Advertisement

The Calcium Transport ATPase of Sarcoplasmic Reticulum

  • David H. MacLennan
  • Paul C. Holland

Abstract

The sarcoplasmic reticulum is a membranous network surrounding each myofibril and forming a separate enclosed compartment within muscle cells (Bennett and Porter 1953; Porter and Palade, 1957). At longitudinal intervals of about one sarcomere length the sarcoplasmic reticulum intersects a second membrane, the transverse tubule, an invagination of the sarcolemma in which the lumen is continuous with extracellular fluids (Porter and Palade, 1957; H. E. Huxley, 1964). The sarcoplasmic reticulum is thickened to form a continuous terminal sac or cisterna near the junction with the transverse tubular system, but it is also branched to form longitudinal tubules extending between cisternae. The cisternal elements contain a filamentous interior matrix, but the longitudinal elements are relatively free of internal content.

Keywords

ATPase Activity Sarcoplasmic Reticulum Dependent ATPase Transverse Tubule Sarcoplasmic Reticulum Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baird, G. D., and Perry, S. V., 1960, The inhibitory action of relaxing-factor preparations on the myofibrillar adenosine triphosphatase, Biochem. J. 77:262.PubMedGoogle Scholar
  2. Baskin, R. J., 1971, Ultrastructure and calcium transport in crustacean muscle microsomes, J. Cell Biol. 48:49.PubMedCrossRefGoogle Scholar
  3. Bastide, F., Meissner, G., Fleischer, S., and Post, R. L., 1973, Similarity of the active site of phosphorylation of the adenosine triphosphatase for transport of sodium and potassium ions in kidney to that for transport of calcium ions in the sarcoplasmic reticulum of muscle, J. Biol. Chem. 248:8485.Google Scholar
  4. Batra, S., 1973, The effects of drugs on calcium uptake and calcium release by mitochondria and sarcolasmic reticulum of frog skeletal muscle, Biochem. Pharmacol. 22:1.CrossRefGoogle Scholar
  5. Bendall, J. R., 1953, Further observations on a factor (the “marsh” factor) effecting relaxation of ATP-shortened muscle-fibre models, and the effect of Ca and Mg ions upon it, J. Physiol. 121:232.PubMedGoogle Scholar
  6. Bennett, H., and Porter, K. R., 1953, An electron microscope study of sectioned breast muscle of the domestic fowl, Am. J. Anat. 93:61.PubMedCrossRefGoogle Scholar
  7. Boland, R., Martonosi, A., and Tillagk, T. W., 1974, Developmental changes in the composition and function of sarcoplasmic reticulum, J. Biol. Chem. 249:612.PubMedGoogle Scholar
  8. Boyer, P. D., Cross, R. L., and Momsen, W., 1973, A new concept for coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactions, Proc. Nat. Acad. Sci. U.S.A. 70:2837.CrossRefGoogle Scholar
  9. Carsten, M. E., and Mommaerts, W. F. H. M., 1964, The accumulation of calcium ions by sarco-tubular vesicles, J. Gen. Physiol. 48:183.PubMedCrossRefGoogle Scholar
  10. Carvalho, P., 1966, Binding of cations by microsomes from rabbit skeletal muscle, J. Cell. Physiol. 67:73.PubMedCrossRefGoogle Scholar
  11. Carvalho, P., and Leo, B., 1967, Effects of ATP on the interaction of Ca++, Mg++, and K+ with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle, J. Gen. Physiol. 50:1327.PubMedCrossRefGoogle Scholar
  12. Chevallier, J., and Butow, R. A., 1971, Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle, Biochemistry 10:2733.PubMedCrossRefGoogle Scholar
  13. Cohen, A., and Selinger, Z., 1969, Calcium binding properties of sarcoplasmic reticulum membranes, Biochim. Biophys. Acta 1830:27.Google Scholar
  14. Deamer, D. W., 1973, Isolation and characterization of a lysolecithin-adenosine triphosphatase complex from lobster muscle microsomes, J. Biol. Chem. 248:5477.PubMedGoogle Scholar
  15. Deamer, D. W., and Baskin, R. J., 1969, Ultrastructure of sarcoplasmic reticulum preparations, J. Cell. Biol. 42:296.PubMedCrossRefGoogle Scholar
  16. Deamer, D. W., and Baskin, R. J., 1972, ATP synthesis in sarcoplasmic reticulum, Arch. Biochem. Biophys. 153:47.PubMedCrossRefGoogle Scholar
  17. Degani, C., and Boyer, P. D., 1973, A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem. 248:8222.PubMedGoogle Scholar
  18. de Meis, L., 1969, Ca2+ uptake and acetyl phosphatase of skeletal muscle microsomes, inhibition by Na +, K +, Li +, and adenosine triphosphate, J. Biol. Chem. 244:3733.PubMedGoogle Scholar
  19. de Meis, L., 1971, Allosteric inhibition by alkali ions of the Ca2+ uptake and adenosine triphosphatase activity of skeletal muscle microsomes, J. Biol. Chem. 246:4764.PubMedGoogle Scholar
  20. de Meis, L., and Hasselbach, W., 1971, Acetyl phosphate as substrate for Ca2+ uptake in skeletal muscle microsomes, inhibition by alkali ions, J. Biol. Chem. 246:4759.PubMedGoogle Scholar
  21. Drabikowski, W., Sarzala, M. C., Wroniszewska, A., Lagwinska, E., and Drzewiecka, B., 1972, Role of cholesterol in the Ca2+ uptake and ATPase activity of fragmented sarcoplasmic reticulum, Biochim. Biophys. Acta. 274:158.PubMedCrossRefGoogle Scholar
  22. Duggan, P. F., and Martonosi, A., 1970, Sarcoplasmic reticulum, IX. The permeability of sarcoplasmic reticulum membranes, J. Gen. Physiol. 56:147.PubMedCrossRefGoogle Scholar
  23. Dupont, Y., and Hasselbach, W., 1973, Structural changes in sarcoplasmic recticulum membrane induced by SH reagents, Nature (London), New Biol. 246:41.CrossRefGoogle Scholar
  24. Dupont, Y., Harrison, S. C., and Hasselbach, W., 1973, Molecular organization in the sarcoplasmic reticulum membrane studied by X-ray diffraction, Nature 244:555.CrossRefGoogle Scholar
  25. Ebashi, S., 1958, A granule-bound relaxation factor in skeletal muscle, Arch. Biochem. Biophys. 76:410.PubMedCrossRefGoogle Scholar
  26. Ebashi, S., 1960, Calcium binding and relaxation in the actomyosin system, J. Biochem. 48:150.Google Scholar
  27. Ebashi, S., and Ebashi, F., 1964, A new protein component participating in the superprecipitation of myosin B, J. Biochem. 55:604.PubMedGoogle Scholar
  28. Ebashi, S., and Lipmann, F., 1962, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell. Biol. 14:389.PubMedCrossRefGoogle Scholar
  29. Ebashi, F., and Yamanouchi, I., 1964, Calcium accumulation and adenosinetriphosphatase of the Relaxing Factor, J. Biochem. 55:504.PubMedGoogle Scholar
  30. Ebashi, S., Kodama, A., and Ebashi, F., 1968, Troponin. I. Preparation and Physiological funcatoon, J. Biochem. 64:465.PubMedGoogle Scholar
  31. Ebashij, S., Endo, M., and Ohtsuki, I., 1969, Control of muscle contraction, Q. Rev. Biophys. 2:351.CrossRefGoogle Scholar
  32. Eisenman, C., Ciani, S. M., and Szabo, G., 1968, Some theoretically expected and experimentally observed properties of lipid bilayer membranes containing neutral molecular carriers of ions, Fed. Proc. 27:1289PubMedGoogle Scholar
  33. Eletr, S., and Inesi, G., 1972, Phospholipid orientation in sarcoplasmic membranes: Spin-label ESR and protein NMR studies, Biochim. Biophys. Acta 282:174.PubMedCrossRefGoogle Scholar
  34. Ezerman, E. B., and Ishikawa, H., 1967, Differentiation of the sarcoplasmic reticulum and T system in developing chick skeletal muscle in vitro, J. Cell Biol. 35:405.PubMedCrossRefGoogle Scholar
  35. Fanburg, B. L., Drachman, D. B., Moll, D., and Roth, S. I., 1968, Calcium transport in isolated sarcoplasmic reticulum during muscle maturation, Nature 218:962.PubMedCrossRefGoogle Scholar
  36. Fiehn, W., and Hasselbach, W., 1969, The effect of diethylether upon the function of the vesicles of sarcoplasmic reticulum, Eur. J. Biochem. 9:574.PubMedCrossRefGoogle Scholar
  37. Fiehn, W., and Hasselbach, W., 1970, The effect of phospholipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmic vesicles, Eur. J. Biochem. 13:510.PubMedCrossRefGoogle Scholar
  38. Fiehn, W., and Migala, A., 1971, Calcium binding to sarcoplasmic membranes, Eur. J. Biochem. 20:245.PubMedCrossRefGoogle Scholar
  39. Fischman, D. A., 1970, the synthesis and assembly of myofibrils in embryonic muscle, in: Current Topics in Developmental Biology (A. A. Moscona and A. Monroy, eds.), Vol. 5, pp. 235–280, Academic Press, New York, and London.Google Scholar
  40. Folch, J., and Lees, M., 1951, Proteolipides, A new type of tissue lipoproteins, their isolation from brain, J. Biol. Chem. 191:807.PubMedGoogle Scholar
  41. Francois, C., 1969, Detection, by hydrogen exchange, of a modified membrane conformation linked to calcium transport by sarcoplasmatic vesicles, Biochim. Biophys. Acta 173:86.PubMedCrossRefGoogle Scholar
  42. Franzini-Armstrong, C., 1970, Studies of the triad. I. Structure of the junction in frog twitch fibers, J. Cell Biol. 47:488.PubMedCrossRefGoogle Scholar
  43. Franzini-Armstrong, C., 1971, Studies of the triad. II. Penetration of tracers into the junctional gap, J. Cell Biol. 49:196.PubMedCrossRefGoogle Scholar
  44. Franzini-Armstong, C., 1974, Freeze fracture of skeletal muscle from the tarantula spider, structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes, J. Cell Biol. 61:501.CrossRefGoogle Scholar
  45. Green, D. E., and MacLennan, D. H., 1967, The mitochondrial system of enzymes, in: Metabolic Pathways (D. M. Greenberg, ed.), Vol. I, 3rd ed., pp. 47–111, Academic Press, New York and London.Google Scholar
  46. Hardwicke, P. M. D., and Green, N. M., 1974, The effect of delipidation on the Adenosine triphosphatase of sarcoplasmic reticulum. Electron microscopy and physical properties, Eur. J. Biochem. 42:183.PubMedCrossRefGoogle Scholar
  47. Hasselbach, W., 1964, Relaxing factor and the relaxation of muscle, Prog. Biophys. Mol. Biol. 14:167.CrossRefGoogle Scholar
  48. Hasselbach, W., and Elfvin, L. G., 1967, Structural and chemical asymmetry of the calcium-transporting membranes of the sarcotubular system as revealed by electron microscopy, J. Ultrastruct. Res. 17:598.PubMedCrossRefGoogle Scholar
  49. Hasselbach, W., and Makinose, M., 1961, Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihr Abhängigkeit von der ATP-Spaltung, Biochem. Z. 333:518.PubMedGoogle Scholar
  50. Hasselbach, W., and Makinose, M., 1962, ATP and active transport, Biochem. Biophys. Res. Commun. 7:132.PubMedCrossRefGoogle Scholar
  51. Hasselbach, W., and Makinose, M., 1963, Über den Mechanismus des Calciumtransportes durch die Membranen des sarkoplasmatischen Reticulums, Biochem. Z. 339:94.PubMedGoogle Scholar
  52. Hasselbach, W., and Seraydarian, K., 1966, The role of suifhydryl groups in calcium transport through the sarcoplasmic membranes of skeletal muscle, Biochem. Z. 345:159.Google Scholar
  53. Heilbrunn, L. V., and Wiercinski, F. J., 1947, The action of various cations on muscle protoplasm, J. Cell. Comp. Physiol. 29:15.CrossRefGoogle Scholar
  54. Heuson-Stiennon, J., Wanson, J. C., and Drochmans, P., 1972, Isolation and characterization of the sarcoplasmic reticulum of skeletal muscle, J. Cell Biol. 55:471.PubMedCrossRefGoogle Scholar
  55. Holland, P. C., and MacLennan, D. H., 1975, Biosynthesis of sarcoplasmic reticulum proteins in rat skeletal muscle cell cultures, Proc. Can. Fed. Biol. Soc., 18:110.Google Scholar
  56. Holtzer, H., Weintraub, H., Mayne, R., and Moghan, B., 1972, The cell cycle, cell lineages, and cell differentiation, in: Current Topics in Developmental Biology (A. A. Moscona and A. Monroy, eds.), Vol. 7, pp. 229–256, Academic Press, New York, and London.Google Scholar
  57. Hubbell, W. L., and McConnell, H. M., 1968, Spin-label studies of the excitable membranes of nerve and muscle, Proc. Nat. Acad. Sci. U.S. 61:12.CrossRefGoogle Scholar
  58. Huxley, A. F., 1971, The activation of striated muscle and its mechanical response, Proc. R. Soc. London, Ser. B. 178:1.CrossRefGoogle Scholar
  59. Huxley, A. F., and Taylor, R. E., 1955, Function of Krause’s membrane, Nature, 176:1068.PubMedCrossRefGoogle Scholar
  60. Huxley, H. E., 1964, Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle, Nature 202:1067.PubMedCrossRefGoogle Scholar
  61. Ikemoto, N., 1974, The calcium binding sites involved in the regulation of the purified adenosine triphosphatase of the sarcoplasmic reticulum, J. Biol. Chem., 249:649.PubMedGoogle Scholar
  62. Ikemoto, N., Sreter, F. A., and Gergely, J., 1966, Localization of Ca-uptake and ATPase activity in fragments of sarcoplasmic reticulum, Fed. Proc. 25:465.Google Scholar
  63. Ikemoto, N., Sreter, F. A., Nakamura, A., and Gergely, J., 1968, Tryptic digestion and localization of calcium uptake and ATPase activity in fragments of sarcoplasmic reticulum, J. Ultrastruct. Res. 23:216.CrossRefGoogle Scholar
  64. Ikemoto, N., Bhatnagar, G. M., and Gergely, J., 1971a, Fractionation of solubilized sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 44:1510.PubMedCrossRefGoogle Scholar
  65. Ikemoto, N., Sreter, F. A., and Gergely, J., 1971b, Structural features of the surface of the vesicles of FSR—lack of functional role in Ca2 + uptake and ATPase activity, Arch. Biochem. Biophy. 147:571.CrossRefGoogle Scholar
  66. Ikemoto, N., Bhatnager, G. M., Nagy, B., and Gergely, J., 1972, Interaction of divalent cations with the 55,000-dalton protein component of the sarcoplasmic reticulum. Studies of fluorescence and circular dichroism, J. Biol. Chem. 247:7835.PubMedGoogle Scholar
  67. Ikemoto, N., Nagy, B., Bhatnagar, G. M., and Gergely, J., 1974, Studies on a metal binding protein of the sarcoplasmic reticulum, J. Biol. Chem. 249:2357.PubMedGoogle Scholar
  68. Inesi, G., 1971, P-Nitrophenyl phosphate hydrolysis and calcium ion transport in fragmented sarcoplasmic reticulum, Science 171:901.PubMedCrossRefGoogle Scholar
  69. Inesi, G., 1972, Active transport of calcium ion in sarcoplasmic membranes, Ann. Rev. Biophys. Bioeng. 1:191.CrossRefGoogle Scholar
  70. Inesi, G., and Asai, H., 1968, Trypsin digestion of fragmented sarcoplasmic reticulum, Arch. Biochem. 126:469.PubMedCrossRefGoogle Scholar
  71. Inesi, G., and Scales, D., 1974, Tryptic cleavage of sarcoplasmic reticulum protein, Biochemistry 13:3298.PubMedCrossRefGoogle Scholar
