Advertisement

Membrane-Bound Enzymes from Mycobacterium phlei; Malate Vitamin K Reductase

  • Rajendra Prasad
  • Arnold F. Brodie

Abstract

It is widely recognized that the enzymes of the living cell operate within the framework of a highly organized structure or by intracellular compartmentalization. A large number of cellular enzymes are located in membranes and referred to as membrane-bound enzymes. Included in this category are the enzymes located in the plasma membrane, mitochondria, and microsomes, as well as those found in bacteria and plant membranes. In fact, this definition can be extended to those proteins which catalyze the physical translocation of substrates and are responsible for transmembrane transport of solutes against a concentration gradient. The existence of membrane-bound enzymes has been known for many years, but not much attention has been given to them for detailed studies since either their structural organization or functions are lost on isolation. However, in the last 10 years, it has become clear that many membrane-bound enzymes require the lipid components of membranes for activity and that the previous difficulties in solubilization of these membrane components were due to the failure to recognize the lipid requirements. Nevertheless, it should be emphasized that enzyme complexes which require physical and spatial orientation to one another must remain intact for enzymatic activity.

Keywords

Oxidative Phosphorylation Reductase Activity Membrane Vesicle Malate Dehydrogenase Nonheme Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, A., 1960, Metabolically dependent preparation of oligosaccharides into bacterial cells and protoplast, J. Biol. Chem. 235:1281.PubMedGoogle Scholar
  2. Abrams, A., and Baron, C., 1967, The isolation and subunit structure of streptococcal membrane ATPase, Biochemistry 6:225.PubMedCrossRefGoogle Scholar
  3. Abrams, A., and Baron, C., Reversible attachment of ATPase to streptococcal membranes and the effect of magnesium ions, Biochemistry 7:501.Google Scholar
  4. Abrams, A. McNamara, P., and Johnson, F. B., 1960, Adenosine triphosphatase in isolated bacterial cell membranes, J. Biol. Chem. 235:3659.Google Scholar
  5. Abrams, A., Baron, C., and Schnebli, H., 1974, The isolation of bacterial membrane ATPase and nectin, in: Methods in Enzymology (S. Fleischer and L. Packer, eds.), Vol. 32, p. 428, Academic Press, New York.Google Scholar
  6. Asano, A., and Brodie, A. F., 1963a, Oxidative phosphorylation in fractionated bacterial systems. XII. The properties of malate vitamin K reductase, Biochem. Biophys. Res. Commun. 13:423.CrossRefGoogle Scholar
  7. Asano, A., and Brodie, A. F., 1963b, Oxidative phosphorylation in fractionated bacterial systems. XI. Separation of soluble factors necessary for oxidative phosphorylation, Biochem. Biophys. Res. Commun. 13:416.CrossRefGoogle Scholar
  8. Asano, A., and Brodie, A. F., 1964, Oxidative phosphorylation in fractionated bacterial systems. XIV. Respiratory chains of Mycobacterium phlei, J. Biol. Chem. 239:4280.PubMedGoogle Scholar
  9. Asano, A., and Brodie, A. F., 1965, Oxidative phosphorylation in fractioned bacterial systems. XVII. Phosphorylation coupled to different segments of the respiratory chains of Mycobacterium phlei, J. Biol. Chem. 240:4002.PubMedGoogle Scholar
  10. Asano, A., Kaneshiro, T., and Brodie, A. F., 1965, Malate vitamin K reductase, a phospholipid requiring enzyme, J. Biol. Chem. 240:895.PubMedGoogle Scholar
  11. Asano, A., Cohen, N. S., Baker, R. F., and Brodie, A. F., 1973, Orientation of the cell membrane in ghosts and electron transport particles of Mycobacterium phlei, J. Biol. Chem. 248:3386PubMedGoogle Scholar
  12. Atkinson, D. E., 1965, Biological feedback control at the molecular level, Science 150:851.PubMedCrossRefGoogle Scholar
  13. Baron, C., and Abrams, A., 1971, Isolation of a bacterial membrane protein nectin, essential for the attachment of adenosine triphosphatase, J. Biol. Chem. 246:1542.PubMedGoogle Scholar
  14. Beinert, H., and Palmer, G., 1965, Contributions of EPR spectroscopy to our knowledge of oxidative enzymes, Adv. Enzymol. 27:105.PubMedGoogle Scholar
  15. Bogin, E., Higashi, T., and Brodie, A. F., 1969, Exogenous NADH oxidation and particulate fumarate reductase in Mycobacterium phlei, Arch. Biochem. Biophys. 129:211.PubMedCrossRefGoogle Scholar
  16. Brierley, G. P., Merola, A. J., and Fleischer, S., 1962, Studies of the electron-transfer systems. Sites of phospholipid involvement in the electron-transfer chain, Biochim. Biophys. Acta 64:218.PubMedCrossRefGoogle Scholar
  17. Brodie, A. F., 1959, Oxidative phosphorylation in fractionated bacterial systems. Role of soluble factors, J. Biol. Chem. 234:398.PubMedGoogle Scholar
  18. Brodie, A. F., 1961, Vitamin K and other quinones as coenzymes in oxidative phosphorylation in bacterial systems, Fed. Proc. 20:995.PubMedGoogle Scholar
  19. Brodie, A. F., and Adelson, J. W., 1965, Respiratory chains and sites of couple phosphorylation, Science 149:265.PubMedCrossRefGoogle Scholar
  20. Brodie, A. F., and Ballantine, J., 1960, Oxidative phosphorylation in fractioned bacterial systems. III. Specificity of vitamin K reactivation, J. Biol. Chem. 235:232.PubMedGoogle Scholar
  21. Brodie, A. F., and Gray, C. T., 1965, Activation of coupled oxidative phosphorylation in bacterial particulates by a soluble factor(s), Biochim. Biophys. Acta 19:384.CrossRefGoogle Scholar
  22. Capaldi, R. A., and VanderKooi, G., 1972, The low polarity of many membrane protein (soluble proteins/polar amino acids/hydrophobicity/polarity index), Proc. Natl. Acad. Sci. U.S.A. 69:930.PubMedCrossRefGoogle Scholar
  23. Cohn, D. V., 1956, The oxidation of malic acid by Micrococcus lysodeikticus, J. Biol. Chem. 221:413.PubMedGoogle Scholar
  24. Cross, R. J. Taggert, J., Coro, G., and Green, D. E., 1949, Studies on the cytophorase system. The coupling of oxidation and phosphorylation, J. Biol. Chem. 177:655.PubMedGoogle Scholar
  25. Deamer, D. W., Prince, C. R., and Crofts, A. R., 1972, The response of fluorescent amine to pH gradients across liposome membranes, Biochim. Biophys. Acta 274:323.PubMedCrossRefGoogle Scholar
  26. Fenster, L. J., and Copenhaver, C J., Jr., 1967, Phosphatidyl serine requirement of (Na +—K +)-activated adenosine triphosphatase from rat kidney and brain, Biochim. Biophys. Acta 137:406.PubMedGoogle Scholar
  27. Fleischer, S., and Klouwen, H., 1961, Role of soluble lipid in mitochondrial enzyme systems, Biochem. Biophys. Res. Commun. 5:378.CrossRefGoogle Scholar
  28. Fleischer, S., Brierley, G., Klouwen, H., and Slautterback, D. B., 1962, Studies of the electron transfer system. XLVII. The role of phospholipids in electron transfer, J. Biol. Chem. 237:3264.PubMedGoogle Scholar
  29. Frieden, C., 1959, Glutamic dehydrogenase; The effect of various nucleotides on the association dissociation and kinetic properties, J. Biol. Chem. 234:815.PubMedGoogle Scholar
  30. Gale, P. H., Arison, C. H., Trenner, N. R., Page, A. C., Jr., Folkers, K., and Brodie, A. F., 1963, Characterization of vitamin K9 (II-H) from Mycobacterium phlei, Biochemistry 2:200.PubMedCrossRefGoogle Scholar
  31. Green, D. E., and Fleischer, S., 1963, The role of lipids in mitochondrial electron transfer and oxidative phosphorylation, Biochim. Biophys. Acta 70:554.PubMedCrossRefGoogle Scholar
  32. Grover, A. K., Slotboom, A. J., DeHaas, G. H., and Hammes, G. G., 1975, Lipid specificity of β-hydroxybutyrate dehydrogenase activation, J. Biol. Chem. 250:31.PubMedGoogle Scholar
  33. Hathaway, J. A., and Atkinson, D. E., 1963, The effect of adenylic acid on yeast nicotinamide adenine dinucleotide isocitrate dehydrogenase, a possible metabolic control mechanism, J. Biol. Chem. 238:2875.PubMedGoogle Scholar
  34. Higashi, T., Bogin, E., and Brodie, A. F., 1969, Separation of a factor indispensable for coupled phosphorylation from the particulate fraction of Mycobacterium phlei, J. Biol. Chem. 244:500.PubMedGoogle Scholar
  35. Higashi, T., Kalra, V. K., Lee, S. H., Bogin, E., and Brodie, A. E., 1975, Energy-transducing membrane-bound coupling factor-ATPase from Mycobacterium phlei, J. Biol. Chem. 250:6541.PubMedGoogle Scholar
  36. Hinkle, P., 1970, A model system for mitochondrial ion transport and respiratory control, Biochem. Biophys. Res. Commun. 47:633.Google Scholar
  37. Hirata, H., and Brodie, A. F., 1972, Membrane orientation and active transport of proline, Biochem. Biophys. Res. Commun. 47:633.PubMedCrossRefGoogle Scholar
  38. Hirata, H., Kosmakos, F. C., and Brodie, A. F., 1974, Active transport of proline in membrane preparations from Mycobacterium phlei, J. Biol. Chem. 249:6965.PubMedGoogle Scholar
  39. Hinds, T. R., and Brodie, A. F., 1974, The relationship of a proton gradient to the active transport of proline with membrane vesicles from Mycobacterium phlei, Proc. Natl. Acad. Sci. U.S.A. 71:1202.PubMedCrossRefGoogle Scholar
  40. Imai, K., and Brodie, A. F., 1973, A phospholipid requiring enzyme, malate vitamin K reductase; Purification and characterization, J. Biol. Chem. 248:7487.Google Scholar
  41. Imai, K., and Brodie, A. F., 1974, Transmembrane electron transfer in an enzyme-phospholipid complex, Biochem. Biophys. Res. Commun. 56:822.PubMedCrossRefGoogle Scholar
  42. Ito, A., and Sato, R., 1968, Purification by means of detergents and properties of cytochrome b 5 from liver microsomes, J. Biol. Chem. 243:4922.PubMedGoogle Scholar
  43. Jurtshuk, P., Jr., Sekuzn, I., and Green, D. E., 1963, Studies on the electron transfer system. LVI. On the formation of an active complex between the Apo-D(—)-βS-hydroxybutyric dehydrogenase and micellar lecithin, J. Biol. Chem. 238:3595.PubMedGoogle Scholar
  44. Kalra, V. K., and Brodie, A. F., 1971, Effect of N, N′-dicyclohexylcarbodiimide (DCCD) on electron transport particles from Mycobacterium phlei, Arch. Biochem. Biophys. 147:653.PubMedCrossRefGoogle Scholar
  45. Kashket, E., and Brodie, A. F., 1963, Oxidative phosphorylation in fractionated bacterial systems VIII. Role of particulate and soluble fractions from Escherichia coli, Biochim. Biophys. Acta 78:52.PubMedCrossRefGoogle Scholar
  46. Kimelberg, H. K., Lee, C. P., Claude, A., and Mrena, E., 1970, Interaction of cytochrome c with phospholipid membranes, J. Memb. Biol. 2:235.CrossRefGoogle Scholar
  47. Kimura, T., and Tobari, J., 1963, Participation of flavin-adenine dinucleotide in the activity of malate dehydrogenase from Mycobacterium avium. Biochim. Biophys. Acta 73:399.PubMedCrossRefGoogle Scholar
  48. Kuramitsu, H. K., 1966, The effects of adenine nucleotides of pig heart malate dehydrogenase, Biochem. Biophys. Res. Commun. 23:329.PubMedCrossRefGoogle Scholar
  49. Kurup, C. K. R., and Brodie, A. F., 1967, Nonheme iron; A functional component of malate vitamin K reductase, Biochem. Biophys. Res. Commun. 28:862.PubMedCrossRefGoogle Scholar
  50. Loomis, W. F., and Lipmann, F., 1948, Reversible inhibition of the coupling between phosphorylation and oxidation, J. Biol. Chem. 173:807.PubMedGoogle Scholar
  51. Mansour, T. E., 1963, Studies on heart phosphofructokinase: Purification, inhibition and activation, J. Biol. Chem. 238:2285.Google Scholar
  52. Miller, A. L., and Levy, H. R., 1969, Rat mammary acetyl coenzyme A carboxylase. I. Isolation and characterization, J. Biol. Chem. 244:2334.PubMedGoogle Scholar
  53. Murthy, P. S., Bogin, E., Higashi, T., and Brodie, A. F., 1969, Properties of soluble malate vitamin K reductase and associated phosphorylation, J. Biol. Chem. 244:3117.PubMedGoogle Scholar
  54. Ohnishi, T., and Kawamura, H., 1963, Contractile proteins and phospholipids in active transport of cations in erythrocyte membranes, J. Phys. Soc. Jpn, 18:1559.CrossRefGoogle Scholar
  55. Palatini, P., Dabbeni-Sala, F. C., and Bruni, A., 1972, Reactivation of phospholipid depleted sodium, potassium-stimulated ATPase, Biochim. Biophys. Acta 288:413.PubMedCrossRefGoogle Scholar
  56. Passonneau, J. V., and Lowry, O. H., 1962, Phosphofructokinase and the pasteur effect, Biochem. Biophys. Res. Commun. 7:10.PubMedCrossRefGoogle Scholar
  57. Prasad, R., Kalra, V. K., and Brodie, A. F., 1975a, Effect of phospholipase A on the structure and functions of membrane vesicles from Mycobacterium phlei, J. Biol. Chem. 250:3690.PubMedGoogle Scholar
  58. Prasad, R., Kalra, V. K., and Brodie, A. F., 1975b, Effect of phospholipase A on active transport of amino acids with membrane vesicles of Mycobacterium phlei, J. Biol. Chem. 250:3699.PubMedGoogle Scholar
  59. Qureshi, A. A., Beytie, E. D., and Porter, J. W., 1972, Squalene synthetaste. I. Dissociation and reassociation of enzyme complex, Biochem. Biophys. Res. Commun. 48:1123.PubMedCrossRefGoogle Scholar
  60. Ramaiah, A., Hathaway, J. A., and Atkinson, D. E., 1964, Adenylate as a metabolic regulator, J. Biol. Chem. 239:3619.PubMedGoogle Scholar
  61. Reich, M., and Wainio, W. W., 1961, Role of phospholipids in cytochrome c oxidase activity, J. Biol. Chem. 236:3062.PubMedGoogle Scholar
  62. Revsin, B., Marquez, E. D., and Brodie, A. F., 1970a, Cytochromes from Mycobacterium phlei. I. Isolated and spectral properties of a mixture of cytochromes (a+a 3) (o), Arch. Biochem. Biophys. 139:114.PubMedCrossRefGoogle Scholar
  63. Revsin, B. Marquez, E. D., and Brodie, A. F., 1970b, Cytochromes from Mycobacterium phlei. II. Ascorbate reduction of an isolated cytochrome (a+a 3) (0) complex, Arch. Biochem. Biophys. 136:563.PubMedCrossRefGoogle Scholar
  64. Scanu, A., 1967, Binding of human serum high density lipoprotein apo protein with aqueous dispensions of phospholipids, J. Biol. Chem. 242:711.PubMedGoogle Scholar
  65. Singer, T. P., 1966, Flavoprotein dehydrogenesis of respiratory chain, in: Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 14, p. 127, Elsevier Publishing Co., New York.Google Scholar
  66. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.PubMedCrossRefGoogle Scholar
  67. Stahl, W. L., 1973, Phospholipase c purification and specificity with respect to individual phospholipids and brain microsomal membrane phospholipids, Arch. Biochem. Biophys. 154:47.PubMedCrossRefGoogle Scholar
  68. Tobari, J., 1964, Requirement of flavin adenine nucleotide and phospholipid for the activity of malate dehydrogenase from Mycobacterium avium, Biochem. Biophys. Res. Commun. 15:50.PubMedCrossRefGoogle Scholar
  69. VanderKooi, G., and Green, D. E., 1970, Biological membrane structure, I. The protein crystal model for membranes, Proc. Natl. Acad. Sci. U.S.A. 66:615.PubMedCrossRefGoogle Scholar
  70. Van Eys, J., Ciotti, M. M., and Kaplan, N. O., 1958, Yeast alcohol dehydrogenase: Coenzyme binding sites, J. Biol. Chem. 231:571.Google Scholar
  71. Wharton, D. C., and Griffiths, D. E., 1962, Studies on the electron transport system; Assay of cytochrome oxidase. Effect of phospholipids and other factors, Arch. Biochem. Biophys. 96:102.CrossRefGoogle Scholar
  72. Wheeler, K. P., and Whittam, R., 1970, The involvement of phosphatidyl serine in adenosine triphosphatase activity of the sodium pump, J. Physiol. 207:303.PubMedGoogle Scholar
  73. Worcel, A., Goldman, D. S., and Cleland, W. W., 1965, An allosteric reduced nicotinamide adenine dinucleotide oxidase from Mycobacterium tuberculosis, J. Biol. Chem. 240:3399.PubMedGoogle Scholar
  74. Wosilait, W. D., 1960, The reduction of vitamin K1 by an enzyme from dog liver, J. Biol. Chem. 235:1196.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Rajendra Prasad
    • 1
  • Arnold F. Brodie
    • 1
  1. 1.Department of BiochemistryUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations