Energy Bands

  • D. Weaire
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 1)


The author of this chapter was not even born when the pioneering studies of the band structure of solids were being conducted by Slater, Wigner, Seitz, and others in the 1930’s, and he will not presume to paraphrase those early achievements. Suffice it to say that most of the ground rules for the description of energy bands in crystals were worked out rather thoroughly at that time. Despite having such early and respectable antecedents, band structure theory has enjoyed a period of hectic activity since about 1960—not only hectic, but also successful, since, over a wide area of solid-state theory, the balance has tipped from puzzlement to ennui in a single decade. Why? The answer is not to be sought on the back of any theorist’s envelope, but rather in two developments which indirectly facilitated and stimulated our theoretical understanding. These are the advent of high-speed computers and the refinement of experimental techniques, two aspects of the electronic revolution.


Band Structure Energy Band Fermi Surface Tight Binding Augmented Plane Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Slater, Quantum Theory of Molecules and Solids, McGraw-Hill, New York (1965).Google Scholar
  2. 2.
    J. Callaway, Energy Band Theory, Academic, New York (1964).Google Scholar
  3. 3.
    J. M. Ziman, The calculation of Bloch functions, Solid State Phys. 26, 1–101 (1971).CrossRefGoogle Scholar
  4. 4.
    E. P. Wigner, Effects of the electron interaction on the energy levels of electrons in a metal, Trans. Faraday Soc. 34:678–685 (1938).CrossRefGoogle Scholar
  5. 5.
    P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, 864–867 (1964).CrossRefGoogle Scholar
  6. 6.
    W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, 1133–8 (1965).CrossRefGoogle Scholar
  7. 7.
    L. J. Sham and W. Kohn, One-particle properties of an inhomogeneous interacting electron gas, Phys. Rev. 145, 561–7 (1966).CrossRefGoogle Scholar
  8. 8.
    J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81, 385–390 (1951).CrossRefGoogle Scholar
  9. 9.
    L. Hedin and S. Lundqvist, Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, Solid State Phys. 23, 1–181 (1969).CrossRefGoogle Scholar
  10. 10.
    J. Hubbard, The description of collective motion in terms of many-body perturbation theory. II, Proc. Roy. Soc. A243, 336–352 (1958).Google Scholar
  11. 11.
    V. Heine and D. Weaire, Pseudopotential theory of cohesion and structure, Solid State Phys. 24, 249–463 (1970).CrossRefGoogle Scholar
  12. 12.
    K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjolander, Electron correlations at metallic densities, Phys. Rev. 176, 589–599 (1968).CrossRefGoogle Scholar
  13. 13.
    R. W. Shaw, Jr. and W. W. Warren, Jr., Enhancement of the Korringa constant in alkali metals by electron-electron interaction, Phys. Rev. 3, 1562–1568 (1971).CrossRefGoogle Scholar
  14. 14.
    L. Kleinman, New approximation for screened exchange and the dielectric constant of metals, Phys. Rev. 160, 585–590 (1967).CrossRefGoogle Scholar
  15. 15.
    C. Kittel, Introduction to Solid State Physics, 4th ed., Wiley, New York (1971).Google Scholar
  16. 16.
    C. Kittel, Quantum Theory of Solids, Wiley, New York (1963).Google Scholar
  17. N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys, Clarendon Press, Oxford (1936).Google Scholar
  18. 17.
    L. Van Hove, The occurrence of singularities in the elastic frequency distribution of a crystal, Phys. Rev. 89, 1189–1193 (1953).CrossRefGoogle Scholar
  19. 18.
    E. O. Kane, Critical point structure in photoelectric emission energy distributions, Phys. Rev. 175, 1039–1048 (1968).CrossRefGoogle Scholar
  20. 19.
    R. S. Mulliken, C. A. Rieke, D. Orloff, and H. Orloff, Formulas and numerical tables for overlap integrals, J. Chem. Phys. 17, 1248–1267 (1949).CrossRefGoogle Scholar
  21. 20.
    R. Hoffmann, An extended Hückel theory. I. Hydrocarbons, J. Chem. Phys. 39, 1397–1412 (1963).CrossRefGoogle Scholar
  22. 21.
    T. L. Gilbert, in Sigma Molecular Orbital Theory (O. Sinanoglu, K. B. Wiberg, eds.), pp. 249–55, Benjamin, New York (1969).Google Scholar
  23. 22.
    M. F. Thorpe, Two-magnon bound state in fce ferromagnets, Phys. Rev. 4, 1608–1613 (1971).CrossRefGoogle Scholar
  24. 23.
    T. Wolfram and J. Callaway, Spin wave impurity states in ferromagnets, Phys. Rev. 130, 2207–2217 (1963).CrossRefGoogle Scholar
  25. 24.
    E. Frikkee, Calculations on magnon impurity modes of a pair defect in a facecentered cubic ferromagnet, J. Phys. C 2, 345–355 (1969).CrossRefGoogle Scholar
  26. 25.
    M. F. Thorpe and D. Weaire, Electronic properties of an amorphous solid. II. Further aspects of the theory, Phys. Rev. 4, 3518–3527 (1971).CrossRefGoogle Scholar
  27. 26.
    D. Weaire and M. F. Thorpe, in Computational Methods for Large Molecules and Localized States in Solids (F. Herman, A. D. McLean, and R. K. Nesbet, eds.), pp. 295–315, Plenum, New York (1973).CrossRefGoogle Scholar
  28. 27.
    F. Ducastelle and F. Cyrot-Lackmann, Moments developments and their application to the electronic charge distribution of d-bands, J. Phys. Chem. Solids 31, 1295–1306 (1970).CrossRefGoogle Scholar
  29. 28.
    M. F. Thorpe, Random walks in polytype structures, J. Math. Phys. 294-299 (1972).Google Scholar
  30. 29.
    G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev. 52, 191–197 (1937).CrossRefGoogle Scholar
  31. 30.
    W. Kohn, Analytic properties of bloch waves and Wannier functions, Phys. Rev. 115, 809–821 (1959).CrossRefGoogle Scholar
  32. 31.
    G. Ferreira and N. J. Parada, Wannier functions and the phases of bloch functions, Phys. Rev. 2, 1614–1618 (1970).Google Scholar
  33. 32.
    E. I. Blount, Formalisms of band theory, Solid State Phys. 13, 305–373 (1962).CrossRefGoogle Scholar
  34. 33.
    P. W. Anderson, Self-consistent pseudopotentials and ultralocalized functions for energy bands, Phys. Rev. Letters 21, 13–16 (1968).CrossRefGoogle Scholar
  35. 34.
    W. Kohn, in Computational Methods for Large Molecules and Localized States in Solids. (F. Herman, A. D. McLean, and R. K. Nesbet, eds.), pp. 245–249, Plenum, New York (1973).CrossRefGoogle Scholar
  36. 35.
    N. W. Ashcroft, in Computational Methods in Band Theory (P. M. Marcus, J. F. Janak, and A. R. Williams, eds.), Plenum, New York (1971) pp. 368–372.CrossRefGoogle Scholar
  37. 36.
    A. R. Williams and D. Weaire, Validity of perturbation theory. I, J. Phys. 33, 387–397 (1970).Google Scholar
  38. 37.
    V. Heine, The pseudopotential concept, Solid State Phys. 24, 1–36 (1970).CrossRefGoogle Scholar
  39. 38.
    J. B. Pendry, The cancellation theorem in pseudopotential theory, J. Phys. C 4, 427–434 (1971).CrossRefGoogle Scholar
  40. 39.
    W. A. Harrison, Pseudopotentials in the Theory of Metals, Benjamin, New York (1966).Google Scholar
  41. 40.
    J. M. Ziman, The T matrix, the K matrix, d-bands and l-dependent pseudopotentials in the theory of metals, Proc. Phys. Soc. 86, 337–353 (1965).CrossRefGoogle Scholar
  42. 41.
    A. O. E. Animalu and V. Heine, The screened model potential for 25 elements, Phil. Mag. 12, 1249–1270 (1965).CrossRefGoogle Scholar
  43. 42.
    M. L. Cohen and T. K. Bergstresser, Band structures and pseudopotential form factors for 14 semiconductors of the diamond and zinc-blende structures, Phys. Rev. 141, 789–796 (1966).CrossRefGoogle Scholar
  44. 43.
    M. D. Stafleu and A. R. de Vroomen, Fermi surface and pseudopotential coefficients in white tin, Phys. Stat. Sol. 23, 683–696 (1967).CrossRefGoogle Scholar
  45. 44.
    M. A. C. Devillers and A. R. de Vroomen, Comments on pseudopotential form factors for white Sn, Phys. Rev. 4, 4631–4632 (1971).CrossRefGoogle Scholar
  46. 45.
    J. H. Tripp, P. M. Everett, W. L. Gordon, and R. W. Stark, Fermi surface of Be and its pressure dependence, Phys. Rev. 180, 669–678 (1969).CrossRefGoogle Scholar
  47. 46.
    D. Jones and A. H. Lettington, The Optical properties and electronic structure of magnesium, Proc. Phys. Soc. 92, 948–955 (1967).CrossRefGoogle Scholar
  48. 47.
    R. Stark and L. Falicov, Band structure and Fermi surface of zinc and cadmium, Phys. Rev. Letters 19, 795–798 (1967).CrossRefGoogle Scholar
  49. 48.
    J. M. Dishman and J. A. Rayne, Magnetoresistance and Fermi surface topology of crystalline mercury, Phys. Rev. 166, 728–745 (1968).CrossRefGoogle Scholar
  50. 49.
    N. W. Ashcroft, The Fermi surface of aluminum, Phil. Mag. 8, 2055–2083 (1963).CrossRefGoogle Scholar
  51. 50.
    J. R. Anderson and A. V. Gold, Fermi surface, pseudopotential coefficients, and spin-orbit coupling in lead, Phys. Rev. 139, 1459–1481 (1965).CrossRefGoogle Scholar
  52. 51.
    M. L. Cohen and V. Heine, The fitting of pseudopotentials to experimental data and their subsequent application, Solid State Phys. 24, 37–248 (1970).CrossRefGoogle Scholar
  53. 52.
    E. Wigner and F. Seitz, On the constitution of metallic sodium. I, II, Phys. Rev. 43, 804–810 (1933).CrossRefGoogle Scholar
  54. E. Wigner and F. Seitz, On the constitution of metallic sodium. I, II, Phys. Rev. 46, 509–524 (1934).CrossRefGoogle Scholar
  55. 53.
    F. S. Ham, Energy bands of alkali metals. I, Phys. Rev. 128, 82–97 (1962).CrossRefGoogle Scholar
  56. 54.
    S. L. Altmann, in Soft X-Ray Band Spectra (D. J. Fabian, ed.), Academic, London (1968).Google Scholar
  57. 55.
    A. I. Gubanov, Cellular method for amorphous semiconductors, Sov. Phys.— Semiconductors 5, 463–466 (1971).Google Scholar
  58. 56.
    D. Weaire, Some properties of random tetrahedrally coordinated structures, J. Noncryst Solids 6, 181–186 (1971).CrossRefGoogle Scholar
  59. 57.
    J. C. Phillips and L. Kleinman, New method for calculating wave functions in crystals and molecules, Phys. Rev. 116, 287–294 (1959).CrossRefGoogle Scholar
  60. 58.
    C. Herring, A new method for calculating wave functions in crystals, Phys. Rev. 57, 1169–1177 (1940).CrossRefGoogle Scholar
  61. 59.
    T. O. Woodruff, The orthogonalized plane wave method, Solid State Phys. 4, 367–411 (1957).CrossRefGoogle Scholar
  62. 60.
    K. Johnson, in Computational Methods for Large Molecules and Localized States in Solids (F. Herman and A. D. McLean, eds.), Plenum Press, New York (1973).Google Scholar
  63. 61.
    J. O. Dimmock, The calculation of electronic energy bands by the augmented plane wave method, Solid State Phys. 26, 103–274 (1971).CrossRefGoogle Scholar
  64. 62.
    B. Segall and F. S. Ham, The Green’s function method of Korringa, Kohn, and Rostoker for the calculation of the energy band structure of solids, Methods in Comp. Phys. 8, 251–294 (1968).Google Scholar
  65. 63.
    B. Segall and F. S. Ham, Tables of structure constants for energy band calculations with the Green’s function method, Unpublished.Google Scholar
  66. 64.
    E. O. Kane, Band structure of silicon from an adjusted Heine Abarenkov calculation, Phys. Rev. 146, 558–567 (1966).CrossRefGoogle Scholar
  67. 65.
    J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94, 1498–1524 (1954).CrossRefGoogle Scholar
  68. 66.
    A. B. Kunz, Energy bands and optical properties of LiCl, Phys. Rev. 2, 5015–5024 (1970).CrossRefGoogle Scholar
  69. 67.
    F. M. Mueller, Combined interpolation scheme for transition and noble metals, Phys. Rev. 153, 659–669 (1967).CrossRefGoogle Scholar
  70. 68.
    J. Hubbard, The approximate calculation of electronic band structure, Proc. Phys. Soc. 92, 921–937 (1967).CrossRefGoogle Scholar
  71. 69.
    R. L. Jacobs, The theory of transition metal band structures, J. Phys. C 1, 492–506 (1968).CrossRefGoogle Scholar
  72. 70.
    F. Cyrot-Lackmann and F. Ducastelle, Moments developments. I, J. Phys. Chem. Solids 31, 1295–1306 (1970).CrossRefGoogle Scholar
  73. 71.
    F. Ducastelle and F. Cyrot-Lackmann, Moments developments. II, J. Phys. Chem. Solids 32, 285–301 (1971).CrossRefGoogle Scholar
  74. 72.
    R. Haydock, V. Heine, and M. J. Kelly, Electronic structure based on the local atomic environment for tight-binding d-bands, J. Phys. C 5, 2845–2858 (1972).CrossRefGoogle Scholar
  75. 73.
    D. G. Pettifor, Theory of crystal structures of transition metals, J. Phys. C 3, 367–377 (1970).CrossRefGoogle Scholar
  76. 74.
    D. Weaire, Band effective masses for nineteen elements, Proc. Phys. Soc. 92, 956–961 (1967).CrossRefGoogle Scholar
  77. 75.
    R. W. Shaw, Jr., Effective masses and perturbation theory in the theory of simple metals, J. Phys. C 2, 2350–2365 (1969).CrossRefGoogle Scholar
  78. 76.
    P. Löwdin, A note on the quantum mechanical perturbation theory, J. Chem. Phys. 19, 1396–1401 (1951).CrossRefGoogle Scholar
  79. 77.
    A. O. E. Animalu, Nonlocal dielectric screening in metals, Phil. Mag. 11, 379–388 (1965).CrossRefGoogle Scholar
  80. 78.
    E. O. Kane, The k · p Method, Semiconductors and Semimetals 1, 75–100 (1966).CrossRefGoogle Scholar
  81. 79.
    J. P. Van Dyke, First principles full-zone k · p extrapolations critically evaluated, Phys. Rev. 4, 3375–3382 (1971).CrossRefGoogle Scholar
  82. 80.
    G. Gilat and L. J. Raubenheimer, Accurate numerical method for calculating frequency distribution functions in solids, Phys. Rev. 144, 390–395 (1966).CrossRefGoogle Scholar
  83. 81.
    E. O. Kane, Need for a nonlocal correlation potential in silicon, Phys. Rev. 4, 1910–1916 (1971).CrossRefGoogle Scholar
  84. 82.
    B. Segall and G. Juras, Effective mass parameters for electronic energy bands, Phys. Rev. 4, 3277–3280 (1971).CrossRefGoogle Scholar
  85. 83.
    G. Juras, to be published.Google Scholar
  86. 84.
    D. J. Nagel and W. L. Baun, in X-Ray Spectroscopy (L. V. Azaroff, ed.), Chapter 9, McGraw-Hill, New York (1973).Google Scholar
  87. 85.
    M. J. G. Lee, The Fermi surfaces of the alkali metals, Crit. Rev. Solid State Sci. 2, 85–120 (1971).CrossRefGoogle Scholar
  88. 86.
    A. P. Cracknell, The Fermi surface. I, II, Adv. Phys. 18, 681–818 (1969).CrossRefGoogle Scholar
  89. A. P. Cracknell, The Fermi surface. I, II, Adv. Phys. 20, 1–141 (1971).CrossRefGoogle Scholar
  90. 87.
    W. B. Skinner, The soft X-ray spectroscopy of solids. I, Phil. Trans. Roy. Soc. A239, 95–134 (1940).Google Scholar
  91. 88.
    C. Gähwiller, F. C. Brown, and H. Fujita, Extreme ultraviolet spectroscopy with the use of a storage ring light. source, Rev. Sci. Instr. 41, 1275–1281 (1970).CrossRefGoogle Scholar
  92. 89.
    T. Sagawa, in Soft X-Ray Band Spectra (D. J. Fabian, ed.), pp. 29–43, Academic, London (1968).Google Scholar
  93. 90.
    G. Wiech and E. Zöpf, Presented at Int. Conf. on Band Structure Spectroscopy of Metals and Alloys, Strathclyde, 1971, to be published; G. Wiech, in Soft X-Ray Band Spectra (D. J. Fabian, ed.), pp. 59–70, Academic, London (1968).Google Scholar
  94. 91.
    L. Ley, S. Kowalczyk, R. Pollak, and D. A. Shirley, X-ray photoemission spectra of crystalline and amorphous Si and Ge valence bands, Phys. Rev. Letters 29, 1088–1092 (1972).CrossRefGoogle Scholar
  95. 92.
    G. W. Rubloff, Far-ultraviolet reflectance spectra and the electronic structure of ionic crystals, Phys. Rev. 5, 662–684 (1972).CrossRefGoogle Scholar
  96. 93.
    J. C. Phillips, The fundamental optical spectra of solids, Solid State Phys. 18, 55–164 (1972).CrossRefGoogle Scholar
  97. 94.
    F. M. Mueller, Interpolation and k-space integration; A review, in Computational Methods in Band Theory (P. M. Marcus, J. F. Janak, and A. R. Williams, eds.), Plenum, New York (1971).Google Scholar
  98. 95.
    G. Dresselhaus and M.S. Dresselhaus, Fourier expansion for the electronic band structure in silicon and germanium, Phys. Rev. 160, 649–679 (1967).CrossRefGoogle Scholar
  99. 96.
    D. Brust, Electronic spectra of crystalline germanium and silicon, Phys. Rev. 134, 1337–1353 (1964).CrossRefGoogle Scholar
  100. 97.
    B. O. Seraphin, in Optical Properties of Solids (E. D. Haidemenakis, ed.), pp. 213–252, Gordon and Breach, New York (1970).Google Scholar
  101. 98.
    J. C. Phillips, Covalent Bonding in Crystals, Molecules and Polymers, Univ. of Chicago Press, Chicago, Ill. (1969).Google Scholar
  102. 99.
    A. I. Golashkin, A. I. Kopeliovich, and G. P. Motulevich, Determination of the pseudopotential Fourier components on the basis of interband transitions in the optical range, Soviet Phys.—JETP 26, 1161–1166 (1968).Google Scholar
  103. 100.
    N. W. Ashcroft and K. Sturm, Interband absorption and the optical properties of polyvalent metals, Phys. Rev. 3, 1898–1910 (1971).CrossRefGoogle Scholar
  104. 101.
    W. A. Harrison, Band structure of aluminum, Phys. Rev. 118, 1182–1189 (1960).CrossRefGoogle Scholar
  105. W. A. Harrison, Electronic structure of polyvalent metals, Phys. Rev. 118, 1190–1208 (1960).CrossRefGoogle Scholar
  106. 102.
    P. N. Butcher, The absorption of light by alkali metals, Proc. Phys. Soc. A64, 765–780 (1951).Google Scholar
  107. 103.
    H. Mayer and M. H. El Naby, Zum inneren lichtelektrischen Effect (Quantensprungabsorption) im Alkalimetall Kalium, Z. Physik 174, 289–295 (1963).CrossRefGoogle Scholar
  108. 104.
    F. Abeles, in Soft X-Ray Band Spectra (D. J. Fabian, ed.), pp. 191–214, Academic, London (1968).Google Scholar
  109. 105.
    A. W. Overhauser, Spin-density wave antiferromagnetism in potassium, Phys. Rev. Letters 13, 190–193 (1964).CrossRefGoogle Scholar
  110. 106.
    N. V. Smith, Photoemission properties of metals, Crit. Rev. Solid State Sci. 2, 45–83 (1971).CrossRefGoogle Scholar
  111. 107.
    W. E. Spicer, Possible non-one-electron effects in the fundamental optical excitation spectra of certain crystalline solids and their effect on photoemission, Phys. Rev. 154, 385–394 (1967).CrossRefGoogle Scholar
  112. 108.
    D. E. Eastman and W. D. Grobman, Photoemission densities of intrinsic surface states for Si, Ge, and GaAs, Phys. Rev. Letters 28, 1378–1381 (1972).CrossRefGoogle Scholar
  113. 109.
    L. F. Wagner and W. E. Spicer, Observation of a band of silicon surface states containing one electron per surface atom, Phys. Rev. Letters 28, 1381–1384 (1972).CrossRefGoogle Scholar
  114. 110.
    T. M. Donovan and W. E. Spicer, Changes in the density of states of germanium on disordering as observed by photoemission, Phys. Rev. Letters 21, 1572–1575 (1968).CrossRefGoogle Scholar
  115. 111.
    D. E. Eastman, Photoemission studies of d-band structure in Sc, Y, Gd, Ti, Zr, Hf, V, Nb, Cr, and Mo, Solid State Commun. 7, 1697–1699 (1969).CrossRefGoogle Scholar
  116. 112.
    L. Onsager, Interpretation of the de Haas-van Alphen effect, Phil. Mag. 43, 1006–1008 (1952).Google Scholar
  117. 113.
    I. M. Lifshitz and A. M. Kosevitch, Theory of magnetic susceptibility in metals at low temperatures, Soviet Phys.—JETP 2, 636–645 (1956).Google Scholar
  118. 114.
    F. M. Mueller, New inversion scheme for obtaining Fermi surface radii from de Haas-van Alphen areas, Phys. Rev. 148, 636–637 (1966).CrossRefGoogle Scholar
  119. 115.
    L. R. Windmiller, J. B. Ketterson, and S. Hörnfeldt, De Haas-van Alphen effect in palladium, Phys. Rev. 3, 4213–4231 (1971).CrossRefGoogle Scholar
  120. 116.
    A. B. Pippard, The Dynamics of Conduction Electrons, Blackie and Son, London (1965).Google Scholar
  121. 117.
    L. J. Rouse and P. G. Varlashkin, Angular correlation studies of positron annihilation in copper-nickel alloys, Phys. Rev. 4, 2377–2397 (1971).Google Scholar
  122. 118.
    R. I. Sharp, The lattice dynamics of niobium. I, II, J. Phys. C 2, 421-431; 432-433 (1969).Google Scholar
  123. 119.
    R. Stedman and G. Nilsson, Observations on the Fermi surface of aluminum by neutron spectrometry, Phys. Rev. Letters 15, 634–637 (1965).CrossRefGoogle Scholar
  124. 120.
    L. M. Falicov and V. Heine, The Many-body theory of electrons in metal or has a metal really got a Fermi surface? Adv. Phys. 10, 57–105 (1961).CrossRefGoogle Scholar
  125. 121.
    R. W. Shaw, Jr. and R. Pynn, Optimized model potential; Exchange and correlation corrections and calculation of magnesium phonon spectrum, J. Phys. C 2, 2071–2088 (1969).CrossRefGoogle Scholar
  126. 122.
    M. A. Coulthard, Pressure dependence of phonon dispersion curves in simple metals, J. Phys. C 3, 820–834 (1970).CrossRefGoogle Scholar
  127. 123.
    E. G. Brovman and Yu. Kagan, The phonon spectrum of metals, Soviet Phys.— JETP, 25, 365–382 (1967).Google Scholar
  128. 124.
    A. B. Kunz and N. O. Lipari, Electronic structure of NaBr, Phys. Rev. 4, 1374–1381 (1971).CrossRefGoogle Scholar
  129. 125.
    W. H. Adams, On the solution of the Hartree-Fock equation in terms of localized orbitals, J. Chem. Phys. 34, 89–102 (1961).CrossRefGoogle Scholar
  130. T. L. Gilbert, in Molecular Orbitals in Chemistry, Physics, and Biology (P. O. Löwdin, ed.), Academic, New York, (1964).Google Scholar
  131. 126.
    F. C. Brown, C. Gähwiller, A. B. Kunz, and N. O. Lipari, Soft X-ray spectra of the lithium halides and their interpretation, Phys. Rev. Letters 25, 927–930 (1970).CrossRefGoogle Scholar
  132. 127.
    R. C. Chaney, C. C. Lin, and E. E. Lafon, Application of the method of tight binding to the calculation of the energy band structures of diamond, silicon, and sodium crystals, Phys. Rev. 3, 459–472 (1971).CrossRefGoogle Scholar
  133. 128.
    G. Leman and J. Friedel, On the description of covalent bonds in diamond lattice structures by a simplified tight binding approximation, J. Appl. Phys. 33, 281–285 (1962).CrossRefGoogle Scholar
  134. 129.
    F. Herman, R. L. Kortum, C. D. Kuglin, and J. L. Shay, in Proc. Int. Conf. on II–VI Semiconducting Compounds (D. G. Thomas, ed.), Benjamin, New York, (1967).Google Scholar
  135. 130.
    S. Groves and W. Paul, Band structure of gray tin, Phys. Rev. Letters 11, 194–196 (1963).CrossRefGoogle Scholar
  136. 131.
    V. Heine and R. O. Jones, Electronic band structure and covalency in diamond-type semiconductors, J. Phys. C 2, 719–732 (1969).CrossRefGoogle Scholar
  137. 132.
    J. A. Van Vechten, Quantum dielectric theory of electronegativity in covalent systems. I, II, III, Phys. Rev. 182, 891–905 (1969). 187, 1007-1020 (1969); and to be published.CrossRefGoogle Scholar
  138. 133.
    J. C. Phillips and J. A. Van Vechten, Spectroscopic analysis of cohesive energies and heats of formation of tetrahedrally coordinated semiconductors, Phys. Rev. 2, 2147–2160 (1970).CrossRefGoogle Scholar
  139. 134.
    F. Herman and J. L. Shay, unpublished.Google Scholar
  140. 135.
    D. L. Carter and R. T. Bate (eds.), The Physics of Semimetals and Narrow-Gap Semiconductors, Pergamon, Oxford (1971).Google Scholar
  141. 136.
    F. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, Englewood Cliffs, N.J. (1963).Google Scholar
  142. 137.
    M. F. Thorpe and D. Weaire, to be published.Google Scholar
  143. 138.
    T. H. DiStefano and D. E. Eastman, Photoemission measurements of the valence levels of amorphous SiO2, Phys. Rev. Letters 27, 1560–1562 (1971).CrossRefGoogle Scholar
  144. 139.
    M. H. Reilly, Temperature dependence of the short-wavelength transmittance limit of vacuum-ultraviolet window materials. II, J. Phys. Chem. Solids 31, 1041–1056 (1970).CrossRefGoogle Scholar
  145. 140.
    L. F. Matteiss, Energy bands for the iron transition series, Phys. Rev. 134, 970–973 (1964).CrossRefGoogle Scholar
  146. 141.
    E. C. Snow and J. T. Waber, The APW energy bands for the body-centered and face-centered modifications of the 3d transition metals, Acta Met. 17, 623–6235 (1969).CrossRefGoogle Scholar
  147. 142.
    R. G. Lye and E. M. Logothetis, Optical properties and band structure of TiC, Phys. Rev. 147, 622–635 (1966).CrossRefGoogle Scholar
  148. R. G. Lye, A simple model for the stability of transition metal carbides, in Proc. NBS 5th Materials Research Symp. to be published.Google Scholar
  149. 143.
    V. Ern and A. C. Swittendick, Electronic Band Structure of TiC, TiN, and TiO, Phys. Rev. 137, 1927–1936 (1965).CrossRefGoogle Scholar
  150. 144.
    L. F. Mattheiss, Electronic structure of the 3d transition metal monoxides, Phys. Rev. 5, 290–306; 307-315 (1972).CrossRefGoogle Scholar
  151. V. Heine and L. F. Mattheiss, Metal-insulator transition in transition metal oxides, J. Phys. C 4, L191–194 (1971).CrossRefGoogle Scholar
  152. 145.
    N. H. March, Liquid Metals, Pergamon, Oxford (1968).Google Scholar
  153. 146.
    R. E. Borland, The nature of the electronic states in disordered one-dimensional systems, Proc. Roy. Soc. 274, 459–529 (1963).Google Scholar
  154. 147.
    B. I. Halperin, Properties of a particle in a one-dimensional random potential, Adv. Chem. Phys. 13, 123–177 (1967).CrossRefGoogle Scholar
  155. 148.
    H. L. Frisch and S. P. Lloyd, Electron levels in a one-dimensional random lattice, Phys. Rev. 120, 1175–89 (1960).CrossRefGoogle Scholar
  156. 149.
    J. Hori, Spectral Properties of Disordered Chains and Lattices, Pergamon, Oxford (1968).Google Scholar
  157. 150.
    B. Velicky, S. Kirkpatrick, and E. H. Ehrenreich, Single-site approximations in the electronic theory of simple binary alloys, Phys. Rev. 175, 747–766 (1968).CrossRefGoogle Scholar
  158. 151.
    G. F. Koster and J. C. Slater, Simplified impurity calculation, Phys. Rev. 96, 1208–1223 (1954).CrossRefGoogle Scholar
  159. 152.
    P. Soven, Coherent-potential model of substitutional disordered alloys, Phys. Rev. 156, 809–813 (1967).CrossRefGoogle Scholar
  160. 153.
    M. Lax, Multiple scattering of waves, Rev. Mod. Phys. 23, 287–310 (1951).CrossRefGoogle Scholar
  161. 154.
    P. Lloyd, Exactly soluble model of electronic states in a three-dimensional disordered Hamiltonian: Nonexistence of localized states, J. Phys. C 2, 1717–1725 (1969).CrossRefGoogle Scholar
  162. 155.
    J. A. Blackman, D. M. Esterling, and N. F. Berk, Generalized locator-coherentpotential approach to binary alloys, Phys. Rev. 4, 2412–2428 (1971).Google Scholar
  163. 156.
    D. J. Thouless, The Anderson model, J. Noncryst. Solids 8-10, 461–469 (1972).CrossRefGoogle Scholar
  164. 157.
    P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492–1505 (1958).CrossRefGoogle Scholar
  165. 158.
    J. T. Edwards and D. J. Thouless, Numerical studies of localization in disordered systems, J. Phys. C (Solid State Physics) 5, 807–820 (1972).CrossRefGoogle Scholar
  166. 159.
    J. M. Ziman, Localization of electrons in ordered and disordered systems. I, J. Phys. C 1, 1532–1538 (1968).CrossRefGoogle Scholar
  167. 160.
    N. F. Mott and E. A. Davis, Electronic Processes in Noncrystalline Materials, Oxford Univ. Press (1971).Google Scholar
  168. 161.
    M. H. Cohen, Review of the theory of amorphous semiconductors, J. Noncryst. Solids 4, 391–409 (1970).CrossRefGoogle Scholar
  169. 162.
    S. Kirkpatrick and T. P. Eggarter, On the localized states of a binary alloy, Phys. Rev. 6, 3598–609 (1972).CrossRefGoogle Scholar
  170. 163.
    E. N. Economou and M. H. Cohen, Localization in disordered materials: Existence of mobility edges, Phys. Rev. Letters 25, 1445–1448 (1970).CrossRefGoogle Scholar
  171. 164.
    M. Hulin, LCAO energies and wave functions in a covalent semiconductor with topological disorder, Phys. Stat. Sol. 52, 119–1125 (1972).CrossRefGoogle Scholar
  172. 165.
    G. M. Stocks, R. W. Williams, and J. S. Faulkner, Densities of states in paramagnetic Cu-Ni alloys, Phys. Rev. 4, 4390–4405 (1971).CrossRefGoogle Scholar
  173. 166.
    N. F. Mott, Conduction in noncrystalline materials. III, Phil Mag. 19, 835–852 (1969).CrossRefGoogle Scholar
  174. 167.
    D. E. Eastman and W. D. Grobman, Photoemission studies of Si, Ge and GaAs using synchrotron radiation in the 7-25 eV range, Proc. 11th International Conference on the Physics of Semiconductors, Warsaw (1972), pp. 889-895.Google Scholar
  175. 168.
    D. Brust, Electronic spectrum, k conservation, and photoemission in amorphous germanium, Phys. Rev. Letters 23, 1232–1234 (1969).CrossRefGoogle Scholar
  176. 169.
    J. Keller and J. M. Ziman, Long range order, short range order and energy gaps, J. Noncryst. Solids, 8-10, 111–121 (1972).CrossRefGoogle Scholar
  177. 170.
    J. C. Phillips, Electronic structure and optical spectra of amorphous semiconductors, Physica Status Solidi 44, 1–4 (1971).CrossRefGoogle Scholar
  178. 171.
    D. Weaire, Existence of a gap in the electronic density of states of a tetrahedrally bonded solid of arbitrary structure, Phys. Rev. Letters 26, 1541–1543 (1971).CrossRefGoogle Scholar
  179. 172.
    J. C. Phillips, Covalent networks and amorphous semiconductors, Comments in Solid State Phys. 4, 9–11 (1970).Google Scholar

Copyright information

© Bell Telephone Laboratories, Incorporated 1921

Authors and Affiliations

  • D. Weaire
    • 1
  1. 1.Department of Engineering and Applied ScienceBecton Center, Yale UniversityNew HavenUSA

Personalised recommendations