Advertisement

Binding Proteins and Membrane Transport

  • Ernesto Carafoli
  • Martin Crompton

Abstract

Solutes can cross biological membranes by passive diffusion or by interacting with particular membrane components (carriers) that facilitate their translocation. The simplest concept of carrier-mediated diffusion proposes that the solute binds to a receptor site on the carrier molecule and then undergoes translocation to the other side of the membrane. These processes have been recognized by a number of indirect parameters: (1) saturation kinetics of the transport process, (2) competitive inhibition by species closely related to the one normally transported, (3) availability of specific inhibitors which are active at very low concentrations, (4) demonstration of strict exchange diffusion, and (5) the presence of the transport process in some tissues or species, but not others, a result of genetic determination.

Keywords

Membrane Transport Adenine Nucleotide Osmotic Shock Adenine Nucleotide Translocation Phosphotransferase System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ames, G. F. L., and Lever, J., 1970, Components of histidine transport: Histidine binding proteins and his P-protein, Proc. Natl. Acad. Sci. U.S.A. 66:1096.PubMedGoogle Scholar
  2. Anraku, Y., 1967, The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli, J. Biol. Chem. 242:793.PubMedGoogle Scholar
  3. Anraku, Y., 1968a, Transport of sugars and amino acids in bacteria. I. Purification and specificity of the galactose and leucine binding proteins, J. Biol. Chem. 243:3116.PubMedGoogle Scholar
  4. Anraku, Y., 1968b, Transport of sugars and amino acids in bacteria, II. Properties of galactose and leucine binding proteins, J. Biol. Chem. 243:3123.PubMedGoogle Scholar
  5. Anraku, Y., 1968c, Transport of sugars and amino acids in bacteria. III. Studies on the restoration of active transport, J. Biol. Chem. 243:3128.PubMedGoogle Scholar
  6. Anraku, Y., 1971, Studies on amino acid binding proteins of Escherichia coli, J. Biochem. 69:243.PubMedGoogle Scholar
  7. Avissar, N., de Vries, A., Ben-Shaul, Y., and Cohen I., 1975, Activated ATPase from human erythrocytes, Biochim. Biophys. Acta 375:35.PubMedGoogle Scholar
  8. Bar, A., and Hurwitz, S., 1973, Uterine calcium-binding protein in the laying fowl, Comp. Biochem. Physiol. 45A:579.Google Scholar
  9. Berger, E. A., Weiner, J. H., and Heppel, L. A., 1971, Amino acid transport and binding proteins in E. Coli, Fed. Proc. 30:1061.Google Scholar
  10. Blum, R. M., and Hoffman, J. F., 1971, The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells, J. Membr. Biol. 6:315.Google Scholar
  11. Blum, R. M., and Hoffman, J. F., 1972, Ca-induced K transport in human red cells. Localization of the Ca-sensitive site to the inside of the membrane, Biochem. Biophys. Res. Commun. 46:1146.PubMedGoogle Scholar
  12. Boos, W., 1969, The galactose binding protein and its relationship to the β-methylgalactose permease from Escherichia coli, Eur. J. Biochem. 10:66.PubMedGoogle Scholar
  13. Boos, W., 1972, Structurally defective galactose-binding protein isolated from a mutant negative in the β-methylgalactoside transport systems of Escherichia coli, J. Biol. Chem. 247:5414.PubMedGoogle Scholar
  14. Boos, W., 1974, Bacterial transport, Annu. Rev. Biochem. 34:123.Google Scholar
  15. Boos, W., and Sarvas, M. O., 1970, Close linkage between a galactose binding protein and the α-methylactoside permease in Escherichia coli, Eur. J. Biochem. 13:526.PubMedGoogle Scholar
  16. Boos, W., Gordon, A. S., Hall, R. E., and Price, H. D., 1972, Transport properties of the galactose-binding protein of Escherichia coli, J. Biol. Chem. 247:917.PubMedGoogle Scholar
  17. Bradford, N. M., and McGivan, J. D., 1973, Quantitative characteristics of glutamate transport in rat liver mitochondria, Biochem. J. 134:1023.PubMedGoogle Scholar
  18. Brandolin, G., Meyer, C., DeFaye, G., Vignais, P. M., and Vignais, P. V., 1974, Partial purification of an atractylamide-binding protein from mitochondria, FEBS Lett. 46:149.PubMedGoogle Scholar
  19. Burger S. P., Fujii, T., and Hanahan, D. J., 1968, Stability of the bovine erythrocyte membrane. Release of enzymes and lipid components, Biochemistry 7:3682.PubMedGoogle Scholar
  20. Carafoli, E., 1965, Active accumulation of Sr2+ by rat-liver mitochondria. Competition between Ca2+ and Sr2 +, Biochim. Biophys. Acta 97:99.PubMedGoogle Scholar
  21. Carafoli, E., 1975, The interaction of Ca2+ with mitochondria, with special reference to the structural role of Ca2+ in mitochondrial and other membranes, Mol. Cell. Biochem., 8:133.PubMedGoogle Scholar
  22. Carafoli, E., and Lehninger, A. L., 1971, A survey of the interactions of calcium with mitochondria from different tissues and species, Biochem. J. 122:681.PubMedGoogle Scholar
  23. Carafoli, E., and Rossi, C. S., 1971, Calcium transport in mitochondria, Adv. Cytopharmacol. 1:209.PubMedGoogle Scholar
  24. Carafoli, E., and Sottocasa, G. L., 1974, The Ca2+ transport system of the mitochondrial membrane and the problem of the Ca2+ carrier, in: Dynamics of Energy-Transducing Membranes (L. Ernster, R. W., Estabrook, and E. C. Slater, eds.), p. 455, Elsevier, Amsterdam.Google Scholar
  25. Carafoli, E., Balgavage, W. X., Lehninger, A. L., and Mattoon, J. R., 1970, Ca2+ metabolism in yeast cells and mitochondria, Biochim. Biophys. Acta 205:18.PubMedGoogle Scholar
  26. Carafoli, E., Hansford, R., Sacktor, B., and Lehninger, A. L., 1971, Interaction of Ca2+ with blowfly flight muscle mitochondria, J. Biol. Chem. 246:964.PubMedGoogle Scholar
  27. Carafoli, E., Gazzotti, P., Vasington, F. D., Sottocasa, G. L., Sandria, G., Panfili, E., and de Bernard, B., 1972, Soluble Ca2 +-binding factors isolated from mitochondria in: Biochemistry and Biophysics of Mitochondrial Membranes (G. F. Azzone, E. Carafoli, A. L. Lehninger, E. Quagliariello, and N. Siliprandi, eds.), p. 623, Academic Press, New York.Google Scholar
  28. Carter, J. R., Fox, C. F., and Kennedy, E. P., 1968, Interaction of sugars with the membrane protein component of the Lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 60:725.PubMedGoogle Scholar
  29. Chappell, J. B., 1968, Systems used for the transport of substrate into mitochondria, Br. Med. Bull. 24:150.PubMedGoogle Scholar
  30. Chappell, J. B., 1969, Transport and exchange of anions in mitochondria in: Inhibitors-Tools in Cell Research (Th. Bucher and H. Sies, eds.), pp. 335–350, Springer-Verlag, Berlin.Google Scholar
  31. Chappell, J. B., and Crofts, A. R., 1966, Ion transport and reversible volume changes of isolated mitochondria in: Regulation of Metabolic Processes in Mitochondria (J. M. Tager, S. Papa, E. Quagliariello, and E. C. Slater, eds.), pp. 294–315, Elsevier, Amsterdam.Google Scholar
  32. Chappell, J. B., and Haarhoff, K., 1967, The penetration of the mitochondrial membrane by anions and cations in: Biochemistry of Mitochondria (E. C. Slater, Z. Kaniuga, and I. Wojtczak, eds.), pp. 75–91, Academic Press, London and New York.Google Scholar
  33. Chappell, J. B., and Robinson, B. H., 1968, Penetration of the mitochondrial membrane by tricarboxylic acid anions in: Metabolic Roles of Citrate (T. W. Goodwin, ed.), Academic Press, London and New York.Google Scholar
  34. Cogoli, A., Mosimann, H., Vogk, C., Balthazar, A., and Semenza, G., 1972, A simplified procedure for the isolation of the sucrase-isomaltase complex from rabbit intestine, Eur. J. Biochem. 30:7.PubMedGoogle Scholar
  35. Cogoli, A., Eberle, A., Sigrist, H., Joss, C., Robinson, E., Mosimann, H., and Semenza, G., 1973, Subunits of the small intestine sucrase-isomaltase complex and separation of its enzymatically active isomaltase moiety, Eur. J. Biochem. 33:40.PubMedGoogle Scholar
  36. Corradino, R. A., and Wasserman, R. H., 1968, Actinomycin D inhibition of vitamin D-induced binding protein (CaBP) formation in chick duodenal mucosa, Arch. Biochem. Biophys. 126:957.PubMedGoogle Scholar
  37. Corradino, R. A., and Wasserman, R. H., 1970, Strontium inhibition of vitamin D3-induced calcium-binding protein (CaBP) and calcium absorption in chick intestine, Proc. Soc. Exp. Biol. Med. 133:960.PubMedGoogle Scholar
  38. Corradino, R. A., and Wasserman, R. H., 1971, Vitamin D3: Induction of calcium-binding protein in embryonic chick intestine in vitro, Science 172:731.PubMedGoogle Scholar
  39. Corradino, R. A., Wasserman, R. H., Puboli, M. H., and Chang, S. I., 1968, Vitamin D3 induction of a calcium binding protein in the uterus of the laying hen, Arch. Biochem. Biophys. 123:378.Google Scholar
  40. Coty, W. A., and Pederson, P. K., 1974, Phosphate transport in rat liver mitochondria, J. Biol. Chem. 249:2593.PubMedGoogle Scholar
  41. Crompton, M., and Chapell, J. B., 1973, Transport of glutamine and glutamate in kidney mitochondria in relation to glutamine deamidation, Biochem. J. 132:35.PubMedGoogle Scholar
  42. Crompton, M., Palmieri, F., Capano, M., and Quagliariello, E., 1974a, The transport of sulphate and sulphate in rat liver mitochondria, Biochem. J. 142:127.PubMedGoogle Scholar
  43. Crompton, M., Palmieri, F., Capano, M., and Quagliariello, E., 1974b, The transport of thio-sulphate in rat liver mitochondria, FEBS Lett. 46:247.PubMedGoogle Scholar
  44. Drescher, D., and DeLuca, 1971, Possible precursor of vitamin D stimulated calcium binding protein in rats, Biochemistry 10:2308.PubMedGoogle Scholar
  45. Duggan, P. F., and Martonosi, A., 1970, Sarcoplasmic reticulum, IX. The permeability of sarcor plasmic reticulum membranes, J. Gen. Physiol. 56:147.PubMedGoogle Scholar
  46. Dunham, E. T., and Glynn, I. M., 1961, Adenosinetriphosphatase activity and the active movements of alkali metal ions, J. Physiol. (London) 156:274.Google Scholar
  47. Ebel, J. G., Taylor, A. N., and Wasserman, R. H., 1969, The vitamin D induced calcium binding protein of intestinal mucosa. Relation to vitamin D dose level and the lag period, Am. J. Clin. Nutr. 22:431.PubMedGoogle Scholar
  48. Egan, R. W., and Lehninger, A. L., 1974, Solubilization of atractyloside sensitive ADP (ATP) binding activity of rat liver mitochondria, Biochem. Biophys. Res. Commun. 54:195.Google Scholar
  49. Evtodienko, Y. V., Peshkova, L. V., and Shchipakin, V. N., 1971, Possible mechanism of calcium, hydrogen and phosphate ion transport through mitochondrial membrane Ukrain. J. Biochem. 43:98.Google Scholar
  50. Fonyo, A., and Bessman, S. P., 1968, Inhibition of inorganic phosphate penetration into liver mitochondria by P Mnercuri benzoate, Biochem. Med. 2:145.Google Scholar
  51. Foucher, B., and Gaudemer, Y., 1971, Implication of SH groups in the mitochondrial energy-coupling system revealed by measurements of 14C-ethacrynate incorporation into rat liver mitochondria, FEBS Lett. 13:95.PubMedGoogle Scholar
  52. Fournier, R. E., and Pardee, A. B., 1974, Evidence for inducible L-malate binding proteins in the membrane of Bacillus subtilis, J. Biol. Chem. 249:5948.PubMedGoogle Scholar
  53. Fox, C. F., and Kennedy, E. P., 1965, Specific labelling and partial purification of the M protein, a component of the galactoside transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 54:891.PubMedGoogle Scholar
  54. Fox, C. F., Carter, J. R., and Kennedy, E. P., 1967, Genetic control of the membrane protein component of the lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 57:698.PubMedGoogle Scholar
  55. Fullmer, C. S., and Wasserman R. H., 1973, Bovine intestinal calcium-binding proteins. Purification and some properties, Biochim. Biophys. Acta 317:172.PubMedGoogle Scholar
  56. Furlong, C. E., and Weiner, J. H., 1970, Purification of a leucine-specific binding protein from E. coli, Biochem. Biophys. Res. Commun. 38:1076.PubMedGoogle Scholar
  57. Gamble, J. G., and Lehninger, A. L., 1973, Transport of ornithine and citrate across the mitochondrial membrane, J. Biol. Chem. 248:610.PubMedGoogle Scholar
  58. Gardos, G., and Szasz, I., 1968, The mechanism of ion transport in human erythrocytes, Acta Biochim. Biophys. Acad. Sci. Hung. 3:13.Google Scholar
  59. Gilbert, I. G. F., 1972, Effect of divalent cations on the ionic permeability of cell membranes in normal and tumour tissue, Eur. J. Cancer 8:99.PubMedGoogle Scholar
  60. Gitler, C., and Montal, M., 1971, Formation of decane-soluble proteolipids: influence of monovalent and divalent cations, FEBS Letters 28:329.Google Scholar
  61. Gomez-Puyou, A., Gomez-Puyou, M., Becker, G., and Lehninger, A., 1972, An insoluble Ca2 + binding factor from rat liver mitochondria, Biochem. Biophys. Res. Commun. 47:814.PubMedGoogle Scholar
  62. Hadvary, P., and Kadenbagh, B., 1973, Isolation and characterization of chloroform-soluble proteins from rat liver mitochondria and other fractions, Eur. J. Biochem. 39:11.PubMedGoogle Scholar
  63. Halestrap, A. P., and Denton, R. M., 1974, Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by cyano-4-hydroxycinamate, Biochem. J. 138:313.PubMedGoogle Scholar
  64. Hansford, R. G., 1971, Some properties of mitochondria from the flight muscle of the periodical cicada, Magicicada septendecin, Biochem. J. 121:771.Google Scholar
  65. Hatase, O., and Oda, T., 1974, Phosphate transport and identification of a binding protein of phosphate in mitochondria, in: Organisation of Energy-Transducing Membranes (K. Nakao and L. Packer, eds.), pp. 355–367, University Park Press, Baltimore.Google Scholar
  66. Hays, J. B., Simoni, R. D., and Roseman, S., 1973, Sugar transport V, A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system, J. Biol. Chem. 248:941.PubMedGoogle Scholar
  67. Heldt, H. W., Jacobs, H., and Klingenberg, M., 1965, Endogenous ADP of mitochondria, an early phosphate acceptor of oxidative phosphorylation as disclosed by kinetic studies with C14 labelled ADP and ATP and with atractyloside, Biochem. Biophys. Res. Commun. 18:174.PubMedGoogle Scholar
  68. Henderson, P. J. F., and Lardy, H. A., 1970, Bongkrekic acid. An inhibitor of the adenine nucleotide translocase in mitochondria, J. Biol. Chem. 245:1319.PubMedGoogle Scholar
  69. Heppel, L. A., 1967, Selective release of enzymes from bacteria, Science 156:1451.PubMedGoogle Scholar
  70. Heppel, L. A., 1971, The concept of periplasmic enzymes, in:Structure and Function of Biological Membranes (L. J. Rothfield, ed.), pp. 223–247, Academic Press, New York.Google Scholar
  71. Hoffman, J. F., 1962, Cation transport and structure of red cell plasma membrane, Circulation 26:1201.Google Scholar
  72. Hogg, R. W., and Englesberg, E., 1969, Arabinose binding protein in Escherichia coli, J. Bacteriol. 100:423.PubMedGoogle Scholar
  73. Ingersoll, R. J., and Wasserman, R. H., 1971, Vitamin D3-induced calcium-binding protein, binding characteristics, conformational effects, and other properties, J. Biol. Chem. 246:2808.PubMedGoogle Scholar
  74. Jacobus, W. E., Tiozzo, R., Lugli, G., Lehninger, A. L., and Carafoli, E., 1975, Aspects of energy-linked calcium accumulation by rat heart mitochondria, J. Biol. Chem. 250:7863.PubMedGoogle Scholar
  75. Jones, T. H. D., and Kennedy, E. P., 1969, Characterisation of the membrane protein component of the lactose transport system of Escherichia coli, J. Biol. Chem. 244:5981.PubMedGoogle Scholar
  76. Juillard, J. H., and Gautheron, D. G., 1973, High glutamate affinity proteolipid from pig heart mitochondria, FEBS Lett. 37:10.Google Scholar
  77. Kabagk, H. R., 1970, Transport, Annu. Rev. Biochem. 34:561.Google Scholar
  78. Kaback, H. R., 1971, The transport of sugars across isolated bacterial membranes in: Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.), Vol. 35, Academic Press, New York and London.Google Scholar
  79. Kadenbagh, B., and Hadvary, P., 1973, Specific binding of phosphate by a chloroform soluble protein from rat liver mitochondria, Eur. J. Biochem. 39:21.Google Scholar
  80. Kellermann, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coli K12. Involvement of a “periplasmic” maltose binding protein, Eur. J. Biochem. 47:139.PubMedGoogle Scholar
  81. Kepes, A., 1960, Etudes cinétiques sur la galactoside-perméase d’ Escherichia coli, Biochim. Biophys. Actal 40.70.Google Scholar
  82. Kepes, A., 1970, Galactoside permease of Escherichia coli, in:Current Topics in Membranes and Transport (F. Bronner and A. Kleinzellar, eds.), Vol. 1, pp. 107–134, Academic Press, New York and London.Google Scholar
  83. Kimberg, D. V., Baerg, R. D., Gershon, F., and Grandusins, R. T., 1971, Effect by cortisome treatment on the active transport of calcium by the small intestine, J. Clin. Invest. 50:1309.PubMedGoogle Scholar
  84. Kimura, T., Chu, J. W., Mukai, R., Ishizuka, I., and Yamakawa, I., 1972, Some properties of a glycoprotein isolated from adrenal cortex mitochondria, Biochem, Biophys. Res. Commun. 49: 1678.Google Scholar
  85. Klingenberg, M., 1970, in: Essays in Biochemistry (P. N. Campbell, ed., Vol. 6, pp. 119–159, Academic Press, London and New York.Google Scholar
  86. Klingenberg, M., 1974, The mechanism of the mitochondrial ADP, ATP carrier as studied by the kinetics of ligand binding, in: Dynamics of Energy-Transducing Membranes (L. Ernster, R. W. Estabrook, E. C. Slater, eds.), pp. 511–528, Elsevier, Amsterdam.Google Scholar
  87. Klingenberg, M., and Pfaff, E., 1965, Structural and functional compartmentation in mitochondria in regulation of metabolic processes in mitochondria, in: Regulation of Metabolic Processes in Mitochondria (J. M. Tager, S. Papa, E. Quagliariello, and E. C. Slater eds.), pp. 180–197, Elsevier, Amsterdam.Google Scholar
  88. Klingenberg, M., Grebe, K., and Heldt, H. W., 1970, On the inhibition of the adenine nucleotide translocation by bongkrekic acid, Biochem. Biophys. Res. Commun. 39:344.PubMedGoogle Scholar
  89. Klingenberg, M., Grebe, K., and Falkner, G., 1971, Interaction between the binding of 35S-atractyloside and bongkrekic acid at mitochondrial membranes, FEBS Lett. 16:301.PubMedGoogle Scholar
  90. Klingenberg, M., Riccio, P., Aquila, H., Schmiedt, B., Grebe, K., and Topitsgh, P., 1974. Characterisation of the ATP/ADP carrier in mitochondria, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E., Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 229–243, Elsevier, Amsterdam.Google Scholar
  91. Klingenberg, M. Riccio, P., Aquila, H., Buchanan, B. B., and Grebe, K., 1975, The mechanism of calcium transport and the ADP, ATP carrier, Proc. I.U.B. Symposium on the Structural Basis of Membrane Function, Tehran, in press.Google Scholar
  92. Knauf, P. A., Proverbio, F., and Hoffman, J. F., 1974, Electrophoretic separation of different phosphoproteins associated with Ca-ATPase and Na1K-ATPase in human red cell ghosts, J. Gen. Physiol. 63:324.PubMedGoogle Scholar
  93. Korte, T., and Hengstenberg, W., 1971, Purification and characterisation of the inducible lactose-specific membrane-bound component of the staphylococcal phosphoenolpyruvate-de-pendent phosphotransferase system, Eur. J. Biochem. 23:295.PubMedGoogle Scholar
  94. Kregenow, F. M., and Hoffman, J. F., 1972, Some kinetic and metabolic characteristics of calcium induced potassium transport in human red cells, J. Gen. Physiol. 60:406.PubMedGoogle Scholar
  95. Kündig, W., and Roseman, S., 1971a, Sugar transport I. Isolation of a phosphotransferase system from Escherichia coli, J. Biol. Chem. 246:1393.PubMedGoogle Scholar
  96. Kündig, W., and Roseman, S., 1971b, Sugar transport II. Characterisation of constitutive membrane bound enzymes II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 246:1407.PubMedGoogle Scholar
  97. Kündig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system, Proc. Natl. Acad. Sci. U.S.A. 52:1067.PubMedGoogle Scholar
  98. Kündig, W., Simoni, R., and Roseman, S., 1968, Further studies on carbohydrate permeases, Fed. Proc. 27:643.Google Scholar
  99. Langridge, R., Shinagawa, H., and Pardee, A. B., 1970, Sulphate-binding protein from Salmonella typhimurium: Physical properties, Science 169:59.PubMedGoogle Scholar
  100. Lanoue, K. F., and Tischler, M. E., 1974, Electrogenic characteristics of the mitochondrial glutamate-aspartate antiporter, J. Biol. Chem. 249:7552.Google Scholar
  101. Leblanc, P., and Clauser, H., 1972, ADP-dependent inhibition of sarcosomal adenine nucleotide translocase by N-ethylmaleimide, FEBS Lett. 23:107.PubMedGoogle Scholar
  102. Lehninger, A. L., 1971, A soluble, heat-labile, high-affinity Ca2 +-binding factor extracted from rat liver mitochondria, Biochem. Biophys. Res. Commun. 42:312.PubMedGoogle Scholar
  103. Lehninger, A. L., Garafoli, E., and Rossi, C. S., 1967, Energy-linked ion movements in mitochondrial systems, Adv. Enzymol. 29:259.PubMedGoogle Scholar
  104. Leive, L., and Davis, B. D., 1965, The transport of diaminopimalate and cystine in E. coli, J. Biol. Chem. 240:4362.PubMedGoogle Scholar
  105. Lew, V. L., 1971, On the ATP-dependance of the Ca2 +-induced increase in K+ permeability observed in human red cells, Biochim. Biophys. Acta 233:827.PubMedGoogle Scholar
  106. Lin, E. C. C., 1971, The molecular basis of membrane transport systems, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 285–341, Academic Press, New York and London.Google Scholar
  107. Manery, J. F., 1966, Effects of Ca ions on membranes, Fed. Proc. 25:1804.PubMedGoogle Scholar
  108. McGivan, J. D., and Chappell, J. B., 1970, Avenaciolide: a specific inhibitor of glutamate transport in rat liver mitochondria, Biochem. J. 116:37P.PubMedGoogle Scholar
  109. Mc Givan, J. D., and Klingenberg, M., 1971, Correlation between H+ and anion movement in mitochondria and the key role of the phosphate carrier, Eur. J. Biochem. 20:392.PubMedGoogle Scholar
  110. Medveczky, N., and Rosenberg, H., 1969, The binding and release of phosphate by a protein isolated from Escherichia coli, Biochem. Acta 192:369.Google Scholar
  111. Medveczky, N., and Rosenberg, H., 1970, The phosphate binding protein from Escherichia coli, Biochem. Biophys. Acta 211:158.Google Scholar
  112. Meijer, A. J., Groot, G. S. P., and Tager, J. M., 1970, Effect of suifhydryl-blocking reagents on mitochondrial anion-exchange reactions involving phosphate, FEBS Lett. 8:41.PubMedGoogle Scholar
  113. Meijer, A. J., Brouwer, A., Reijngould, D. J., Hock, J. B., and Tager, J. M., 1972, Transport of glutamate in rat-liver mitochondria, Biochim. Biophys. Acta 283:421.PubMedGoogle Scholar
  114. Mela, L., 1968, Interactions of Ca3+ and local anesthetic drugs with mitochondrial Ca++ and Mn++ uptake, Arch. Biochem. Biophys. 123:286.PubMedGoogle Scholar
  115. Melnick, R. L., Tinberg, H. M., Maguire, J., and Packer, L., 1973, Studies on mitochondrial proteins. Separation and characterization by Polyacrylamide gel electrophoresis, Biochim. Biophys. Acta 311:230.PubMedGoogle Scholar
  116. Meyer, J., and Vignais, P. M., 1973, Kinetic study of glutamate transport in rat liver mitochondria, Biochim. Biophys. Acta 325:375.PubMedGoogle Scholar
  117. Moore, C., 1971, Specific inhibition of mitochondrial Ca2+ transport by ruthenium red, Biochem. Biophys. Res. Commun. 42:298.PubMedGoogle Scholar
  118. Nakazawa, T., Simoni, R. D., Hays, J. B., and Roseman, S., 1971, Phosphorylation of a sugar-specific protein component of the lactose transport system of Staphylococcus aureus, Biochem. Biophys. Res. Commun. 42:836.PubMedGoogle Scholar
  119. Neu, H. C., and Heppel, L. A., 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240:3685.PubMedGoogle Scholar
  120. Nicolaysen, R., 1937, The influence of vitamin D on the absorption of calcium and phosphorous in the rat, Biochem. J. 31:122.PubMedGoogle Scholar
  121. Oxender, D., 1972, Membrane transport, Annu. Rev. Biochem. 41:777.PubMedGoogle Scholar
  122. Palmieri, F., Prezioso, G., Quagliariello, E., and Klingenberg, M., 1971, Kinetic study of the dicarboxylate carrier in rat liver mitochondria, Eur. J. Biochem. 22:66.PubMedGoogle Scholar
  123. Palmieri, F., Quagliariello, E., and Klingenberg, M., 1972a, Kinetics and specificity of the oxoglutarate carrier in rat-liver mitochondria, Eur. J. Biochem. 29:408.PubMedGoogle Scholar
  124. Palmieri, F., Stipani, I., Quagliariello, E., and Klingenberg, M., 1972b, Kinetic study of the tricarboxylate carrier in rat liver mitochondria, Eur. J. Biochem. 26:587.Google Scholar
  125. Palmieri, F., Genchi, G., Stipani, I., Francia, F., and Quagliariello, E., 1974, The isolation of metabolite binding proteins from submitochondrial particles, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 245–256, Elsevier, Amsterdam.Google Scholar
  126. Papa, S., and Paradies, G., 1974, On the mechanism of translocation of pyruvate and other mono-carboxylic acids in rat-liver mitochondria, Eur. J. Biochem. 49:265.PubMedGoogle Scholar
  127. Papa, S., Lofrumento, N. E., Quagliariello, E., Meijer, A. J., and Tager, J. M., 1970, Coupling mechansims in anionic substrate transport across the inner membrane of rat liver mitochondria, Bioenergetics 1:287.Google Scholar
  128. Pardee, A., 1966, Purification and properties of a sulphate-binding protein from Salmonella typhi-murium, J. Biol. Chem. 241:5886.PubMedGoogle Scholar
  129. Pardee, A., and Watanabe, L., 1968, Location of sulphate binding protein in Salmonella typhimurium, J. Bacteriol. 96:1049.PubMedGoogle Scholar
  130. Pardee, A., Prestidge, L. S., Whipple, M. B., and Dreyfuss, J., 1966, A binding state for sulphate and its relation to sulphate transport into Salmonella typhimurium, J. Biol. Chem. 241:3962.PubMedGoogle Scholar
  131. Parkinson, D. K., and Radde, I. C., 1969, Calcitonin action on membrane ATPase. A hypothesis, in: Calcitonin 1969: Proceedings of the Second International Symposium (S. Taylor and G. V. Foster, eds.), p. 466, Heinemann, London.Google Scholar
  132. Passarella, S., Palmieri, F., and Quagliariello, E., 1973, The role of metal ions in the transport of substrates in mitochondria, FEBS Lett. 38:91.PubMedGoogle Scholar
  133. Penrose, W. R., Nighoalds, G. E., Piperno, J. R., and Oxender, D. L., 1968, Purification and properties of a leucine binding protein from E. Coli, J. Biol. Chem. 243:5921.PubMedGoogle Scholar
  134. Prestipino, G. F., Cegcarelli, D., Conti, F., and Carafoli, E., 1974, Interactions of a mitochondrial Ca2 +-binding glycoprotein with lipid bilayer membranes, FEBS Lett. 45:99.PubMedGoogle Scholar
  135. Quaroni, A., Gershon, E., and Semenza, G., 1974, Affinity labelling of the active sites in the sucrase-isomaltase complex from small intestine, J. Biol. Chem. 249:6424.PubMedGoogle Scholar
  136. Ramaswamy, K., Malathi, P., Caspary, W. F., and Crane, R. K., 1974, Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II, Characteristics of the disaccharidase-related system, Biochim. Biophys. Acta 345:39.PubMedGoogle Scholar
  137. Reeves, J. P., Sghechter, E., Weil, R., and Kabakg, H. R., 1973, Dansyl galactoside, a fluorescent probe of active transport in bacteriological membrane vesicles, Proc. Natl. Acad. Sci. U.S.A. 70:2722.PubMedGoogle Scholar
  138. Reynolds, J. A., 1972, Are inorganic cations essential for the stability of biological membranes? Ann. N. Y. Acad. Sci. 195:75.PubMedGoogle Scholar
  139. Robinson, B. H., and Chappell, J. B., 1967, The inhibition of milate, tricarboxylate and oxogluta-rate entry into mitochondria by 2-n-butylmalonate, Biochem. Biophys. Res. Commun. 28:249.PubMedGoogle Scholar
  140. Robinson, B. H., and Williams, G. R., 1970, The sensitivity of dicarboxylate anion exchange reactions to transport inhibitors in rat-liver mitochondria, Biochim. Biophys. Acta 216:63.PubMedGoogle Scholar
  141. Robinson, B. H., Williams, G. R., Halperin, M. L., and Leznoff, C. C., 1971, The sensitivity of the exchange reactions of tricarboxylate, 2-oxoglutarate, and dicarboxylate transporting systems of rat liver mitochondria to inhibition by 2-pentylmalonate, P-iodobenzylmalonate and benzene 1,2,3-tricarboxylate, Eur. J. Biochem. 20:65.PubMedGoogle Scholar
  142. Robinson, B. H., Williams, G. R., Halperin, M. L., and Leznoff, C. C., 1972, Inhibitors of the dicarboxylate and tricarboxylate transporting systems of rat liver mitochondria, J. Membr. Biol. 7:391.Google Scholar
  143. Romero, P. J., and Whittam, R., 1971, The control by internal calcium of membrane permeability to sodium and potassium, J. Physiol. (London) 214:481.Google Scholar
  144. Rorive, G., Nielson, R., and Kleinzeller, A., 1972, Effect of pH on the water and electrolyte content of renal cells, Biochim. Biophys. Acta. 266:376.PubMedGoogle Scholar
  145. Roseman, S., 1969, The transport of carbohydrates by a bacterial phosphotransferase system, J. Gen. Physiol. 54:1385.Google Scholar
  146. Rosen, B. P., 1971, Basic amino acid transport in E. coli, J. Biol. Chem. 246:3653.PubMedGoogle Scholar
  147. Rosen, B. P., and Vasington, F. D., 1971, Purification and characterization of a histidine-binding protein from Salmonella typhimurium LT-2 and its relationship to the histidine permease system, J. Biol. Chem. 246:5351.PubMedGoogle Scholar
  148. Rotman, B., Ganesan, A. K., and Guzman, R., 1968, Transport systems for galactose and galacto-sides in Escherichia coli, J. Mol. Biol. 36:247.PubMedGoogle Scholar
  149. Schachter, D., 1969, Calcium transport, vitamin D., and the molecular basis of active transport in: The Fat-soluble Vitamins (H. F. DeLuca and J. W. Suttie, eds.), p. 55, Univ. of Wisconsin Press, Madison.Google Scholar
  150. Schatzmann, H. J., 1966, ATP-dependent Ca++ extrusion from human red cells, Experientia 22:364.PubMedGoogle Scholar
  151. Schatzmann, H. J., and Vincenzi, F. F., 1964, Calcium movements across the membrane of human red cells, J. Physiol. (London) 201:369.Google Scholar
  152. Schatzmann, H. J., and Rossi, G. L., 1971, (Ca + Mg)-activated membrane ATPases in human red cells and their possible relation to cation transport, Biochim. Biophys. Acta 241:379.PubMedGoogle Scholar
  153. Schleif, R., 1969, An L-arabinose binding protein and arabinose permeation in Escherichia coli, J. Mol. Biol. 46:185.PubMedGoogle Scholar
  154. Schrecker, O., and Hengstenberg, W., 1971, Purification of the lactose specific factor III of the staphylococcal PEP dependent phosphotransferase system, FEBS Lett. 13:209.PubMedGoogle Scholar
  155. Semenza, G., Storelli, C., Vögeli, H., and Cogoli, A., 1973, Sucrase-dependent sugar transport across artificial lipid membranes, in: Mechanisms in Bioenergetics (G. F. Azzone, L. Ernster, S. Papa, E. Quagliariello, and N. Siliprandi, eds.), pp. 309–321, Academic Press, New York.Google Scholar
  156. Semenza, G., Cogoli, A., Quaroni, A., and Vögeli, H., 1975, The sucrase-isomaltase complex (SI) from small intestine: A possible hydrolytic mechanism and indications on its role in the membrane transport of sugars, Biomembranes: Structure and Function (9th FEBS meeting, Budapest) (G. Càrdos and I. Szàsz, eds.), Vol. 35, pp. 131–144.Google Scholar
  157. Shertzer, H. G., and Racker, E., 1974, Adenine nucleotide transport in submitochondrial particles and reconstituted vesicles derived from bovine heart mitochondria, J. Biol. Chem. 249:1320.PubMedGoogle Scholar
  158. Simoni, R. D., and Roseman, S., 1973, Sugar transport VII. Lactose transport in Staphylococcus aureus, J. Biol. Chem. 248:966.PubMedGoogle Scholar
  159. Simoni, R. D., Smith, M. F., and Roseman, S., 1968, Resolution of a staphylococcol phosphotransferase system into four protein components and its relation to sugar transport, Biochem. Biophys. Res. Commun. 31:804.PubMedGoogle Scholar
  160. Simoni, R. D., Hays, J. B., Nakazawa, T., and Roseman, S., 1973a, Sugar transport VI. Phosphoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus, J. Biol. Chem. 248:957.PubMedGoogle Scholar
  161. Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S., 1973b, Sugar transport IV. Isolation and characterisation of the lactose phosphotransferase system in Staphylococcus aureus, J. Biol. Chem. 248:932.PubMedGoogle Scholar
  162. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedGoogle Scholar
  163. Sluse, F. E., Meijer, A. J., and Tager, J. M., 1971, Anion translocation in rat heart mitochondria, FEBS Lett. 18:149.PubMedGoogle Scholar
  164. Sluse, F. E., Ranson, M., and Liébecq, C., 1972, Mechanism of the exchanges catalyzed by the oxoglutarate translocator of rat-heart mitochondria, Eur. J. Biochem. 25:207.PubMedGoogle Scholar
  165. Sluse, F. E., Goffart, C., and Liébecq, C., 1973, Mechanism of the exchanges catalysed by the oxoglutarate translocator of rat heart mitochondria. Kinetics of the external-product inhibition, Eur. J. Biochem. 32:283.PubMedGoogle Scholar
  166. Solomon, E., Miyai, K., and Lin, E.C. C., 1973, Membrane translocation of mannitol in Escherichia coli without phosphorylation, J. Bacteriol. 114:723.PubMedGoogle Scholar
  167. Sottocasa, C. L., Sandri, G., Panfili, E., and de Bernard, B., 1971, A glycoprotein located in the intermembrane space of rat liver mitochondria, FEBS Lett. 17:100.PubMedGoogle Scholar
  168. Sottocasa, G. L., Sandri, G., Panfili, E., de Bernard, B., Gazzotti, P., Vasington, F. D., and Carafoli, E., 1972, Isolation of a soluble Ca2+ binding glycoprotein from ox liver mitochondria, Biochem. Biophys. Res. Commun. 47:808.PubMedGoogle Scholar
  169. Storelli, C., Vögeli, H., and Semenza, G., 1972, Reconstitution of a sucrase mediated sugar transport system in lipid membranes, FEBS Lett. 24:287.PubMedGoogle Scholar
  170. Tashmukhamedov, B. A., Gagelgans, A. I., Mamatkulov, K., Makhumudova, E. M., 1972, Inhibition of Ca2 + transport in mitochondria by selective blockade of membrane muchopoly-saccharides by hexamine cobaltichloride, FEBS Lett. 28:239.PubMedGoogle Scholar
  171. Taylor, A. N., and Wasserman, R. H., 1967, Vitamin D3-induced calcium binding protein. Partial purification, electrophoretic visualization, and tissue distribution, Arch. Biochem. Biophys. 119:536.PubMedGoogle Scholar
  172. Taylor, A. N., and Wasserman, R. H., 1974, The vitamin D-induced calcium-binding protein. Some physiological and physical characteristics, in: Calcium Binding Proteins (W. Drabikowski, H. Strzelecka-Golaszenka, and E. Carafoli, eds.), p. 751, Elsevier, Amsterdam, and Polish Scientific Publishers, Warsaw.Google Scholar
  173. Taylor, A. N., Wasserman, R. H., and Jowsey, J., 1968, A vitamin D-dependent calcium-binding protein in canine intestinal mucosa, Fed. Proc. 27:675.Google Scholar
  174. Tyler, D. D., 1968, The inhibition of phosphate entry into rat liver mitochondria by organic mercurials and by formaldehyde, Biochem. J. 107:121.PubMedGoogle Scholar
  175. Tyler, D. D., 1969, Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria, Biochem. J. 111:665.PubMedGoogle Scholar
  176. Utsumi, K., and Oda, T., 1974, Mechanism of Ca2 +-transport inhibition by ruthenium red and the action of a water-soluble fraction on mitochondria, in: Organization of Energy-Transducing Membranes (N. Nakao and L. Packer, eds.), pp. 265–267, University Park Press, Baltimore.Google Scholar
  177. Vasington, F. D., Cazzotti, P., Tiozzo, R., and Carafoli, E., 1972, The effect of ruthenium on Ca2+ transport and respiration in rat liver mitochondria, Biochem. Biophys. Acta 256:43.PubMedGoogle Scholar
  178. Vignais, P. V., Duée, E. D., Vignais, P. M., and Huet, J., 1966, Effects of atractyligenin and its structural analogues on oxidase phosphorylation and on the translocation of adenine nucleotides in mitochondria, Biochem. Biophys. Acta 118:465.PubMedGoogle Scholar
  179. Vignais, P. V., Duée, Colomb, M., Reboul, A., Cherny, A., Bârzu, O., and Vignais, P. M., 1970, Transport d’adénine nucléotides â travers les membranes mitochondrials au cours de la phosphorylation oxydative, Bull. Soc. Chim. Biol. 52:471.PubMedGoogle Scholar
  180. Vignais, P. V., Vignais, P. M., and Defaye, C., 1971, Gummiferin, an inhibitor of the adenine nucleotide translocation. Study of its binding properties to mitochondria, FEBS Lett. 17:281.PubMedGoogle Scholar
  181. Vignais, P. V., Vignais, P. M., and Defaye, C., 1973, Adenosine diphosphate translocation in mitochondria. Nature of the receptor site for carboxyatractyloside (gummiferin), Biochemistry 12:1508.PubMedGoogle Scholar
  182. Wasserman, R. H., and Corradino, R. A., 1973, Vitamin D, calcium, and protein synthesis, Vitam. Horm. 31:43.PubMedGoogle Scholar
  183. Wasserman, R. H., and Taylor, A. N., 1966, Vitamin Da-induced calcium binding protein in chick intestinal mucosa, Science 152:791.PubMedGoogle Scholar
  184. Wasserman, R. H., and Taylor, A. N., 1968, Vitamin D-dependent calcium-binding protein. Response to some physiological and nutritional variables, J. Biol. Chem. 243:3987.PubMedGoogle Scholar
  185. Wasserman, R. H., Corradino, R. A., and Taylor, A. N., 1968, Vitamin D-dependent calcium-binding protein, J. Biol. Chem. 243:3978.PubMedGoogle Scholar
  186. Wasserman, R. H., Corradino, R. A., and Taylor, A. N., 1969, Binding proteins from animals with possible transport functions, J. Gen. Physiol. 54:1145.Google Scholar
  187. Weidekamm, E., and Brdiczka, D., 1975, Extraction and localization of a Ca2 +/Mg2 +-stimulated ATPase in human erythrocyte spectrin, Biochim. Biophys. Acta, 401:51.PubMedGoogle Scholar
  188. Weidemann, M. J., Erdelt, H., and Klingenberg, M., 1970, Adenine nucleotide translocation of mitochondria. Identification of carrier sites, Eur. J. Biochem. 16:313.PubMedGoogle Scholar
  189. Weiner, J. H., and Heppel, L. A., 1971, A binding protein for glutamine and its relation to active transport in E. coli, J. Biol. Chem. 246:6933.Google Scholar
  190. Weiner, M. L., and Lee, K. S., 1972, Active calcium ion uptake by inside-out and right-side-out vesicles of red cell membranes, J. Gen. Physiol. 59:462.PubMedGoogle Scholar
  191. Weiner, J. H., Furlong, C. E., and Heppel, L. A., 1971, A binding protein for L-glutamine and its relation to active transport in E. Coli., Arch. Biochem. Biophys. 124:715.Google Scholar
  192. Wiley, W. R., 1970, Tryptophan transport in Neurospora crassa. A tryptophan-binding protein released by cold osmotic shock, J. Bacteriol. 103:656.PubMedGoogle Scholar
  193. Wilson, O. H., and Holden, J., 1969, Stimulation of arginine transport in osmotically shocked E. coli W cells by purified aginine-binding protein fractions, J. Biol. Chem. 244:2743.PubMedGoogle Scholar
  194. Winkler, H. H., and Lehninger, A. L., 1968, The atractyloside-sensitive nucleotide binding site in a membrane preparation from rat liver mitochondria, J. Biol. Chem. 243:3000.PubMedGoogle Scholar
  195. Winkler, H. H., and Wilson, T. H., 1967, Inhibition of galactoside transport by substrate of the glucose transport system in Escherichia coli, Biochim. Biophys. Acta 135:1030.PubMedGoogle Scholar
  196. Zimmer, G., 1970, Oligomycin and ADP sensitivity of in vitro alkylation of SH groups in rat liver mitochondria, FEBS Lett. 9:274.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Ernesto Carafoli
    • 1
  • Martin Crompton
    • 1
  1. 1.Department of BiochemistrySwiss Federal Institute of Technology (E.T.H.)ZurichSwitzerland

Personalised recommendations