Chlorophyll-Proteins: Membrane-Bound Photoreceptor Complexes in Plants

  • J. Philip Thornber
  • Randall S. Alberte


The chlorophyll in photosynthetic organisms can be divided on a functional basis into two distinct categories. One category is represented by the light-harvesting or antennae chlorophylls which account for the vast majority of the chlorophyll in the membrane. The other category is represented by only a few (1%) specialized chlorophylls. The former group functions in absorbing and efficiently transferring the energy of light to the latter few specialized chlorophylls. These specialized chlorophylls reside in what is termed a reaction center, where they function as the electron donor in the primary photochemical event of the photosynthetic process. These two chlorophyll groups are amalgamated with a primary electron acceptor as well as with other electron-transfer components into a functional photosynthetic entity called a photo-system. In plant photosynthesis two such photosystems, photosystems II and I, act in series to bring about the transfer of electrons from water to NADP+. This electron flow is accompanied by the formation of ATP.


Sodium Dodecyl Sulfate Sodium Dodecyl Benzene Sulfonate Sodium Dodecyl Benzene Sulfonate Chloroplast Membrane Photosynthetic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberte, R. S., and Thornber, J. P., 1974, The correlation between chlorophyll a\b ratio and proportions of chlorophyll-protein complexes in green plants, Plant Physiol. Suppl. 53:47.Google Scholar
  2. Alberte, R. S., Thornber, J. P., and Naylor, A. W., 1972, Time of appearance of photosystems I and II in chloroplasts of greening jack bean leaves, J. Exp. Bot. 23:1060.CrossRefGoogle Scholar
  3. Alberte, R. S., Thornber, J. P., and Naylor, A. W., 1973, Biosynthesis of the photosystem I chlorophyll-protein complex in greening leaves of higher plants, Proc. Natl. Acad. Sci. U.S.A. 70:134.PubMedCrossRefGoogle Scholar
  4. Alberte, R. S., Hesketh, J. D., Hofstra, G., Thornber, J. P., Naylor, A. W., Bernard, R. L., Brim, C., Endrizzi, J., and Kohel, R. J., 1974, Composition and activity of the photosynthetic apparatus in temperature-sensitive mutants of higher plants, Proc. Natl. Acad. Sci. U.S.A. 71:2414PubMedCrossRefGoogle Scholar
  5. Alberte, R. S., Fiscus, E. L., and Naylor, A. W., 1975, The effects of water stress on the development of the photosynthetic apparatus in greening leaves, Plant Physiol., 55:317.PubMedCrossRefGoogle Scholar
  6. Anderson, J. M., and Levine, R. P., 1974a, Membrane polypeptides of some higher plant chloroplasts, Biochim. Biophys. Acta 333:378.PubMedCrossRefGoogle Scholar
  7. Anderson, J. M., and Levine, R. P., 1974b, The relationship between chlorophyll protein complexes and chloroplast membrane polypeptides, Biochim. Biophys. Acta 357:118.PubMedCrossRefGoogle Scholar
  8. Anderson, J. M., Goodchild, D. J., and Boardman, N. K., 1973, Composition of the photosystems and chloroplast structure in extreme shade plants, Biochim. Biophys. Acta 325:573.PubMedCrossRefGoogle Scholar
  9. Apel, K., and Schweiger, H.-G., 1972, Nuclear dependency of chloroplast proteins in Acetabularia, Eur. J. Biochem. 25:229.PubMedCrossRefGoogle Scholar
  10. Apel, K., and Schweiger, H.-G., 1973, Sites of synthesis of chloroplast membrane proteins: Evidence for three types of ribosomes engaged in chloroplast protein synthesis, Eur. J. Biochem. 38:373.PubMedCrossRefGoogle Scholar
  11. Argyroudi-Akoyunoglou, J. H., and Akoyunoglou, G., 1973, On the formation of photosynthetic membranes in bean plants. Protein of chlorophyll proteins I and II preexists in etiolated tissue, Photochem. Photobiol. 18:219.CrossRefGoogle Scholar
  12. Argyroudi-Akoyunoglou, J. H., Feleki, Z., and Akoyunoglou, G., 1971, Formation of two chlorophyll-protein complexes during greening of etiolated bean leaves, Biochem. Biophys. Res. Commun. 45:606.PubMedCrossRefGoogle Scholar
  13. Bailey, J. L., Downton, W. J. S., and MÄsiar, E., 1971, The proteins of photosystems I and II in mesophyll and bundle sheath chloroplasts of Sorghum bicolor, in Photosynthesis and Photorespiration, (M. D. Hatch, C. B. Osmond, and R. O. Slatyer, eds.), pp. 382–386, Wiley-Interscience, New York.Google Scholar
  14. Boardman, N. K., 1970, Physical separation of the photosynthetic photochemical systems, Annu. Rev. Plant Physiol. 21:115.CrossRefGoogle Scholar
  15. Boardman, N. K., and Anderson, J. M., 1964, Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and b and their possible role in photosynthesis, Nitere 293:166.Google Scholar
  16. Boquet, M., Guignery, G., and Duranton, J., 1968, Comparative study of holochrome proteins in etiolated plastids and chloroplasts in Zea mays, Bull. Soc. Chim. Biol. 50:531.PubMedGoogle Scholar
  17. Braunitzer, G., and Bauer, G., 1967, Über die Anzahl der Proteinkomponenten im Lamellar-system der Chloroplasten, Naturwissenschaften 54:70.CrossRefGoogle Scholar
  18. Brown, J. S., 1973, Separation of photosynthetic systems I and II, in: Photophysiology, Vol. VIII (A. Giese, ed.), pp. 97–112. Academic Press, New York.Google Scholar
  19. Brown, J. S., Alberte, R. S., and Thornber, J. P., 1975, Comparative studies on the occurrence and spectral composition of chlorophyll-protein complexes in a wide variety of plant material, in: Proceedings of the Third International Photosynthesis Congress-Israel-1974, Vol. III (M. Avron and A. Trebst, eds.) pp. 1951–1962, Elsevier, Amsterdam.Google Scholar
  20. Butler, W. L., and Kitajima, M., 1975, A tripartite model for chloroplast fluorescence, in: Proceedings of the Third International Photosynthesis Congress-Israel-1974, Vol. I (M. Avron and A. Trebst, eds.) pp. 13–24, Elsevier, Amsterdam.Google Scholar
  21. Chiba, Y., 1960, Electrophoretic and sedimentation studies on chloroplast proteins solubilized by surface active agents, Arch. Biochem. Biophys. 90:294.PubMedCrossRefGoogle Scholar
  22. Clayton, R. K., 1973, Primary processes in bacterial photosynthesis, Annu. Rev. Biophys. Bionerg. 2:131.CrossRefGoogle Scholar
  23. Cobb, A. H., and Wellburn, A. R., 1973, Developmental changes in the levels of SDS extractable polypeptides during plastid morphogenesis, Planta 114:131.CrossRefGoogle Scholar
  24. Collot, D., Guignery, G., and Duranton, J., 1970, Etudes comparatives des acides amines C-terminaux des protèins holochromes et cytoplasmiques chez des plantules normales et étoiles de Zea mays L., Bull. Soc. Chim. Biol. 52:241.PubMedGoogle Scholar
  25. Criddle, R. S., 1966, Protein and lipoprotein organization in the chloroplast, in:Biochemistry of Chloroplasts, Vol. I (T. W. Goodwin, ed.), pp. 203–231, Academic Press, New York.Google Scholar
  26. Criddle, R. S., and Park, L., 1964, Isolation and properties of structural protein from chloroplasts, Biochem. Biophys. Res. Commun. 17:74.PubMedCrossRefGoogle Scholar
  27. Dietrich, W. E., Jr., and Thornber, J. P., 1971, The P700-chlorophyll a-protein of a blue-green alga, Biochim. Biophys. Acta 245:482.PubMedCrossRefGoogle Scholar
  28. Duysens, L. M. N., 1952, Transfer of excitation energy in photosynthesis, Ph.D. Thesis, State University, Utrecht, The Netherlands.Google Scholar
  29. Eaglesham, A. R. J., and Ellis, R. J., 1974, Protein synthesis in chloroplasts II. Light-driven synthesis of membrane proteins by isolated pea chloroplasts, Biochim. Biophys. Acta. 335:396.Google Scholar
  30. Eytan, G., and Ohad, I., 1970, Biogenesis of chloroplast membranes. VI. Cooperation between cytoplasmic and chloroplast ribosomes in the synthesis of photosynthetic lamellar proteins during the greening process in a mutant of Chlamydomonas reinhardii y-1, J. Biol. Chem. 245:4297.PubMedGoogle Scholar
  31. Eytan, G., and Ohad, I., 1972a, Biogenesis of chloroplast membranes. VII. The preservation of membrane homogeneity during development of the photosynthetic lamellar system in an algal mutant (Chlamydomonas reinhardii y-1), J. Biol. Chem. 247:112.PubMedGoogle Scholar
  32. Eytan, G., and Ohad, I., 1972b, Biogenesis of chloroplast membranes. VIII. Modulation of chloroplast lamellar composition and function induced by discontinuous illumination and inhibition of ribonucleic acid and protein synthesis during greening of Chlamydomonas reinhardii y-1 mutant cells, J. Biol. Chem. 247:122.PubMedGoogle Scholar
  33. French, C. S., Brown, J. S., and Lawrence, M. C., 1972, Four universal forms of chlorophyll a, Plant Physiol. 49:421.PubMedCrossRefGoogle Scholar
  34. Genge, S., Pilger, D., and Hiller, R. G., 1974, The relationship between chlorophyll b and pigment-protein complex II, Biochim. Biophys. Acta 347:22.PubMedCrossRefGoogle Scholar
  35. Goedheer, J. C., 1966, Visible absorption and fluorescence of chlorophyll and its aggregates in solution, in: The Chlorophylls (L. P. Vernon and G. R. Seely, eds.), pp. 147–184, Academic Press, New York.Google Scholar
  36. Gregory, R. P. F., Raps, S., Thornber, J. P., and Bertsch, W. F., 1971, Chlorophyll-protein-detergent complexes compared with thylakoids by means of circular dichroism, in: Proceedings of the Second International Congress of Photosynthesis Research, Stresa (G. Forti M. Avron, and A. Melandri, eds.), pp. 1503–1508, D. W. Junk, The Hague, The Netherlands.Google Scholar
  37. Guignery, G., Luzzati, and Duranton, J., 1974, On the specific binding of protochlorophyllide and chlorophyll to different peptide chains, Planta 115:227.CrossRefGoogle Scholar
  38. Henriques, F., and Park, R., 1974, Biosynthesis of grana and stroma lamellae in spinach, Plant Physiol. 54:386.PubMedCrossRefGoogle Scholar
  39. Hermann, F., 1971, Genetic control of pigment-protein complexes I and Ia of the plastid mutant en: alba-1 of Antirrhinum majus, FEBS Lett. 19:267.CrossRefGoogle Scholar
  40. Herrman, F., 1972, Chloroplast lamellar proteins of the plastid mutant en: viridis-1 of Antirrhinum majus having impaired photosystem II, Exp. Cell Res. 70:452.CrossRefGoogle Scholar
  41. Hermann, F., and Meister, A., 1972, Separation and spectroscopial properties of pigment-protein complexes in Antirrhinum chloroplasts, Photosynthetica 6:177.Google Scholar
  42. Hiller, R. C., Pilger, D., and Genge, S., 1973, Photosystem II activity and pigment-protein complexes in flashed bean leaves, Plant Sci. Lett. 1:81.CrossRefGoogle Scholar
  43. Hiller, R. G., Genge, S., and Pilger, D., 1974, Evidence for a dimer of the light-harvesting chlorophyll-protein complex II, Plant Sci. Lett. 2:239.CrossRefGoogle Scholar
  44. Hiyama, T., and Ke, B., 1972, Difference spectra and extinction coefficients of P700, Biochim. Biophys. Acta 267:160.PubMedCrossRefGoogle Scholar
  45. Hoober, J. K., 1970, Sites of synthesis of chloroplast membrane polypeptides in Chlamydomonas reinhardii y-1, J. Biol. Chem. 245:4327.PubMedGoogle Scholar
  46. Hoober, J. K., 1972, A major polypeptide of chloroplast membranes of Chlamydomonas reinhardii, J. Cell Biol. 52:84.PubMedCrossRefGoogle Scholar
  47. Hoober, J. K., and Stegeman, W. J., 1973, Control of the synthesis of a major polypeptide of chloroplast membranes in Chlamydomonas reinhardii, J. Cell Biol. 56:1.PubMedCrossRefGoogle Scholar
  48. Itoh, M., Izawa, S., and Shibata, K., 1963, Disintegration of chloroplasts with dodecyl benzene sulfonate as measured by flattening effect and size distribution, Biochim. Biophys. Acta 69:130.PubMedCrossRefGoogle Scholar
  49. Jennings, R. C., and Eytan, G., 1973, Biogenesis of chloroplast membranes XIV, Inhomogeneity of membrane protein distribution in photosystem particles obtained from Chlamydomonas reinhardii y-1, Arch. Biochem. Biophys. 159:832.CrossRefGoogle Scholar
  50. Ji, T. H., Hess, J. L., and Benson, A. A., 1968, Studies on chloroplast membrane structure 1. Association of pigments with chloroplast lamellar proteins, Biochim. Biophys. Acta 150:676.PubMedCrossRefGoogle Scholar
  51. Kahn, J. S., 1964, A soluble protein-chlorophyll complex from spinach chloroplasts. 1. Isolation of a photochemically active complex, Biochim. Biophys. Acta 79:234.PubMedCrossRefGoogle Scholar
  52. Kan, K., and Thornber, J. P., 1976, Light-harvesting chlorophyll a\b-Protein of Chlamydomonas reinhardii, Plant Physiol. 56: in press.Google Scholar
  53. Ke, B., 1973, The primary electron acceptor of photosystem I, Biochim. Biophys. Acta 301:1.PubMedGoogle Scholar
  54. Ke, B., and Clendenning, K. A., 1956, Properties of chloroplast dispersion in the presence of detergents, Biochim. Biophys. Acta 19:74.PubMedCrossRefGoogle Scholar
  55. Kirk, J. T. O., 1971, Chloroplast structure and biogenesis, Annu. Rev. Biochem. 40:161.PubMedCrossRefGoogle Scholar
  56. Klein, S. M., and Vernon, L. P., 1974a, Protein composition of spinach chloroplasts and their photosystem I and photosystem II subfragments, Photochem. Photobiol. 19:43.CrossRefGoogle Scholar
  57. Klein, S. M., and Vernon, L. P., 1974b, Polypeptide composition of photosynthetic membranes from Chlamydomonas reinhardii and Anabena varabilis, Plant Physiol. 53:777.PubMedCrossRefGoogle Scholar
  58. Klein, S. M., and Vernon, L. P., 1974c, Protein arrangement in chloroplast membranes: Studies with P-diazonium-benzene-S35-sulfonic acid, Ann. N.Y. Acad Sci. 227:568.PubMedCrossRefGoogle Scholar
  59. Kung, S. D., and Thornber, J. P., 1971, Photosystem I and II chlorophyll-protein complexes of higher plant chloroplasts, Biochim. Biophys. Acta 253:285.PubMedCrossRefGoogle Scholar
  60. Kung, S. D., Thornber, J. P., and Wildman, S. G., 1972, Nuclear DNA codes for the photosystem II chlorophyll-protein of chloroplast membranes, FEBS Lett. 24:185.PubMedCrossRefGoogle Scholar
  61. Kupke, D. W., and French, G. S., 1960, Relationship of chlorophyll to proteins and lipoids, in: Encyclopedia of Plant Physiology, Vol. V. (Ruhland, W., ed.), Pt. I, pp. 298–322, Springer-Verlag, Berlin.Google Scholar
  62. Lagoutte, B., and Durnaton, J., 1971, Physiochemical study of the structural proteins of chloroplasts from Zea mays L., Biochim. Biophys. Acta 253:232.PubMedCrossRefGoogle Scholar
  63. Lagoutte, B., and Duranton, J., 1972, Action of light at the structural protein level on etiolated plastids from Zea mays, FEBS Lett. 28:333.PubMedCrossRefGoogle Scholar
  64. Levine, R. P., and Duram, H. A., 1973, The polypeptides of stacked and unstacked Chlamydonomas reinardii chloroplast membrane and relationship to photosystem II activity, Biochim. Biophys. Acta 325:565.PubMedCrossRefGoogle Scholar
  65. Levine, R. P., Burton, W. G., and Duram, H. A., 1972, Membrane polypeptides associated with photochemical systems, Nature 237:176.Google Scholar
  66. Losada, M., Whatley, F. R., and Arnon, D. I., 1961, Separation of two light reactions in noncyclic photophosphorylation of green plants, Nature 190:606.PubMedCrossRefGoogle Scholar
  67. Machold, O., 1971a, Die Wirkung von Chloramphenicol und Streptomycin auf die Lamellar-proteine der Chloroplasten von Vicia faba, Exp. Cell Res. 65:466.PubMedCrossRefGoogle Scholar
  68. Machold, O., 1971b, Lamellar proteins of green chlorotic chloroplasts as affected by iron deficiency and antibiotics, Biochim. Biophys. Acta 238:324.PubMedGoogle Scholar
  69. Machold, O., 1972, Lamellarproteine grunner und chlorotischer Chloroplasten, Biochem. Physiol. Pflanz. 163:30.Google Scholar
  70. Machold, O., and Aurich, O., 1972, Sites of synthesis of chloroplast lamellar protein in Vicia faba, Biochim. Biophys. Acta 281:103.PubMedGoogle Scholar
  71. Malkin, R., Aparicio, P. J., and Arnon, D. I., 1974, The isolation and characterization of a new iron-sulfur protein from photosynthetic membranes, Proc. Natl. Acad. Sci. U.S.A. 71:2362.PubMedCrossRefGoogle Scholar
  72. Mani, R. S., and Zalik, S., 1970, Physiological studies of bean and wheat chloroplast structural protein, Biochim. Biophys. Acta 200:132.PubMedGoogle Scholar
  73. Mcevoy, F. A., and Lynn, W. S., 1973, Chloroplast membrane proteins. II. Solubilization of lipophilic components, J. Biol. Chem. 248:4568.PubMedGoogle Scholar
  74. Menke, W., and Jordan, E., 1959, Uber des lamellare Struckturproteid der Chloroplasten von Allium porrum. 1. Mitteilung über lamellare Struckturproteide, Z. Naturforsch. 146:234.Google Scholar
  75. Ogawa, T., Obata, F., and Shibata, K., 1966, Two pigment-proteins in spinach chloroplasts, Biochim. Biophys. Acta 112:223.PubMedCrossRefGoogle Scholar
  76. Olson, J. M., Thornber, J. P., Koenig, D. F. F., Ledbetter, M. C., Olson, R. A., and Jennings, W. H., 1969, The bacteriochlorophyll-protein of green photosynthetic bacteria, in: Progress in Photosynthesis Research, Vol. I (H. Metzner, ed.), pp. 217–225, D. W. Junk, The Hague, The Netherlands.Google Scholar
  77. Patton, S., 1968, Lipids and the assembly of chloroplast membranes, Science 159:221.PubMedCrossRefGoogle Scholar
  78. Philipson, K. D., and Sauer, K., 1973, Light scattering effects on the circular dichrosim of chloroplasts, Biochemistry 12:3454.PubMedCrossRefGoogle Scholar
  79. Rémy, R., 1971, Resolution of chloroplast lamellar proteins by electrophoresis in Polyacrylamide gels. Different patterns obtained with fractions enriched in either chlorophyll a or chlorophyll b, FEBS Lett. 13:313.PubMedCrossRefGoogle Scholar
  80. Rémy, R., 1973a, Preexistence of chloroplast lamellar proteins in wheat etioplasts. Functional and protein changes during greening under continuous or intermittent light, FEBS Lett. 31:308.PubMedCrossRefGoogle Scholar
  81. Rémy, R., 1973b, Appearance and development of photosynthetic activities in wheat etioplasts greened under continuous or intermittent light—evidence for water-side photosystem II deficiency after greening under intermittent light, Photochem. Photobiol. 18:409.CrossRefGoogle Scholar
  82. Rémy, R., Phung Nhu Hung, S., and Moyse, A., 1972, La différenciation functionnelle et structurale au cours du verdissement des étioplastes. Quelques aperçus sur la nirse en place des deux systems photochimiques, Physiol. Veg. 10:269.Google Scholar
  83. Ridley, S. M., Thornber, J. P., and Bailey, J. L., 1967, A study of the water-soluble proteins of spinach beet chloroplasts with particular reference to Fraction I protein, Biochim. Biophys. Acta 140:62.Google Scholar
  84. Rogers, L. J., Kersley, J., and Lees, D. N., 1973, Physiochemical properties of membrane proteins of photosynthetic organelles, Physiol. Veg. 11:327.Google Scholar
  85. Rosenberg, A., 1967, Galactosyl diglycerides: Their possible function in Euglena chloroplasts, Science 157:1191.PubMedCrossRefGoogle Scholar
  86. Sauer, K., 1975, Primary events and the trapping of energy, in: Bioenergetics of Photosynthesis (Govind-jee, ed.), pp. 115–181, Academic Press, New York, in press.Google Scholar
  87. Seely, G. R., 1973, Energy transfer in a model of the photosynthetic unit of green plants, J. Theor. Biol. 40:189.PubMedCrossRefGoogle Scholar
  88. Shibata. K., 1971, Subchloroplast fragments: Sodium dodecyl sulfate method, in: Methods of Enzymology, Vol. XXIII (A. San Pietro, ed.), Part A, pp. 296–302, Academic Press, New York.Google Scholar
  89. Shiozawa, J. A., Alberte, R. S., and Thornber, J. P., 1974, The Pyoo-chlorophy11 a-protein. Isolation and some characteristics of the complex in higher plants, Arch. Biochem. Biophys. 165:388.PubMedCrossRefGoogle Scholar
  90. Sironval, C., Clijsters, H., Michel, J.-M., Bronchart, R., and Michel-Wolwertz, M.-R., 1967, Sur la séparation de deux fractions a partir des membranes des chloroplasts (systemes I and II), sur leurs propriétés sur l’organization et le functionnement de ces membranes, in: Le Chloroplaste (C. Sironval, ed.), pp. 99–123, Masson et Cie, Paris.Google Scholar
  91. Smith, E. L., and Pickels, E. G., 1941, The effect of detergents on the chlorophyll-protein compound of spinach as studied in the ultracentrifuge, J. Gen. Physiol. 24:753.PubMedCrossRefGoogle Scholar
  92. Takashima, S., 1952, Chlorophyll-lipoprotein obtained in crystals, Nature 169:182.PubMedCrossRefGoogle Scholar
  93. Thornber, J. P., 1969, Comparison of a chlorophyll a-protein isolated from a blue-green alga with chlorophyll-protein complexes isolated from green bacteria and higher plants, Biochim. Biophys. Acta 172:230.PubMedCrossRefGoogle Scholar
  94. Thornber, J. P., 1975, Chlorophyll-proteins: Light-harvesting and reaction center components of plants, Annu. Rev. Plant Physiol. 26:127.CrossRefGoogle Scholar
  95. Thornber, J. P., and Highkin, H. R., 1974, Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b, Eur. J. Biochem. 41:109.PubMedCrossRefGoogle Scholar
  96. Thornber, J. P., and Olson, J. M., 1971, Chlorophyll-proteins and reaction center preparations from photosynthetic bacteria, algae and higher plants, Photochem. Photobiol. 14:329.CrossRefGoogle Scholar
  97. Thornber, J. P., Smith, C. A., and Bailey, J. L., 1966, Partial characterization of two chlorophyll-protein complexes isolated from spinach beet chloroplasts, Biochem. J. 100:14P.Google Scholar
  98. Thornber, J. P., Gregory, R. P. F., Smith, C. A., and Bailey, J. L., 1967a, Studies on the nature of the chloroplast lamellae, I. Preparation and some properties of two chlorophyll-protein complexes, Biochemistry 6:391.PubMedCrossRefGoogle Scholar
  99. Thornber, J. P., Steward, J. C., Hatton, M. W. C., and Bailey, J. L., 1967b, Nature of chloroplast lamellae. II. Chemical composition and further physical properties of two chlorophyll-protein complexes, Biochemistry 6:2006.PubMedCrossRefGoogle Scholar
  100. Vernon, L. P., Shaw, E. R., Ogawa, T., and Raveed, D., 1971, Structure of photosystem I and photosystem II of plant chloroplasts, Photochem. Photobiol. 14:343.CrossRefGoogle Scholar
  101. Wessels, J. S. C., and Borchert, M. T., 1975, Studies on subchloroplastic particles. Similarity of grana and storma photosystem I and the protein composition of photosystem I and photosystem II particles, in: Proceedings of the Third International Photosynthesis Congress-Israel-1974, Vol. I (M. Avron and A. Trebst, eds.) pp. 473–484, Elsevier, Amsterdam.Google Scholar
  102. Wolken, J. J., and Schwartz, F. A., 1956, Molecular weight of algal chloroplastin, Nature 177:136.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • J. Philip Thornber
    • 1
  • Randall S. Alberte
    • 1
  1. 1.Department of Biology and Molecular Biology InstituteUniversity of CaliforniaLos AngelesUSA

Personalised recommendations