  72. Inesi, G., Goodman, J. J., and Watanabe, S., 1967, Effect of diethyl ether on the adenosine triphosphatase activity and the calcium uptake of fragmented sarcoplasmic reticulum of rabbit skeletal muscle, J. Biol. Chem. 242:4637.PubMedGoogle Scholar
  73. Inesi, G., Maring, E., Murphy, A. J., and McFarland, B. H., 1970, A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase, Arch. Biochem. Biophys. 138:285.PubMedCrossRefGoogle Scholar
  74. Jobsis, F. F., and O’Connor, M. J., 1966, Calcium release and reabsorption in the sartorius muscle of the toad, Biochem. Biophys. Res. Commun. 25:246.PubMedCrossRefGoogle Scholar
  75. Kahlenberg, A., Galsworthy, P. R., Hokin, L. E., 1967, Sodium-potassium adenosine triphosphatase: Acyl phosphate “intermediate” shown to be L-glutamyl-γ-phosphate, Science 157:434.PubMedCrossRefGoogle Scholar
  76. Kanazawa, T., 1975, Phosphorylation of solubilized sarcoplasmic reticulum by orthophosphate and its thermodynamic characteristics. The dominant role of entropy in the phosphorylation, J. Biol. Chem. 250:113.PubMedGoogle Scholar
  77. Kanazawa, T., and Boyer, P. D., 1973, Occurrence and characteristics of a rapid exchange of phosphate oxygens catalyzed by sarcoplasmic reticulum vesicles, J. Biol. Chem. 248:3163.PubMedGoogle Scholar
  78. Kanazawa, T., Yamada, S., Yamamoto, T., and Tonomura, Y., 1971, Reaction mechnism of the Ca2 +-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. V. Vectorial requirements for calcium reactions of ATPase: Formation and decomposition of a phosphorylated intermediate and ATP-formation from ADP and the intermediate, J. Biochem. 70:95.PubMedGoogle Scholar
  79. Kielley, W. W., and Meyerhof, O., 1948, Studies on adenosinetriphosphatase of muscle. II. A new magnesium-activated adenosinetriphosphatase, J. Biol. Chem. 176:591.PubMedGoogle Scholar
  80. Kielley, W. W., and Meyerhof, O., 1950, Studies on adenosinetriphosphatase of muscle. III. The lipoprotein nature of the magnesium-activated adenosinetriphosphatase, J. Biol. Chem. 183:391.Google Scholar
  81. Kirghberger, M. A., Tada, M., and Katz, A. M., 1974. Adenosine 3′: 5′-monophosphate-depend-ent protein kinase catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum, J. Biol. Chem. 249:6166.Google Scholar
  82. Kondo, M., and Kasai, M., 1973, The effects of n-alcohols on sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta 311:391.PubMedCrossRefGoogle Scholar
  83. Krasnow, N., 1972, Effects of lanthanum and gadolinium ions on cardiac sarcoplasmic reticulum, Biochim. Biophys, Acta 282:187.CrossRefGoogle Scholar
  84. Kumagai, H., Ebashi, S., and Takeda, F., 1955, Essential relaxing factor in muscle other than myokinase and creatine Phosphokinase, Nature 176:166.PubMedCrossRefGoogle Scholar
  85. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680.PubMedCrossRefGoogle Scholar
  86. Landgraf, W. C., and Inesi, G., 1969, ATP dependent conformational change in “spin labelled” sarcoplasmic reticulum, Arch. Biochem. Biophys. 130:111.PubMedCrossRefGoogle Scholar
  87. Lardy, H. A., Graven, S. N., and Estrada-O-, S., 1967, Specific induction and inhibition of cation and anion transport in mitochondria, Fed. Proc. 26:1355.PubMedGoogle Scholar
  88. Lough, J. W., Entman, M. L., Bossen, E. H., and Hansen, J. L., 1972, Calcium accumulation by isolated sarcoplasmic reticulum of skeletal muscle during development in tissue culture, J. Cell. Physiol. 80:431.PubMedCrossRefGoogle Scholar
  89. Louis, C., and Shooter, E. M., 1972, The proteins of rabbit skeletal muscle sarcoplasmic reticulum, Arch. Biochem. Biophys. 153:641.PubMedCrossRefGoogle Scholar
  90. MacLennan, D. H., 1970, Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 245:4508.PubMedGoogle Scholar
  91. Maclennan, D. H., 1974, Isolation of a second form of calsequestrin, J. Biol. Chem. 249:980.PubMedGoogle Scholar
  92. Maglennan, D. H., 1975, Resolution of the calcium transport system of sarcoplasmic reticulum, Can. J. Biochem. 53:251.CrossRefGoogle Scholar
  93. Maglennan, D. H., and Wong, P. T. S., 1971, Isolation of a calcium-sequestering protein from sarcoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 68:1231.CrossRefGoogle Scholar
  94. MacLennan, D. H., Seeman, P., Iles, G. H., and Yip, C. C., 1971, Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum, J. Biol. Chem. 246:2702.PubMedGoogle Scholar
  95. MacLennan, D. H., Yip, C. C., Iles, G. H., and Seeman, P., 1972, Isolation of sarcoplasmic reticulum proteins, Cold Spring Harbor Symp. Quant. Biol. 37:460.Google Scholar
  96. MacLennan, D. H., Ostwald, T. J., and Stewart, P. S., 1974, Structural components of the sarcoplasmic reticulum membrane, Ann. N.Y. Acad. Sci. 227:527.PubMedCrossRefGoogle Scholar
  97. Makinose, M., 1969, The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport, Eur. J. Biochem. 10:74.PubMedCrossRefGoogle Scholar
  98. Makinose, M., 1972, Phosphoprotein formation during osmo-chemical energy conversion in the membrane of the sarcoplasmic reticulum, FEBS Lett. 25-113.Google Scholar
  99. Makinose, M., 1973, Possible functional states of the enzyme of the sarcoplasmic calcium pump, FEBS Lett. 37:140.PubMedCrossRefGoogle Scholar
  100. Makinose, M., and Hasselbach, W., 1965, Der Einfluss von Oxalat auf den Calcium-Transport isolierter Vesikel des sarkoplasmatischen Reticulum, Biochem. Z. 343:360.PubMedGoogle Scholar
  101. Makinose, M., and Hasselbach, W., 1971, ATP synthesis by the reverse of the sarcoplasmic calcium pump, FEBS Lett. 12:271.PubMedCrossRefGoogle Scholar
  102. Makinose, M., and The R., 1965, Calcium-Akkumulation und Nucleosidtriphosphat-Spaltung durch die Vesikel des sarkoplasmatischen Reticulum, Biochem. Z. 343:383.PubMedGoogle Scholar
  103. Marsh, B. B., 1951, A factor modifying muscle fibre synaeresis, Nature 167:1065.PubMedCrossRefGoogle Scholar
  104. Martonosi, A., 1963, The activating effect of phospholipids on the ATP-ase activity and Ca++ transport of fragmented sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 13:273.CrossRefGoogle Scholar
  105. Martonosi, A., 1967, The role of phospholipids in the ATP-ase activity of skeletal muscle microsomes, Biochem. Biophys. Res. Commun. 29:753.PubMedCrossRefGoogle Scholar
  106. Martonosi, A., 1968, Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase, J. Biol. Chem. 243:71.PubMedGoogle Scholar
  107. Martonosi, A., 1969a, The protein composition of sarcoplasmic reticulum membranes, Biochem. Biopkys. Res. Commun. 36:1039.CrossRefGoogle Scholar
  108. Martonosi, A., 1969b, Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport, J. Biol. Chem. 244:613.PubMedGoogle Scholar
  109. Martonosi, A., 1972, Biochemical and clinical aspects of sarcoplasmic reticulum function, Curr. Top. Membr. Transp. 3:83.CrossRefGoogle Scholar
  110. Martonosi, A., and Feretos, R., 1964, Sarcoplasmic reticulum, I. The uptake of Ca++ by sarcoplasmicoplasmic reticulum fragments, J. Biol. Chem. 239:648.PubMedGoogle Scholar
  111. Martonosi, A., and Fortier, F., 1974, The effect of anti-ATPase antibodies upon the Ca++ transport of sarcoplasmic reticulum, Biochem. Biopkys. Res. Commun. 60:382.CrossRefGoogle Scholar
  112. Martonosi, A., and Halpin, R. A., 1971, Sarcoplasmic recticulum. X. The protein composition of sarcoplasmic reticulum membranes, Arch. Biochem. Biophys. 144:66.PubMedCrossRefGoogle Scholar
  113. Martonosi, A., Donley, J., and Halpin, R. A., 1968, Sarcoplasmic reticulum. III. The role of phospholipids in the adenosine triphosphatase activity and Ca++ transport, J. Biol. Chem. 243:61.PubMedGoogle Scholar
  114. Martonosi, A., Donley, J. R., Pucell, A. G., and Halpin, R. A., 1971, Sarcoplasmic reticulum XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes, Arch. Biochem. Biopkys. 144:529.CrossRefGoogle Scholar
  115. Martonosi, A., Lagwinska, E., and Oliver, M., 1974, Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes, Ann. N.Y. Acad. Sci. 227:549.PubMedCrossRefGoogle Scholar
  116. Masoro, E. J., and Yu, B. P., 1969, Characterization of sarcotubular membrane protein, Biochem. Biophys. Res. Commun. 34:686.PubMedCrossRefGoogle Scholar
  117. Masuda, H., and de Meis, L., 1973, Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions, Biochemistry 12:4581.PubMedCrossRefGoogle Scholar
  118. McConnell, H. M., Wright, K. L., and McFarland, B. G., 1972, The fraction of the lipid in a Biological membrane that is in a fluid state: A spin label assay, Biochem. Biophys. Res. Commun. 47:273.PubMedCrossRefGoogle Scholar
  119. McFarland, B. H., and Inesi, G., 1971, Solubilization of sarcoplasmic reticulum with Triton X-100, Arch. Biochem. Biophys. 145:456.PubMedCrossRefGoogle Scholar
  120. Meissner, G., 1973, ATP and Ga2+ binding by the Ga2+ pump protein of sarcoplasmic reticulum, Biochim. Biophys. Acta 298:906.PubMedCrossRefGoogle Scholar
  121. Meissner, G., 1975, Isolation and characterization of two types of sarcoplasmic reticulum vesicles, Biochim. Biophys. Acta, 389:51.PubMedCrossRefGoogle Scholar
  122. Meissner, G., and Fleischer, S., 1972, The role of phospholipid in Ca2 +-stimulated ATPase activity of sarcoplasmic reticulum, Biochim. Biophys. Acta 255:19.PubMedCrossRefGoogle Scholar
  123. Meissner, G., and Fleischer, S., 1973, Ga2+ uptake in reconstituted sarcoplasmic reticulum vesicles, Biochem. Biophys. Res. Commun. 52:913.PubMedCrossRefGoogle Scholar
  124. Meissner, G., and Fleischer, S., 1974, Dissociation and reconstitution of functional sarcoplasmic reticulum vesicles, J. Biol. Chem. 249:302.PubMedGoogle Scholar
  125. Meissner, G., Conner, G., and Fleischer, S., 1973, Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+-pump and Ca2 +-binding proteins, Biochem. Biophys. Acta 298:246.PubMedCrossRefGoogle Scholar
  126. Meyer, F., Heilmeyer, L. M. G., Jr., Haschke, R. H., and Fischer, E. H., 1970, Control of Phosphorylase activity in a muscle glycogen particle. I. Isolation and characterization of the protein glycogen complex, J. Biol. Chem. 245:6642.PubMedGoogle Scholar
  127. Migala, A., Agostini, B., and Hasselbach, W., 1973, Tryptic fragmentation of the calcium transport system in the sarcoplasmic reticulum, Z. Naturforsh. 28:178.Google Scholar
  128. Mommaerts, W. F. H. M., 1967, Conformational studies on the membrane protein of sarcotubular vesicles, Proc. Natl. Acad. Sci. U.S.A. 58:2476.PubMedCrossRefGoogle Scholar
  129. Nagai, T., Makinose, M., and Hasselbach, W., 1960, Der physiologische Erschlaffungsfaktor und die Muskelgrana, Biochim. Biophys. Acta 43:223.PubMedCrossRefGoogle Scholar
  130. Nakamaru, Y., and Schwartz, A., 1973, Spectrophotometric studies on the interaction of sarcoplasmic-reticulum fragments with adenosine triphosphate and calcium, Eur. J. Biochem. 34:159.PubMedCrossRefGoogle Scholar
  131. Nakamura, H., Hori, H., and Mitsui, T., 1972, Conformational change in sarcoplasmic reticulum induced by ATP in the presence of magnesium ion and calcium ion, J. Biochem, 72:635.PubMedGoogle Scholar
  132. Narasimhan, R., Murray, R. K., and MacLennan, D. H., 1974, Presence of glycosphingolipids in the sarcoplasmic reticulum fraction of rabbit skeletal muscle, FEBS Lett. 43:23.PubMedCrossRefGoogle Scholar
  133. Ohnishi, T., and Ebashi, S., 1963, Spectrophotometrical measurement of instantaneous calcium binding of the relaxing factor of muscle, J. Biochem. 54:506.PubMedGoogle Scholar
  134. Ostwald, T. J., and MacLennan, D. H., 1974, Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum, J. Biol. Chem. 249:974.PubMedGoogle Scholar
  135. Ostwald, T. J., MacLennan, D. H., and Dorrington, K. H., 1974, Effects of cation binding on the conformation of calsequestrin and the high affinity calcium-binding protein of sarcoplasmic reticulum, J. Biol. Chem. 249:5867.PubMedGoogle Scholar
  136. Owens, K., Ruth, R. G., and Weglicki, W. B., 1972, Lipid composition of purified fragmented sarcoplasmic reticulum of the rabbit, Biochim. Biophys. Acta 288:479.PubMedCrossRefGoogle Scholar
  137. Packer, L., Mehard, G. W., Meissner, G., Zahler, W. L., and Fleischer, S., 1974, The structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes. Freeze-fracture electron microscopy studies, Biochim. Biophys. Acta 363:159.PubMedCrossRefGoogle Scholar
  138. Panet, R., and Selinger, Z., 1970, Specific alkylation of the sarcoplasmic reticulum ATPase by N-ethyl-[l-14C]maleimide and identification of the labeled protein in acrylamide gel-electro-phoresis, Eur. J. Biochem. 14:440.PubMedCrossRefGoogle Scholar
  139. Panet, R., and Selinger, Z., 1972, Synthesis of ATP coupled to Ca2+ release from sarcoplasmic Reticulum vesicles, Biochim. Biophys. Acta 255:34.PubMedCrossRefGoogle Scholar
  140. Pang, D. C., Briggs, F. N., and Rogowski, R. S., 1974, Analysis of the ATP-induced conformational changes in sarcoplasmic reticulum, Arch. Biochem. Biophys. 164:332.PubMedCrossRefGoogle Scholar
  141. Perry, S. V., and Grey, T. C., 1956, Ethylenediamine tetra-acetate and the adenosinetriphosphatase activity of actomyosin systems. Biochem. J. 64:5P.Google Scholar
  142. Porter, K. R., and Palade, G. E., 1957, Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells, J. Biophys. Biochem. Cytol. 3:269.PubMedCrossRefGoogle Scholar
  143. Portzehl, H., 1957, Die Binding des Erschlaffungsfaktors von Marsh an die Muskelgrana, Biochim. Biophys. Acta 26:373.PubMedCrossRefGoogle Scholar
  144. Pringle, J. R., 1970, The molecular weight of the undegraded polypeptide chain of yeast hexokinase, Biochem. Biophys. Res. Commun. 39:46.PubMedCrossRefGoogle Scholar
  145. Pucell, A., and Martonosi, A., 1971, Sarcoplasmic reticulum. XIV. Acetylphosphate and car-bamylphosphate as energy sources for Ca++ transport, J. Biol. Chem. 246:3389.PubMedGoogle Scholar
  146. Pucell, A. G., and Martonosi, A., 1972, Sarcoplasmic reticulum. XV. Dissociation of the membrane ATPase enzyme of sarcoplasmic reticulum into sub-units by ultrasonic treatment, Arch. Biochem. Biophys. 151:558.PubMedCrossRefGoogle Scholar
  147. Racker, E., 1972, Reconstitution of a calcium pump with phospholipids and a purified Ca++-adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 247:8198.PubMedGoogle Scholar
  148. Racker, E., and Eytan, E., 1973, Reconstitution of an efficient calcium pump without detergents, Biochem. Biophys. Res. Commun. 55:174.PubMedCrossRefGoogle Scholar
  149. Ridgway, E. B., and Ashley, G. G., 1967, Calcium transients in single muscle fibers, Biochem. Biophys. Res. Commun. 29:229.PubMedCrossRefGoogle Scholar
  150. Sandow, A., 1952, Excitation-contraction coupling in muscular response, Yale J. Biol. Med. 25:176.PubMedGoogle Scholar
  151. Sandow, A., 1970, Skeletal muscle, Ann. Rev. Physiol. 32:87.CrossRefGoogle Scholar
  152. Sarzala, M. G., Zubrzycka, E., and Drabikowski, W., 1974, Characterization of the constituents of sarcoplasmic reticulum membrane, in: Calcium Binding Proteins (W. Drabikowski, H. Strze-lecka-Golaszewska, and E. Carafoli, eds.), pp. 317–346, Elsevier, Amsterdam.Google Scholar
  153. Scandella, C. J., Devaux, P., and McConnell, H. M., 1972, Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 69:2056.PubMedCrossRefGoogle Scholar
  154. Scarpa, A., and Inesi, G., 1972, Ionophore mediated equilibration of calcium ion gradients in fragmented sarcoplasmic reticulum, FEBS Lett. 22:273.PubMedCrossRefGoogle Scholar
  155. Scarpa, A., Baldassare, J., and Inesi, G., 9172, The effect of calcium ionophores on fragmented sarcoplasmic reticulum, J. Gen. Physiol. 60:735.CrossRefGoogle Scholar
  156. Seelig, J., and Hasselbach, W., 1971, A spin label study of sarcoplasmic vesicles, Eur. J. Biochem. 21:17.PubMedCrossRefGoogle Scholar
  157. Shamoo, A. E., and Albers, R. W., 1973, Na +-selective ionophoric material derived from electric organ and kidney membranes, Proc. Natl. Acad. Sci. U.S.A. 70:1191.PubMedCrossRefGoogle Scholar
  158. Shamoo, A. E., and MagLennan, D. H., 1974, A Ga++-dependent and-selective ionophore as part of the Ca+++Mg++-dependent adenosinetriphosphatase of sarcoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A. 71:3522.PubMedCrossRefGoogle Scholar
  159. Shimada, Y., Fischman, D. A., and Moscona, A. A., 1967, The fine structure of embryonic chick skeletal muscle cells differentiated in vitro, J. Cell Biol. 35:445.PubMedCrossRefGoogle Scholar
  160. Stewart, P. S., and MagLennan, D. H., 1974, Surface particles of sarcoplasmic reticulum membranes. Structural features of the adenosine triphosphatase, J. Biol. Chem. 249:985.PubMedGoogle Scholar
  161. Szarkowska, L., 1966, The restoration of DPNH oxidase activity by coenzyme Q (ubiquinone), Arch. Biochem. Biophys. 113:519.PubMedCrossRefGoogle Scholar
  162. Szent-Gyorgyi, A., 1947, Chemistry of Muscular Contraction, Academic Press, New York.Google Scholar
  163. Tada, M., Kirchberger, M. A., and Katz, A. M., 1975, Phosphorylation of a 22,000 dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′-5′-monophosphate-dependent protein kinase, J. Biol. Chem., 250:2640.PubMedGoogle Scholar
  164. The, R., and Hasselbach, W., 1972, Properties of the sarcoplasmic ATPase reconstituted by oleate and lysolecithin after lipid depletion, Eur. J. Biochem. 28:357.PubMedCrossRefGoogle Scholar
  165. Thorley-Lawson, D. A., and Green, N. M., 1973, Studies on the location and orientation of proteins in the sarcoplasmic reticulum, Eur. J. Biochem. 40:403.PubMedCrossRefGoogle Scholar
  166. Tonomura, Y., and Morales, M. F., 1974, Change in state of spin labels bound to sarcoplasmic reticulum with change in enzymic state, as deduced from ascorbate-quenching studies, Proc. Natl. Acad. Sci. U.S.A. 71:3687.PubMedCrossRefGoogle Scholar
  167. Ulbrecht, M., 1962, Der Austausch und die Abspaltung des y-Phosphates des Adenosin-Triphos-phates durch Sarkosomen und kleine Grana des Kaninchen-Muskels. Biochem. Biophys. Acta 57:455.PubMedCrossRefGoogle Scholar
  168. Vanderkooi, J. M., and Martonosi, A., 1971a, Sarcoplasmic reticulum. XIII. Changes in the fluorescence of 8-anilino-l-naphthalene sulfonate during Ca2+ transport, Arch. Biochem. Biophys. 144:99.CrossRefGoogle Scholar
  169. Vanderkooi, J. M., and Martonosi, A., 1971b, Sarcoplasmic reticulum. XII. The interaction of 8-anilino-l-naphthalene sulfonate with skeletal muscle microsomes, Arch. Biochem. Biophys. 144:87.PubMedCrossRefGoogle Scholar
  170. Walsh, D. A., Perkins, J. P., and Krebs, E. G., 1968, An adenosine 3′,5′-monophosphate-dependent protein kinase from rabbit skeletal muscle, J. Biol. Chem. 243:3763.PubMedGoogle Scholar
  171. Wanson, J.-C., and Droghmans, P., 1972, Role of the sarcoplasmic reticulum in glycogen metabolism; binding of Phosphorylase, Phosphorylase kinase, and primer complexes to the sarcovesicles of rabbit skeletal muscle, J. Cell Biol. 54:206.PubMedCrossRefGoogle Scholar
  172. Warren, G. B., Toon, P. A., Birdsall, N.J. M., Lee, A. G., and Metcalfe, J. G., 1974, Reconstitution of a calcium pump using defined membrane components, Proc. Natl. Acad. Sci. U.S.A. 71:622.PubMedCrossRefGoogle Scholar
  173. Watanabe, S., 1955, Relaxing effects of EDTA on glycerol-treated muscle fibers, Arch. Biochem. Biophys. 54:559.PubMedCrossRefGoogle Scholar
  174. Weber, A., 1959, On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomysin, J. Biol. Chem. 234:2764.PubMedGoogle Scholar
  175. Weber, A., 1966, Energized calcium transport and relaxing factors, Curr. Top. Bioenerg. 1:203.Google Scholar
  176. Weber, A., 1971, Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis, J. Gen. Physiol. 57:50.PubMedCrossRefGoogle Scholar
  177. Weber, A., and Herz, R., 1963, The binding of calcium to actomyosin systems in relation to their biological activity, J. Biol. Chem. 238:599.PubMedGoogle Scholar
  178. Weber, A., and Winicur, S., 1961, The role of calcium in the superprecipitation of actomyosin, J. Biol. Chem. 236:3198.PubMedGoogle Scholar
  179. Weber, A., Herz, R., and Reiss, I., 1966, Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum, Biochem. Z. 345:329.Google Scholar
  180. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406.PubMedGoogle Scholar
  181. Wilcox, W. D., and Fuchs, F., 1969, The effect of some local anesthetic compounds on sarcotubular calcium transport, Biochim. Biophys. Acta 180:210.PubMedCrossRefGoogle Scholar
  182. Winegrad, S., 1968, Intracellular calcium movements of frog skeletal muscle during recovery from tetanus, J. Gen. Physiol. 51:65.PubMedCrossRefGoogle Scholar
  183. Worthington, G. R., and Liu, S. C., 1973, Structure of sarcoplasmic reticulum membranes at low resolution (17 Å), Arch. Biochem. Biophys. 157:573.PubMedCrossRefGoogle Scholar
  184. Yaffe, D., 1969, Cellular aspects of muscle differentation in vitro, Curr. Top. Dev. Biol. 4:37.PubMedCrossRefGoogle Scholar
  185. Yaffe, D., and Dym, H., 1972, Gene expression during differentiation of contractile muscle fibers, Cold Spring Harbor Symp. Quant. Biol. 37:543.CrossRefGoogle Scholar
  186. Yamada, S., and Tonomura, Y., 1972, Reaction mechanism of the Ca2 +-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VII. Recognition and release of Ga2+ ions, J. Biochem. 72:417.PubMedGoogle Scholar
  187. Yamada, S., Yamamoto, T., and Tonomura, Y., 1970, Reaction mechanism of the Ca2 +-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. III. Ca2 +-uptake and ATP-splitting J. Biochem. 67:137.Google Scholar
  188. Yamada, S., Yamamoto, T., Kanazawa, T., and Tonomura, Y., 1971, Reaction mechanism of the Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VI. Co-operative transition of ATPase activity during the initial phase, J. Biochem. 70:279.PubMedGoogle Scholar
  189. Yamamoto, T., 1972, The Ca2+-Mg2 +-dependent ATPase and the uptake of Ca2+ by the fragmented sarcoplasmic reticulum, in: Muscle Proteins, Muscle Contraction and Cation Transport (Y. Tonomura, ed.), pp. 305–356, University of Tokyo Press, Tokyo.Google Scholar
  190. Yamamoto, T., and Tonomura, Y., 1967, Reaction mechanism of the Ca++-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies, J. Biochem. 62:558.PubMedGoogle Scholar
  191. Yamamoto, T., and Tonomura, Y., 1968, Reaction mechanism of the Ca++-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein, J. Biochem. 64:789.Google Scholar
  192. Yamamoto, T., Yoda, A., and Tonomura, Y., 1971, Reaction mechanism of the Ca2 +-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. IV. Hydroxomate formation from a phosphorylated intermediate and 2-hydroxy-5-nitrobenzyl hydroxylamine, J. Biochem. 69:807.PubMedGoogle Scholar
  193. Yu, B. P., DeMartinis, F. D., and Masoro, E. J., 1968a, Isolation of Ca++-sequestering sarcotubular membranes from rat skeletal muscle, Annal. Biochem. 24:523.CrossRefGoogle Scholar
  194. Yu, B. P., DeMartinis, F. D., and Masoro, E. J., 1968b, Relation of lipid structure of sarcotubular vesicles to Ca++ transport activity, J. Lipid Res. 9:492.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • David H. MacLennan
    • 1
  • Paul C. Holland
    • 1
  1. 1.Banting and Best Department of Medical Research Charles H. Best InstituteUniversity of TorontoTorontoCanada

Personalised recommendations