Skip to main content

Membrane-Bound Enzymes from Mycobacterium phlei; Malate Vitamin K Reductase

  • Chapter
The Enzymes of Biological Membranes

Abstract

It is widely recognized that the enzymes of the living cell operate within the framework of a highly organized structure or by intracellular compartmentalization. A large number of cellular enzymes are located in membranes and referred to as membrane-bound enzymes. Included in this category are the enzymes located in the plasma membrane, mitochondria, and microsomes, as well as those found in bacteria and plant membranes. In fact, this definition can be extended to those proteins which catalyze the physical translocation of substrates and are responsible for transmembrane transport of solutes against a concentration gradient. The existence of membrane-bound enzymes has been known for many years, but not much attention has been given to them for detailed studies since either their structural organization or functions are lost on isolation. However, in the last 10 years, it has become clear that many membrane-bound enzymes require the lipid components of membranes for activity and that the previous difficulties in solubilization of these membrane components were due to the failure to recognize the lipid requirements. Nevertheless, it should be emphasized that enzyme complexes which require physical and spatial orientation to one another must remain intact for enzymatic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, A., 1960, Metabolically dependent preparation of oligosaccharides into bacterial cells and protoplast, J. Biol. Chem. 235:1281.

    PubMed  CAS  Google Scholar 

  • Abrams, A., and Baron, C., 1967, The isolation and subunit structure of streptococcal membrane ATPase, Biochemistry 6:225.

    Article  PubMed  CAS  Google Scholar 

  • Abrams, A., and Baron, C., Reversible attachment of ATPase to streptococcal membranes and the effect of magnesium ions, Biochemistry 7:501.

    Google Scholar 

  • Abrams, A. McNamara, P., and Johnson, F. B., 1960, Adenosine triphosphatase in isolated bacterial cell membranes, J. Biol. Chem. 235:3659.

    CAS  Google Scholar 

  • Abrams, A., Baron, C., and Schnebli, H., 1974, The isolation of bacterial membrane ATPase and nectin, in: Methods in Enzymology (S. Fleischer and L. Packer, eds.), Vol. 32, p. 428, Academic Press, New York.

    Google Scholar 

  • Asano, A., and Brodie, A. F., 1963a, Oxidative phosphorylation in fractionated bacterial systems. XII. The properties of malate vitamin K reductase, Biochem. Biophys. Res. Commun. 13:423.

    Article  CAS  Google Scholar 

  • Asano, A., and Brodie, A. F., 1963b, Oxidative phosphorylation in fractionated bacterial systems. XI. Separation of soluble factors necessary for oxidative phosphorylation, Biochem. Biophys. Res. Commun. 13:416.

    Article  CAS  Google Scholar 

  • Asano, A., and Brodie, A. F., 1964, Oxidative phosphorylation in fractionated bacterial systems. XIV. Respiratory chains of Mycobacterium phlei, J. Biol. Chem. 239:4280.

    PubMed  CAS  Google Scholar 

  • Asano, A., and Brodie, A. F., 1965, Oxidative phosphorylation in fractioned bacterial systems. XVII. Phosphorylation coupled to different segments of the respiratory chains of Mycobacterium phlei, J. Biol. Chem. 240:4002.

    PubMed  CAS  Google Scholar 

  • Asano, A., Kaneshiro, T., and Brodie, A. F., 1965, Malate vitamin K reductase, a phospholipid requiring enzyme, J. Biol. Chem. 240:895.

    PubMed  CAS  Google Scholar 

  • Asano, A., Cohen, N. S., Baker, R. F., and Brodie, A. F., 1973, Orientation of the cell membrane in ghosts and electron transport particles of Mycobacterium phlei, J. Biol. Chem. 248:3386

    PubMed  CAS  Google Scholar 

  • Atkinson, D. E., 1965, Biological feedback control at the molecular level, Science 150:851.

    Article  PubMed  CAS  Google Scholar 

  • Baron, C., and Abrams, A., 1971, Isolation of a bacterial membrane protein nectin, essential for the attachment of adenosine triphosphatase, J. Biol. Chem. 246:1542.

    PubMed  CAS  Google Scholar 

  • Beinert, H., and Palmer, G., 1965, Contributions of EPR spectroscopy to our knowledge of oxidative enzymes, Adv. Enzymol. 27:105.

    PubMed  Google Scholar 

  • Bogin, E., Higashi, T., and Brodie, A. F., 1969, Exogenous NADH oxidation and particulate fumarate reductase in Mycobacterium phlei, Arch. Biochem. Biophys. 129:211.

    Article  PubMed  CAS  Google Scholar 

  • Brierley, G. P., Merola, A. J., and Fleischer, S., 1962, Studies of the electron-transfer systems. Sites of phospholipid involvement in the electron-transfer chain, Biochim. Biophys. Acta 64:218.

    Article  PubMed  CAS  Google Scholar 

  • Brodie, A. F., 1959, Oxidative phosphorylation in fractionated bacterial systems. Role of soluble factors, J. Biol. Chem. 234:398.

    PubMed  CAS  Google Scholar 

  • Brodie, A. F., 1961, Vitamin K and other quinones as coenzymes in oxidative phosphorylation in bacterial systems, Fed. Proc. 20:995.

    PubMed  CAS  Google Scholar 

  • Brodie, A. F., and Adelson, J. W., 1965, Respiratory chains and sites of couple phosphorylation, Science 149:265.

    Article  PubMed  CAS  Google Scholar 

  • Brodie, A. F., and Ballantine, J., 1960, Oxidative phosphorylation in fractioned bacterial systems. III. Specificity of vitamin K reactivation, J. Biol. Chem. 235:232.

    PubMed  CAS  Google Scholar 

  • Brodie, A. F., and Gray, C. T., 1965, Activation of coupled oxidative phosphorylation in bacterial particulates by a soluble factor(s), Biochim. Biophys. Acta 19:384.

    Article  Google Scholar 

  • Capaldi, R. A., and VanderKooi, G., 1972, The low polarity of many membrane protein (soluble proteins/polar amino acids/hydrophobicity/polarity index), Proc. Natl. Acad. Sci. U.S.A. 69:930.

    Article  PubMed  CAS  Google Scholar 

  • Cohn, D. V., 1956, The oxidation of malic acid by Micrococcus lysodeikticus, J. Biol. Chem. 221:413.

    PubMed  CAS  Google Scholar 

  • Cross, R. J. Taggert, J., Coro, G., and Green, D. E., 1949, Studies on the cytophorase system. The coupling of oxidation and phosphorylation, J. Biol. Chem. 177:655.

    PubMed  CAS  Google Scholar 

  • Deamer, D. W., Prince, C. R., and Crofts, A. R., 1972, The response of fluorescent amine to pH gradients across liposome membranes, Biochim. Biophys. Acta 274:323.

    Article  PubMed  CAS  Google Scholar 

  • Fenster, L. J., and Copenhaver, C J., Jr., 1967, Phosphatidyl serine requirement of (Na +—K +)-activated adenosine triphosphatase from rat kidney and brain, Biochim. Biophys. Acta 137:406.

    PubMed  CAS  Google Scholar 

  • Fleischer, S., and Klouwen, H., 1961, Role of soluble lipid in mitochondrial enzyme systems, Biochem. Biophys. Res. Commun. 5:378.

    Article  CAS  Google Scholar 

  • Fleischer, S., Brierley, G., Klouwen, H., and Slautterback, D. B., 1962, Studies of the electron transfer system. XLVII. The role of phospholipids in electron transfer, J. Biol. Chem. 237:3264.

    PubMed  CAS  Google Scholar 

  • Frieden, C., 1959, Glutamic dehydrogenase; The effect of various nucleotides on the association dissociation and kinetic properties, J. Biol. Chem. 234:815.

    PubMed  CAS  Google Scholar 

  • Gale, P. H., Arison, C. H., Trenner, N. R., Page, A. C., Jr., Folkers, K., and Brodie, A. F., 1963, Characterization of vitamin K9 (II-H) from Mycobacterium phlei, Biochemistry 2:200.

    Article  PubMed  CAS  Google Scholar 

  • Green, D. E., and Fleischer, S., 1963, The role of lipids in mitochondrial electron transfer and oxidative phosphorylation, Biochim. Biophys. Acta 70:554.

    Article  PubMed  CAS  Google Scholar 

  • Grover, A. K., Slotboom, A. J., DeHaas, G. H., and Hammes, G. G., 1975, Lipid specificity of β-hydroxybutyrate dehydrogenase activation, J. Biol. Chem. 250:31.

    PubMed  CAS  Google Scholar 

  • Hathaway, J. A., and Atkinson, D. E., 1963, The effect of adenylic acid on yeast nicotinamide adenine dinucleotide isocitrate dehydrogenase, a possible metabolic control mechanism, J. Biol. Chem. 238:2875.

    PubMed  CAS  Google Scholar 

  • Higashi, T., Bogin, E., and Brodie, A. F., 1969, Separation of a factor indispensable for coupled phosphorylation from the particulate fraction of Mycobacterium phlei, J. Biol. Chem. 244:500.

    PubMed  CAS  Google Scholar 

  • Higashi, T., Kalra, V. K., Lee, S. H., Bogin, E., and Brodie, A. E., 1975, Energy-transducing membrane-bound coupling factor-ATPase from Mycobacterium phlei, J. Biol. Chem. 250:6541.

    PubMed  CAS  Google Scholar 

  • Hinkle, P., 1970, A model system for mitochondrial ion transport and respiratory control, Biochem. Biophys. Res. Commun. 47:633.

    Google Scholar 

  • Hirata, H., and Brodie, A. F., 1972, Membrane orientation and active transport of proline, Biochem. Biophys. Res. Commun. 47:633.

    Article  PubMed  CAS  Google Scholar 

  • Hirata, H., Kosmakos, F. C., and Brodie, A. F., 1974, Active transport of proline in membrane preparations from Mycobacterium phlei, J. Biol. Chem. 249:6965.

    PubMed  CAS  Google Scholar 

  • Hinds, T. R., and Brodie, A. F., 1974, The relationship of a proton gradient to the active transport of proline with membrane vesicles from Mycobacterium phlei, Proc. Natl. Acad. Sci. U.S.A. 71:1202.

    Article  PubMed  CAS  Google Scholar 

  • Imai, K., and Brodie, A. F., 1973, A phospholipid requiring enzyme, malate vitamin K reductase; Purification and characterization, J. Biol. Chem. 248:7487.

    CAS  Google Scholar 

  • Imai, K., and Brodie, A. F., 1974, Transmembrane electron transfer in an enzyme-phospholipid complex, Biochem. Biophys. Res. Commun. 56:822.

    Article  PubMed  CAS  Google Scholar 

  • Ito, A., and Sato, R., 1968, Purification by means of detergents and properties of cytochrome b 5 from liver microsomes, J. Biol. Chem. 243:4922.

    PubMed  CAS  Google Scholar 

  • Jurtshuk, P., Jr., Sekuzn, I., and Green, D. E., 1963, Studies on the electron transfer system. LVI. On the formation of an active complex between the Apo-D(—)-βS-hydroxybutyric dehydrogenase and micellar lecithin, J. Biol. Chem. 238:3595.

    PubMed  CAS  Google Scholar 

  • Kalra, V. K., and Brodie, A. F., 1971, Effect of N, N′-dicyclohexylcarbodiimide (DCCD) on electron transport particles from Mycobacterium phlei, Arch. Biochem. Biophys. 147:653.

    Article  PubMed  CAS  Google Scholar 

  • Kashket, E., and Brodie, A. F., 1963, Oxidative phosphorylation in fractionated bacterial systems VIII. Role of particulate and soluble fractions from Escherichia coli, Biochim. Biophys. Acta 78:52.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg, H. K., Lee, C. P., Claude, A., and Mrena, E., 1970, Interaction of cytochrome c with phospholipid membranes, J. Memb. Biol. 2:235.

    Article  Google Scholar 

  • Kimura, T., and Tobari, J., 1963, Participation of flavin-adenine dinucleotide in the activity of malate dehydrogenase from Mycobacterium avium. Biochim. Biophys. Acta 73:399.

    Article  PubMed  CAS  Google Scholar 

  • Kuramitsu, H. K., 1966, The effects of adenine nucleotides of pig heart malate dehydrogenase, Biochem. Biophys. Res. Commun. 23:329.

    Article  PubMed  CAS  Google Scholar 

  • Kurup, C. K. R., and Brodie, A. F., 1967, Nonheme iron; A functional component of malate vitamin K reductase, Biochem. Biophys. Res. Commun. 28:862.

    Article  PubMed  CAS  Google Scholar 

  • Loomis, W. F., and Lipmann, F., 1948, Reversible inhibition of the coupling between phosphorylation and oxidation, J. Biol. Chem. 173:807.

    PubMed  CAS  Google Scholar 

  • Mansour, T. E., 1963, Studies on heart phosphofructokinase: Purification, inhibition and activation, J. Biol. Chem. 238:2285.

    CAS  Google Scholar 

  • Miller, A. L., and Levy, H. R., 1969, Rat mammary acetyl coenzyme A carboxylase. I. Isolation and characterization, J. Biol. Chem. 244:2334.

    PubMed  CAS  Google Scholar 

  • Murthy, P. S., Bogin, E., Higashi, T., and Brodie, A. F., 1969, Properties of soluble malate vitamin K reductase and associated phosphorylation, J. Biol. Chem. 244:3117.

    PubMed  CAS  Google Scholar 

  • Ohnishi, T., and Kawamura, H., 1963, Contractile proteins and phospholipids in active transport of cations in erythrocyte membranes, J. Phys. Soc. Jpn, 18:1559.

    Article  Google Scholar 

  • Palatini, P., Dabbeni-Sala, F. C., and Bruni, A., 1972, Reactivation of phospholipid depleted sodium, potassium-stimulated ATPase, Biochim. Biophys. Acta 288:413.

    Article  PubMed  CAS  Google Scholar 

  • Passonneau, J. V., and Lowry, O. H., 1962, Phosphofructokinase and the pasteur effect, Biochem. Biophys. Res. Commun. 7:10.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, R., Kalra, V. K., and Brodie, A. F., 1975a, Effect of phospholipase A on the structure and functions of membrane vesicles from Mycobacterium phlei, J. Biol. Chem. 250:3690.

    PubMed  CAS  Google Scholar 

  • Prasad, R., Kalra, V. K., and Brodie, A. F., 1975b, Effect of phospholipase A on active transport of amino acids with membrane vesicles of Mycobacterium phlei, J. Biol. Chem. 250:3699.

    PubMed  CAS  Google Scholar 

  • Qureshi, A. A., Beytie, E. D., and Porter, J. W., 1972, Squalene synthetaste. I. Dissociation and reassociation of enzyme complex, Biochem. Biophys. Res. Commun. 48:1123.

    Article  PubMed  CAS  Google Scholar 

  • Ramaiah, A., Hathaway, J. A., and Atkinson, D. E., 1964, Adenylate as a metabolic regulator, J. Biol. Chem. 239:3619.

    PubMed  CAS  Google Scholar 

  • Reich, M., and Wainio, W. W., 1961, Role of phospholipids in cytochrome c oxidase activity, J. Biol. Chem. 236:3062.

    PubMed  CAS  Google Scholar 

  • Revsin, B., Marquez, E. D., and Brodie, A. F., 1970a, Cytochromes from Mycobacterium phlei. I. Isolated and spectral properties of a mixture of cytochromes (a+a 3) (o), Arch. Biochem. Biophys. 139:114.

    Article  PubMed  CAS  Google Scholar 

  • Revsin, B. Marquez, E. D., and Brodie, A. F., 1970b, Cytochromes from Mycobacterium phlei. II. Ascorbate reduction of an isolated cytochrome (a+a 3) (0) complex, Arch. Biochem. Biophys. 136:563.

    Article  PubMed  CAS  Google Scholar 

  • Scanu, A., 1967, Binding of human serum high density lipoprotein apo protein with aqueous dispensions of phospholipids, J. Biol. Chem. 242:711.

    PubMed  CAS  Google Scholar 

  • Singer, T. P., 1966, Flavoprotein dehydrogenesis of respiratory chain, in: Comprehensive Biochemistry (M. Florkin and E. H. Stotz, eds.), Vol. 14, p. 127, Elsevier Publishing Co., New York.

    Google Scholar 

  • Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, W. L., 1973, Phospholipase c purification and specificity with respect to individual phospholipids and brain microsomal membrane phospholipids, Arch. Biochem. Biophys. 154:47.

    Article  PubMed  CAS  Google Scholar 

  • Tobari, J., 1964, Requirement of flavin adenine nucleotide and phospholipid for the activity of malate dehydrogenase from Mycobacterium avium, Biochem. Biophys. Res. Commun. 15:50.

    Article  PubMed  CAS  Google Scholar 

  • VanderKooi, G., and Green, D. E., 1970, Biological membrane structure, I. The protein crystal model for membranes, Proc. Natl. Acad. Sci. U.S.A. 66:615.

    Article  PubMed  CAS  Google Scholar 

  • Van Eys, J., Ciotti, M. M., and Kaplan, N. O., 1958, Yeast alcohol dehydrogenase: Coenzyme binding sites, J. Biol. Chem. 231:571.

    Google Scholar 

  • Wharton, D. C., and Griffiths, D. E., 1962, Studies on the electron transport system; Assay of cytochrome oxidase. Effect of phospholipids and other factors, Arch. Biochem. Biophys. 96:102.

    Article  Google Scholar 

  • Wheeler, K. P., and Whittam, R., 1970, The involvement of phosphatidyl serine in adenosine triphosphatase activity of the sodium pump, J. Physiol. 207:303.

    PubMed  CAS  Google Scholar 

  • Worcel, A., Goldman, D. S., and Cleland, W. W., 1965, An allosteric reduced nicotinamide adenine dinucleotide oxidase from Mycobacterium tuberculosis, J. Biol. Chem. 240:3399.

    PubMed  CAS  Google Scholar 

  • Wosilait, W. D., 1960, The reduction of vitamin K1 by an enzyme from dog liver, J. Biol. Chem. 235:1196.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Prasad, R., Brodie, A.F. (1976). Membrane-Bound Enzymes from Mycobacterium phlei; Malate Vitamin K Reductase. In: Martonosi, A. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2658-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2658-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2660-1

  • Online ISBN: 978-1-4684-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics