eds.), Part I, Vol. 6, Chapter 64, pp. 3347–3461, Interscience, New York (1965).Google Scholar
  89. 89.
    E. L. Grove (ed.), Analytical Emission Spectroscopy, Vol. I, Part I (Analytical Spectroscopy Series, Vol. II, 1972; Vol. III, to be published), Marcel Dekker, New York (1971).Google Scholar
  90. 90.
    V. G. Mossotti, Emission spectroscopy including dc arc, spark, and other methods, in Techniques of Metals Research (R. F. Bunshah, ed.), Vol. III, Part 2, pp. 533–572, Interscience, New York (1970).Google Scholar
  91. 91.
    R. M. Barnes, Analytical reviews 1972/Fundamentals: Emission spectrometry, Anal. Chem. 44(5), 122R–150R (1972).CrossRefGoogle Scholar
  92. 92.
    J. A. Dean and T. C. Rains, Flame Emission and Atomic Absorption Spectrometry, Vol. 1, Theory, Vol. 2, Components and Techniques, Marcel Dekker, New York (1969, 1971).Google Scholar
  93. 93.
    R. Mavrodineanu (ed.), Analytical Flame Spectroscopy, Selected Topics, Macmillan, London (1970).Google Scholar
  94. 94.
    E. E. Pickett and S. R. Koirtyohann, Emission flame photometry—A new look at an old method, Anal. Chem. 41(14), 28A–42A (1969).CrossRefGoogle Scholar
  95. 95.
    D. P. Hubbard, Annual Reports on Analytical Atomic Spectroscopy 1971, Vol. 1, The Society for Analytical Chemistry, London (1972).Google Scholar
  96. 96.
    G. D. Christian and F. J. Feldman, A comparison study of detection limits using flame-emission spectroscopy with the nitrous oxide—acetylene flame and atomic-absorption spectroscopy, Appl. Spectr. 25, 660–663 (1971).CrossRefGoogle Scholar
  97. 97.
    J. W. Robinson and P. J. Slevin, Recent advances in instrumentation in atomic absorption, Am. Laboratory 4(8), 10–18 (1972).Google Scholar
  98. 98.
    G. F. Kirkbright, The application of non-flame atom cells in atom-absorption and atomic-fluorescence spectroscopy, a review, The Analyst 96, 609–623 (1971).CrossRefGoogle Scholar
  99. 99.
    V. I. Goldanskii and R. H. Herber, Chemical Applications of Mössbauer Spectroscopy, Academic, New York (1968).Google Scholar
  100. 100.
    L. May, An Introduction to Mössbauer Spectroscopy, Plenum, New York (1971).Google Scholar
  101. 101.
    G. Stevens, J. C. Travis, and J. R. DeVoe, Analytical reviews 1972/Fundamentals: Mössbauer spectrometry, Anal. Chem. 44(5), 384R–406R (1972).CrossRefGoogle Scholar
  102. 102.
    R. L. Mössbauer, Gamma resonance spectroscopy and chemical bonding, Angew. Chem. Internat. Ed. 10, 462–472 (1971).CrossRefGoogle Scholar
  103. 103.
    J. J. Spijkerman and P. A. Pella, A review of selected highlights of Mössbauer spectrometry, Crit. Rev. Anal. Chem. 1, 7–45 (1970).CrossRefGoogle Scholar
  104. 104.
    R. M. Lynden-Bell and R. K. Harris, Nuclear Magnetic Resonance Spectroscopy, Nelson, London (1969).Google Scholar
  105. 105.
    J. W. Emsley, J. Feeney, and L. H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, Vols. 1, 2, Pergamon, New York (1965, 1966).Google Scholar
  106. 106.
    F. A. Bovey, Nuclear Magnetic Resonance Spectroscopy, Academic, New York (1969).Google Scholar
  107. 107.
    C. A. Poole, Jr. and H. A. Farach, Relaxation in Magnetic Resonance; Dielectric and Mössbauer Applications, Academic, New York (1971).Google Scholar
  108. 108.
    J. I. Kaplan, Numerical solution of the equation governing nuclear magnetic spin-lattice relaxation in a paramagnetic-spin-doped insulator, Phys. Rev. B3, 604–607 (1971).Google Scholar
  109. 109.
    J. E. Wertz and J. R. Bolton, Electron Spin Resonance: Elementary Theory and Practical Applications, McGraw-Hill, New York (1972).Google Scholar
  110. 110.
    F. Gerson, High Resolution Electron Spin Resonance Spectroscopy, Wiley, New York (1970).Google Scholar
  111. 111.
    A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Oxford, Clarendon Press, London (1970).Google Scholar
  112. 112.
    L. R. Weisberg, Electrical measurement for trace characterization, in Trace Characterization, Chemical and Physical (W. W. Meinke and B. F. Scribner, eds.), NBS Monograph 100, U.S. Government Printing Office, Washington, D.C. (1967).Google Scholar
  113. 113.
    V. A. Deason, A. F. Clark, and R. L. Powell, Characterization of high purity metals by the residual resistivity ratio, Mat. Res. and Std. 1971(8), 25–28.Google Scholar
  114. 114.
    A. F. Clark, V. A. Deason, J. G. Hust, and R. L. Powell, Standard Reference Materials: The Eddy Current Decay Method for Resistivity Characterization of High Purity Metals, NBS Special Publication 260-39, U.S. Government Printing Office, Washington, D.C. (1972).Google Scholar
  115. 115.
    L. S. Birks, Electron Probe Microanalysis, 2nd ed., Wiley—Interscience, New York (1971).Google Scholar
  116. 116.
    K. F. J. Heinrich, Scanning electron probe microanalysis, NBS Technical Note 278, U.S. National Technical Information Service, Springfield, Virginia (1967).Google Scholar
  117. 117.
    K. F. J. Heinrich, Quantitative Electron Probe Microanalysis, NBS Special Publication 298, U.S. Government Printing Office, Washington, D.C. (1968).Google Scholar
  118. 118.
    K. F. J. Heinrich, Errors in theoretical correction systems in quantitative electron probe microanalysis—A synopsis, Anal. Chem. 44, 350–354 (1972).CrossRefGoogle Scholar
  119. 119.
    R. Tixier and J. Philibert, Analyse quantitative d’echantillons minces, in Proc. 5th Int. Congress on X-Ray Optics and Microanalysis (G. Möllenstedt and K. H. Gaukler, eds.), pp. 180–186, Springer-Verlag, Berlin (1968).Google Scholar
  120. 120.
    W. J. Campbell and J. V. Gilfrich, Analytical reviews 1970/Fundamentals: X-ray absorption and emission, Anal. Chem. 42(5), 248R–268R (1970).CrossRefGoogle Scholar
  121. 121.
    A. J. Socha, Analysis of surfaces utilizing sputter ion source instruments, Surface Sci. 25, 147–170 (1971).CrossRefGoogle Scholar
  122. 122.
    A. Benninghoven, Beobachtung von Oberflächenreaktionen mit der statischen Methode der Sekundärionen-massenspektroskopie; I. Die Methode, Surface Sci. 28, 541–562 (1971).CrossRefGoogle Scholar
  123. A. Benninghoven, Surface investigation of solids by the statistical method of secondary ion mass spectroscopy (SIMS) Surface Sci. 35, 427–457 (1973).CrossRefGoogle Scholar
  124. 123.
    C. A. Anderson, Progress in analytical methods for the ion microprobe mass analyzer, Int. J. Mass Spectry. Ion Phys. 2, 61–74 (1969).CrossRefGoogle Scholar
  125. 124.
    J. A. McHugh and J. F. Stevens, Elemental analysis of single micrometer-size airborne particulates by ion microprobe mass spectrometry, Anal. Chem. 44, 2187–2192 (1972).CrossRefGoogle Scholar
  126. 125.
    K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. Karlsson, I. Lindgren, and B. Lindberg, ESC A: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV, Vol. 20, Almqvist and Wiksells Boktryckeri AB Uppsala (1967).Google Scholar
  127. 126.
    D. A. Shirley (ed.), Electron Spectroscopy, North-Holland, Amsterdam (1972).Google Scholar
  128. 127.
    D. M. Hercules, Analytical reviews 1972/Fundamentals: Electron spectroscopy. II, X-ray photoexcitation, Anal. Chem. 44(5), 106R–112R (1972).CrossRefGoogle Scholar
  129. 128.
    K. Siegbahn, D. Hammond, H. Fellner-Feldegg, and E. F. Barnett, Electron spectroscopy with monochromatized x-rays, Science 176, 245–252 (1972).CrossRefGoogle Scholar
  130. 129.
    W. H. McCurdy, Jr. and D. H. Wilkins, Analytical reviews 1966/Fundamentals: Volumetric and gravimetric analytical methods for inorganic compounds, Anal. Chem. 38, 469R–478R (1966).CrossRefGoogle Scholar
  131. 130.
    A. L. Underwood, Photometric titration, in Advances in Analytical Chemistry and Instrumentation (C. N. Reilley, ed.), Vol. 3, pp. 31–104, Interscience, New York (1964).Google Scholar
  132. 131.
    G. Marinenko and J. K. Taylor, Precise coulometric titration of dichromate, J. Res. NBS (U.S.), 76A (Phys. and Chem.), 453–459 (1963).Google Scholar
  133. 132.
    T. M. Florence, Ion-selective electrodes, Proc. Roy. Austral. Chem. Inst. 37, 261–270 (1970).Google Scholar
  134. 133.
    T. S. West, Some sensitive and selective reactions in inorganic spectroscopic analysis, The Analyst 91, 69–77 (1966).CrossRefGoogle Scholar
  135. 134.
    J. A. Roberts, J. Winwood, and E. J. Millett, The spectrophotometric determination of sub-microgram amounts of impurities in semiconductor materials, in Proc. Soc. Analytical Chemistry Conf., Nottingham, 1965, pp. 528–538, Heffer & Sons, Cambridge (1965).Google Scholar
  136. 135.
    I. P. Alimarin, Progress and problems of trace determination in pure substances, Zh. Analit. Khim. 18, 1412–1425 (1963).Google Scholar
  137. 136.
    M. Vecera and J. Horska, A study of the accuracy and precision of methods for the determination of carbon and hydrogen in organic compounds, Pure Appl. Chem. 21(1), 47–84 (1970).CrossRefGoogle Scholar
  138. 137.
    N. Hadden, F. Baumann, F. MacDonald, M. Munc, R. Stevenson, D. Gere, F. Zamaroni, and R. Majors, Basic Liquid Chromatography, Varian Aerograph, Walnut Creek, California (1971).Google Scholar
  139. 138.
    J. M. A. Lenihan and S. J. Thomson (eds.), Advances in Activation Analysis, Vol. 2, Academic, New York (1972).Google Scholar
  140. 139.
    J. P. Bruch, Determination of gases in steel and application of the results, Iron and Steel Institute Special Report No. 131, Determination of Chemical Composition— Its Application and Process Control, Iron and Steel Institute, London (1971).Google Scholar
  141. 140.
    W. Schwarz and H. Zitter, Determination for oxygen content in steel by hot extraction, Berg. Hutten. Monatsh. 113, 1–10 (1968).Google Scholar
  142. 141.
    C. Mazieres, Differential thermal microanalysis, physical chemical applications, Bull. Soc. Chim. France 1961, 1695–1701.Google Scholar
  143. 142.
    G. V. Davis and R. S. Porter, Application of the differential scanning calorimeter to purity measurements, J. Thermal Anal. 1, 449–458 (1969).CrossRefGoogle Scholar
  144. 143.
    N. W. H. Addink, DC Arc Analysis, Macmillan, London (1971).Google Scholar
  145. 144.
    M. D. Amos, P. A. Bennett, K. G. Brodie, P. W. Y. Lung, and J. P. Matousek, Carbon rod atomizer in atomic absorption and fluorescence spectrometry and its clinical application, Anal. Chem. 43, 211–215 (1971).CrossRefGoogle Scholar
  146. 145.
    P. A. Pella and J. R. DeVoe, Determination of tin in copper-base alloys by Mössbauer spectroscopy, Anal. Chem. 42, 1833–1835 (1970).CrossRefGoogle Scholar
  147. 146.
    L. H. Schwartz, Quantitative analysis using Mössbauer effect spectroscopy, Int. J. Nondestruct. Test. 1, 353–381 (1970).Google Scholar
  148. 147.
    P. A. Pella and J. R. DeVoe, International standardization in Mössbauer spectrometry, Appl. Spectry. 25, 472–474 (1971).CrossRefGoogle Scholar
  149. 148.
    T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR, Academic, New York (1971).Google Scholar
  150. 149.
    R. S. Alger, Electron Paramagnetic Resonance: Techniques and Applications, Section 3.3, Sensitivity, pp. 69–91, Interscience, New York (1968).Google Scholar
  151. 150.
    C. P. Poole, Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, pp. 523–600, Interscience, New York (1967).Google Scholar
  152. 151.
    R. F. Gould, Nonstoichiometric Compounds, Advances in Chemistry Series 39, American Chemical Society, Washington, D.C. (1963).Google Scholar
  153. 152.
    A. Benninghoven, Mass spectrometric analysis of monomolecular layers of solids by secondary ion emission, in Advances in Mass Spectrometry (A. Quale, ed.), Vol. 5, pp. 444–447, Elsevier, New York (1971).Google Scholar
  154. 153.
    D. P. Smith, Analysis of surface composition with low-energy backscattered ions, Surface Sci. 25, 171–191 (1971).CrossRefGoogle Scholar
  155. 154.
    E. D. Tolmie and D. A. Robins, The zone-refining of impure copper, J. Inst. Metals 85, 171–176 (1957).Google Scholar
  156. 155.
    M. Cuypers, Systematic analysis of high purity copper, following its irradiation by thermal neutrons, Ann. Chim. (Paris) 9, 509–540 (1964).Google Scholar
  157. 156.
    C. H. Lewis, M. B. Giusto, H. C. Kelly, and S. Johnson, The preparation of high-purity silicon from silane, in Ultrapurification of Semiconductor Materials (M. S. Brooks and J. K. Kennedy, eds.), pp. 55–56, Macmillan, New York (1962).Google Scholar
  158. 157.
    F. A. Pohl and W. Bonseis, Zur spurenanalyse sehr reinen siliciums, Mikrochim. Acta 1960, 641–649.Google Scholar
  159. 158.
    C. T. Butler, J. R. Russell, R. B. Quincy, Jr., and D. E. LaValle, A method for purification and growth of KC1 single crystal, Oak Ridge National Laboratory Technical Report ORNL-3906, U.S. Atomic Energy Commission Technical Information Center, Oak Ridge, Tennessee.Google Scholar
  160. 159.
    A. Glasner and P. Avinur, Spectrophotometric methods for the determination of impurities in pure and analytical reagents—III. The determination of six ions in KC1, Talanta 11, 775–780 (1964).CrossRefGoogle Scholar
  161. 160.
    A. Kremheller, Growth and heat treatment of zinc sulfide single crystals, J. Electrochem. Soc. 107, 422–427 (1960).CrossRefGoogle Scholar
  162. 161.
    G. J. Sloan, Studies on the purification of anthracene; determination and use of segregation coefficients, Molecular Crystals 1, 161–194 (1966).CrossRefGoogle Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1921

Authors and Affiliations

  • W. Wayne Meinke
    • 1
  1. 1.Analytical Chemistry DivisionInstitute for Materials Research National Bureau of StandardsUSA

Personalised recommendations