Advertisement

Introduction to Chemical and Structural Defects in Crystalline Solids

  • Morris E. Fine
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 1)

Abstract

The concept of the crystalline solid defines the perfect crystal to be a solid in which the atoms are arranged in a three-dimensional periodic array of perfect order. A basic group of atoms or molecules, themselves in a definite arrangement, is repeated in space according to a regular pattern to give the crystal structure. That atoms are arranged in crystals in regular patterns was deduced during the latter part of the 18th century by early crystallographers, such as R. J. Haüy, from the occurrence of macroscopic planar faced crystals in nature. These ideas were confirmed when diffraction of crystals by X-rays was discovered by Von Laue in 1912 and by the subsequent determination of structure of crystals beginning with the Braggs.

Keywords

Burger Vector Slip Plane Stack Fault Energy Screw Dislocation Edge Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.S. Smith, in A History of Metallography, pp. 199-200, Univ. of Chicago Press (1960).Google Scholar
  2. 2.
    C. G. Darwin, The theory of X-ray reflexion I, II, Phil. Mag. 27, 315–333, 675-690 (1914).Google Scholar
  3. 3.
    C. G. Darwin, the reflexion of X-rays from imperfect crystals, Phil. Mag. 43(Series 6), 800–829 (1922).Google Scholar
  4. 4.
    W. L. Bragg, C. G. Darwin, and R. W. James, The intensity of reflexion of X-rays by crystals, Phil. Mag. 1, 897–922 (1926).Google Scholar
  5. 5.
    J. Frenkel, Über die Wärmebewegung in festen und flüssigen Körpern, Z. Physik 35, 652–669 (1926).CrossRefGoogle Scholar
  6. 6.
    L. S. Darken and R. W. Gurry, The system iron-oxygen. I. The wüstite field and related equilibria, J. Am. Chem. Soc. 67, 1398–1412 (1945).CrossRefGoogle Scholar
  7. 7.
    E. R. Jette and F. Foote, An X-ray study of the wüstite (FeO) solid solutions, J. Chem. Phys. 1, 29–36 (1933).CrossRefGoogle Scholar
  8. 8.
    F. B. Koch and J. B. Cohen, The defect structure of Fe1-xO, Acta Cryst. B25, 275–287 (1969).Google Scholar
  9. 9.
    J. B. Cohen, The order-disorder transformation, in Phase Transformations, pp. 561–620, American Society for Metals, Cleveland (1970).Google Scholar
  10. 10.
    E. Orowan, Dislocations in plasticity, in The Sorby Centennial Symposium on the History of Metallurgy (C. S. Smith, ed.), pp. 359–376, Metallurgical Society Conference Vol. 27, Gordon and Breach, New York (1965).Google Scholar
  11. 11.
    T. Broom and R. K. Ham, The effect of lattice defects on some physical properties of metals, in Vacancies and Other Point Defects in Metals and Alloys, Monograph No. 23, The Institute of Metals, London (1958).Google Scholar
  12. 12.
    S. Nenno and J. W. Kauffman, Detection of equilibrium vacancy concentrations in aluminum, Phil. Mag. 4(48), 1382–1384 (1959).CrossRefGoogle Scholar
  13. 13.
    R. O. Simmons and R. W. Balluffi, Measurements of equilibrium vacancy concentrations in aluminum, Phys. Rev. 117, 52–61 (1960).CrossRefGoogle Scholar
  14. 14.
    M. E. Fine, Introduction to Phase Transformations in Condensed Systems, pp. 109–111, Macmillan, New York (1964).Google Scholar
  15. 15.
    F. A. Kröger and H. J. Vink, Relations between the concentrations of imperfections in crystalline solids, in Solid State Physics (F. Seitz and D. Turnbull, eds.), Vol. 3, p. 310, Academic, New York (1956).Google Scholar
  16. 16.
    A. J. Bradley and A. Taylor, An X-ray analysis of the nickel-aluminum system, Proc. Roy. Soc. (London) 159, 56–72 (1937).CrossRefGoogle Scholar
  17. 17.
    A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford Univ. Press, London (1953).Google Scholar
  18. 18.
    W. T. Read, Dislocations in Crystals, McGraw-Hill, New York (1953).Google Scholar
  19. 19.
    J. Weertman and J. R. Weertman, Elementary Dislocation Theory, Macmillan, New York (1964).Google Scholar
  20. 20.
    J. Friedel, Dislocations, Addison-Wesley, Reading, Mass. (1964).Google Scholar
  21. 21.
    J. P. Hirth and J. Lothe, Theory of Dislocations, McGraw-Hill, New York (1968).Google Scholar
  22. 22.
    S. S. Brenner, Properties of whiskers, in Growth and Perfection of Crystals (R. H. Doremus et al., eds.), pp. 157–190, Wiley, New York (1958).Google Scholar
  23. 23.
    M. J. Marcinkowski, in Electron Microscopy and Strength of Crystals (G. Thomas and J. Washburn, eds.), p. 333, Interscience, New York (1963).Google Scholar
  24. 24.
    A. H. Cottrell, An Introduction to Metallurgy, p. 339, Edward Arnold, London (1967).Google Scholar
  25. 25.
    W. D. Kingery, Introduction to Ceramics, pp. 194, 568, Wiley, New York (1960).Google Scholar
  26. 26.
    G. W. Groves and M. E. Fine, Solid solution and precipitation hardening in Mg-Fe-O alloys, J. Appl. Phys. 35, 3587–3593 (1964).CrossRefGoogle Scholar
  27. 27.
    G. P. Wirtz and M. E. Fine, Precipitation and coarsening of magnesioferrite dilute solutions of iron in MgO, J. Am. Ceram. Soc. 51, 402–406 (1968).CrossRefGoogle Scholar
  28. 28.
    E. W. Kruse III and M. E. Fine, Precipitation strengthening of MgO by MgFe2O4, J. Am. Ceram. Soc. 55, 32–37 (1972).CrossRefGoogle Scholar
  29. 29.
    W. S. Williams, Dispersion hardening of titanium carbide by boron doping, Trans. TMS-AIME 236, 211 (1966).Google Scholar
  30. 30.
    J. D. Venables, The nature of precipitates in boron-doped TiC, Phil. Mag. 16, 873 (1967).CrossRefGoogle Scholar
  31. 31.
    J. H. van der Merwe, Crystal interfaces. Part I. Semi-infinite crystals, J. Appl. Phys. 34, 117 (1963).CrossRefGoogle Scholar
  32. J. H. van der Merwe, Crystal interfaces. Part II. Finite overgrowths, J. Appl. Phys. 34, 123 (1963).CrossRefGoogle Scholar
  33. 32.
    N. A. Gjostein and F. N. Rhines, Absolute interfacial energies of [001] tilt and twist grain boundaries in copper, Acta Met. 7, 319 (1959).CrossRefGoogle Scholar
  34. 33.
    T. Schober and R. W. Balluffi, Quantitative observation of misfit dislocation arrays in low-angle and high-angle twist grain boundaries, Phil. Mag. 21, 109 (1970).CrossRefGoogle Scholar
  35. 34.
    E. W. Dana and W. E. Ford, A Textbook of Minerology, 4th ed., pp. 179–194, Wiley, New York (1932).Google Scholar
  36. 35.
    M. L. Kronberg, Plastic deformation of single crystals of sapphire: Basal slip and Twinning, Acta Met. 5, 507 (1957).CrossRefGoogle Scholar
  37. 36.
    C. S. Barrett and T. B. Massalski, The Structure of Metals, 3rd ed., pp. 270–284, McGraw-Hill, New York (1966).Google Scholar
  38. 37.
    H. Berg and J. B. Cohen, Long-range order and ordering kinetics in CoPt3, Met. Trans. 3, 1797–1805 (1972).CrossRefGoogle Scholar
  39. 38.
    D. W. Pashley and A. E. B. Presland, The observation of anti-phase boundaries during the transition from CuAu I to CuAu II, J. Inst. Met. 87 (1958-59).Google Scholar
  40. 39.
    S. Ogawa, D. Watanabe, H. Watanabe, and T. Komoda, The direct observation of the long period of the ordered alloy CuAu(II) by means of electron microscope, Acta Cryst. 11, 872 (1958).CrossRefGoogle Scholar
  41. 40.
    V. Krasevec, P. Delavignette, and S. Amelinckx, Superstructure due to periodic twinning in quenched NiMn alloy, Mat. Res. Bull. 2, 1029 (1967).CrossRefGoogle Scholar
  42. 41.
    S. Amelinckx and J. Van Landuyt, The use of electron microscopy in the study of extended defects related to nonstoichiometry, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 295–320, North-Holland, Amsterdam (1970).Google Scholar
  43. 42.
    H. L. Marcus and M. E. Fine, Grain boundary segregation in MgO-doped A12O3, J. Am. Ceram. Soc. 55, 568 (1972).CrossRefGoogle Scholar
  44. 43.
    H. L. Marcus and P. W. Palmberg, Auger fracture surface analysis of a temper embrittled 3340 steel, Trans. TMS-AIME 245, 1664 (1969).Google Scholar
  45. 44.
    P. W. Palmberg and H. L. Marcus, An auger spectroscopic analysis of the extent of grain boundary segregation, Trans. ASM 62, 1016 (1969).Google Scholar
  46. 45.
    M. E. Fine and H. L. Marcus, Segregation to an interface and brittle fracture of metals, Met. Trans. 2, 1474 (1971).Google Scholar
  47. 46.
    A. Howie and P. R. Swann, Direct measurements of stacking-fault energies from observations of dislocation nodes, Phil. Mag. 6, 1215 (1961).CrossRefGoogle Scholar
  48. 47.
    R. W. Guard and M. E. Fine, Surface thermodynamic treatment of absorption on a dislocation-Suzuki locking, Trans. TMS-AIME 233, 1383–1388 (1965).Google Scholar
  49. 48.
    H. G. Van Bueren, Imperfections in Crystals, 2nd ed., pp. 34–36, 275-280, 306-310, 562, 581, 610-611, North-Holland, Amsterdam (1961).Google Scholar
  50. 49.
    R. M. J. Cotterill, in Vacancy Clusters in Pure and Impure FCC Metals (R. M. J. Cotterill, M. Doyama, J. J. Jackson, and M. Meshii, eds.), pp. 97–162, Academic, New York (1965).Google Scholar
  51. 50.
    P. C. Gehlen and J. B. Cohen, Computer simulation of structure associated with local order in alloys, Phys. Rev. 139, A844–A855 (1965).CrossRefGoogle Scholar
  52. 51.
    J. E. Gragg, Jr., P. Bardhan, and J. B. Cohen, The “Gestalt” of local order, in Critical Phenomena in Alloys, Magnets and Superconductors, (R. E. Mills, E. Ascher, R. I. Jaffee, eds.), Chapter 6, Part 3, pp. 309–337, McGraw-Hill, New York (1971).Google Scholar
  53. 52.
    J. B. Cohen, A brief review of the properties of ordered alloys, J. Mat. Sci. 4, 1012–1022 (1969).CrossRefGoogle Scholar
  54. 53.
    R. J. Ackermann and R. W. Sandford, Argonne National Laboratory Rept. ANL-7250.Google Scholar
  55. 54.
    F. B. Koch and M. E. Fine, Magnetic properties of FexO as related to the defect structure, J. Appl. Phys. 38, 1470–1471 (1967).CrossRefGoogle Scholar
  56. 55.
    M. E. Fine and F. B. Koch, Néel transformation in near-stoichiometric FexO, J. Appl. Phys. 39, 2478–2479 (1968).CrossRefGoogle Scholar
  57. 56.
    P. S. Bell and M. H. Lewis, Nonstoichiometric vacancy order in vanadium monoxide, Phys. Stat. Sol. 7, 431 (1971).CrossRefGoogle Scholar
  58. 57.
    D. Watanabe, O. Terasaki, A. Jostsons, and J. R. Castles, Electron microscope study on the structure of low-temperature modification of titanium monoxide phase, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 238–256, North-Holland, Amsterdam (1970).Google Scholar
  59. 58.
    H. Jagodzinski and H. Saalfeld, Kationenverteilung und Strukturbeziehungen in Mg-Al-Spinellen, Z. Krist. 110, 197 (1958).CrossRefGoogle Scholar
  60. 59.
    H. Jagodzinski and K. Haefner, On order-disorder in ionic nonstoichiometric crystals, Z. Krist. 125, 188 (1967).CrossRefGoogle Scholar
  61. 60.
    A. Magneli, Structural order and disorder in oxides of transition metals of the titanium, vanadium, and chromium groups, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 148–162, North-Holland, Amsterdam (1970).Google Scholar
  62. 61.
    A. Wadsley, in Non-Stoichiometric Compounds (L. Mandelcorn, ed.), Chapter 3, Academic, New York (1963).Google Scholar
  63. 62.
    J. S. Anderson and B. G. Hyde, On the possible role of dislocations in generating ordered and disordered shear structures, J. Phys. Chem. Solids 29, 1393 (1967).CrossRefGoogle Scholar
  64. 63.
    B. G. Hyde and L. A. Bursill, Point, line and planar defects in some nonstoichiometric compounds, in The Chemistry of Extended Defects in Non-Metallic Solids (L. Eyring and M. O’Keeffe, eds.), pp. 347–378, North-Holland, Amsterdam (1970).Google Scholar
  65. 64.
    P. Delavignette and S. Amelinckx, Large dislocation loops in antimony telluride, Phil. Mag. 6, 601 (1961).CrossRefGoogle Scholar
  66. 65.
    H. Sato and R. S. Toth, in Alloying Behavior Effects in Concentrated Solid Solutions, AIME Series 29 (T. B. Massalski, ed.), Gordon & Breach, New York (1965).Google Scholar
  67. 66.
    J. E. Gragg, Jr. and J. B. Cohen, The structure of Guinier-Preston zones in Al-5 at. % Ag, Acta Met. 19, 507–519 (1971).CrossRefGoogle Scholar
  68. 67.
    J. W. Cahn, Spinodal decomposition, Trans. TMS-AIME 242, 166–180 (1968).Google Scholar
  69. 68.
    K. B. Rundman and J. E. Hilliard, Early stages of spinodal decomposition in an Al-Zn alloy, Acta Met. 15, 1025 (1967).CrossRefGoogle Scholar
  70. 69.
    V. S. Stubican and A. H. Schultz, Phase separation by spinodal decomposition in the tetragonal system, J. Am. Ceram. Soc. 53, 211–214 (1970).CrossRefGoogle Scholar
  71. 70.
    A. H. Schultz and V. S. Stubican, Separation of phases by spinodal decomposition in the systems Al2O3-Cr2O3 and Al2O3-Cr2O3-Fe2O3, J. Am. Ceram. Soc. 53, 613–616 (1970).CrossRefGoogle Scholar
  72. 71.
    M. Takahashi, J. R. C. Guimarães, and M. E. Fine, Spinodal decomposition in the system CoFe2O4-Co3O4, J. Am. Ceram. Soc. 54, 281–295 (1971).CrossRefGoogle Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1921

Authors and Affiliations

  • Morris E. Fine
    • 1
  1. 1.Department of Materials ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations