Advertisement

Respiration and Energy Transduction in Escherichia coli

  • Richard W. Hendler

Abstract

The process of respiration and coupled energy transduction is one of the most impressive examples of high efficiency achieved in multienzyme systems organized on cell membranes. An obvious role of the membrane is to concentrate various components in loci that facilitate their interactions. A suspected role is to provide an essential environment for the formation of the high-energy state necessary for the subsequent synthesis of ATP or for direct use by the cell. Although the process of respiration is thermodynamically equivalent in all cell types, its details can be completely different as, for example, in E. coli and mammalian cells. In both cell types, hydrogen atoms are removed from substrates and the electrons are passed through a series of oxidation—reduction reactions ultimately to molecular oxygen, which upon reduction, unites with protons in the environment to form water. The free energy released from a given substrate in both E. coli and mammalian cells is the same and is almost completely accounted for by the change in free energy (ΔG) between the electrons held in the substrate and in water. For example, in the oxidation of pyruvate:
$${2}O_2 \to 3CO_2 + 2H_2 O\,\left( {\Delta G^\circ = - 280kcal} \right)$$
The △G associated with the difference in oxidation-reduction potential for five pairs of electrons in pyruvate and water is 263 kcal (Lehninger, 1964). The oxidation of pyruvate is accomplished in nine steps of the Krebs cycle, five of which involve the removal of pairs of hydrogen atoms from the intermediates by specific substrate dehydrogenases (see Lehninger, 1964). The electrons removed are passed to a common cytochrome and then follow a single path to the terminal electron acceptor, oxygen. Four of the five pairs of electrons are carried to the electron-transport chain by the coenzyme NAD, and one pair is transferred directly from the Krebs cycle intermediate, succinate. The respiratory or electron-transport chain of mammalian cell mitochondria has been extensively studied (see Lardy and Ferguson, 1969; Hall and Palmer, 1969) and is shown in Scheme 1.

Keywords

Active Transport Oxidative Phosphorylation Membrane Vesicle Electron Paramagnetic Resonance Signal Growth Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CCCP

carbonylcyanide-m-chlorophenylhydrazone

CoQ

coenzyme Q

cyt

cytochrome

DCCD

N,N′-dicyclohexylcarbodiimide

DOC

deoxycholate

fN.S. or D

flavo-protein dehydrogenase for N (NADH), S (succinate), or D (D-lactate)

HOQNO

2-heptyl-4-hydroxyquinoline-N-oxide

NEM

N-ethyl maleimide

N.H. Fe

nonheme iron protein

PMS

phenazine methosulfate

P/O ratio

number of high-energy phosphorylations for two electrons passed from substrate to oxygen

Q

ubiquinone

UQ1,2n

ubiquinone with 1,2, ..., n iso-prenoid units in side chain

TMC

thiomethyl-β-D-galactopyranoside

TPD

tetramethyl-p-phenylenediamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altendorf, K. H., and Staehlin, L. A., 1974, Orientation of membrane vesicles from Escherichiacoli, as detected by freeze-cleavage electron microscopy, J. Bacteriol. 117:888.PubMedGoogle Scholar
  2. Altendorf, K., Harold, F. M., and Simoni, R. D., 1974, Impairment and restoration of the energized state in membrane vesicles of a mutant of Escherichia coli lacking adenosine triphosphatase, J. Biol. Chem. 249:4587.PubMedGoogle Scholar
  3. Asano, A., Cohen, N. S., Baker, R. F., and Brodie, A. F., 1973, Orientation of the cell membrane in ghosts and electron transport particles of Mycobacterium phlei, J. Biol. Chem. 248:3386.PubMedGoogle Scholar
  4. Baillie, R. D., Hou, C., and Bragg, P. D., 1971, The preparation and properties of a solubilized respiratory complex from Escherichia coli, Biochim. Biophys. Acta 234:46.PubMedGoogle Scholar
  5. Barnes, E. M., Jr., and Kabagk, H. R., 1970, βp-Calactoside transport in bacterial membrane preparations: Energy coupling via membrane-bound D-lactate dehydrogenase, Proc. Natl. Acad. Sci. U.S.A. 66:1190.PubMedGoogle Scholar
  6. Barnes, E. M., Jr., and Kaback, H. R., 1971, Mechanisms of active transport in isolated membrane vesicles: I. The site of energy coupling between D-lactic dehydrogenase and β-galactoside transport in Escherichia coli membrane vesicles, J. Biol. Chem. 246:5518.PubMedGoogle Scholar
  7. Bauchop, T., and Elsden, S. R., 1960, The growth of micro-organisms in relation to their energy supply, J. Gen. Microbiol. 23:457.PubMedGoogle Scholar
  8. Birdsell, D. C., and Cota-Robles, E. H., 1970, Electron transport particles released upon lysis of spheroplasts of Escherichia coli B by Brij 58, Biochim. Biophys. Acta 216:250.PubMedGoogle Scholar
  9. Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70:1514.PubMedGoogle Scholar
  10. Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the stock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249:7747.PubMedGoogle Scholar
  11. Bragg, P. D., and Hou, C., 1967a, Reduced nicotinamide adenine dinucleotide oxidation in Escherichia coli particles: I. Properties and cleavage of the electron transport chain, Arch. Biochem. Biophys. 119:194.PubMedGoogle Scholar
  12. Bragg, P. D., and Hou, C., 1967b, Reduced nicotinamide adenine dinucleotide oxidation in Escherichia coli particles: II. NADH dehydrogenases, Arch. Biochem. Biophys. 119:202.PubMedGoogle Scholar
  13. Bragg, P. D., and Hou, C., 1968, Oxidative phosphorylation in Escherichia coli, Can. J. Biochem. 46:631.PubMedGoogle Scholar
  14. Bragg, P. D., and Hou, C., 1972, Purification of a factor for both aerobic-driven and ATP-driven energy-dependent transhydrogenases of Escherichia coli, FEBS Lett. 28:309.PubMedGoogle Scholar
  15. Bragg, P. D., and Hou, C., 1973, Reconstitution of energy-dependent transhydrogenase in ATPase-negative mutants of Escherichia coli, Biochem. Biophys. Res. Commun. 50:729.PubMedGoogle Scholar
  16. Bragg, P. D., D’Avies, P. L., and Hou, C., 1973, Effect of removal or modification of subunit polypeptides on the coupling factor and hydrolytic activities of the Ca2+ and Mg2+-activated adenosine triphosphatase of Escherichia coli, Arch. Biochem. Biophys. 159:664.Google Scholar
  17. Brierly, G. P., 1963, Ion accumulation in heart mitochondria, in: Energy-Linked Functions of Mitochondria (B. Chance, ed.), pp. 237–246, Academic Press, New York.Google Scholar
  18. Butlin, J. D., Cox, G. B., and Gibson, F., 1971, Oxidative phosphorylation in Escherichia coli K12: Mutations affecting magnesium ion-or calcium ion-stimulated adenosine triphosphatase, Biochem. J. 124:75.PubMedGoogle Scholar
  19. Butlin, J. D., Cox, G. B., and Gibson, F., 1972, Oxidative phosphorylation in Escherichia coli K12: The genetic and biochemical characterization of a strain carrying a mutation in the unc B gene, Biochim. Biophys. Acta 292:366.Google Scholar
  20. Carreiva, J., Leal, A. J., Rojas, M., and Munoz, E., 1973, Membrane ATPase of Escherichia coli K12: Selective solubilization of the enzyme and its stimulation by trypsin in the soluble and membrane-bound states, Biochim. Biophys. Acta 307:541.Google Scholar
  21. Change, B., and Williams, G. R., 1955, Respiratory enzymes in oxidative phosphorylation: II. Difference spectra, J. Biol. Chem. 217:398.Google Scholar
  22. Chance, B., and Williams, G. R., 1956a, Respiratory enzymes in oxidative phosphorylation: VI. The effects of adenosine diphosphate on azide-treated mitochondria, J. Biol. Chem. 221:477.PubMedGoogle Scholar
  23. Chance, B., and Williams, G. R., 1956b, The respiratory chain and oxidative phosphorylation, Adv. Enzymol. 17:65.Google Scholar
  24. Chance, B., Wilson, D. F., Dutton, P. L., and Erecinska, M., 1970, Energy-coupling mechanisms in mitochondria: Kinetic, spectroscopic, and thermodynamic properties of an energy-transducing form of cytochrome b*, Proc. Natl. Acad. Sci. U.S.A. 66:1175.PubMedGoogle Scholar
  25. Chappell, J. B., Cohn, M., and Greville, G. D., 1963, The accumulation of divalent ions by isolated mitochondria, in: Energy-Linked Functions of Mitochondria (B. Chance, ed.), pp. 219–231, Academic Press, New York.Google Scholar
  26. Clark, W. M., 1960, in: Oxidation-Reduction Potentials of Organic Systems, Waverly Press, Baltimore, Maryland.Google Scholar
  27. Cowell, J. L., 1974, Energetics of glycylglycine transport in Escherichia coli, J. Bacteriol. 120:139.PubMedGoogle Scholar
  28. Cowell, J. L., Raffeld, M., and Friedberg, I., 1973, Isolation, partial purification and properties of succinate dehydrogenase from Escherichia coli, Abstr. 73rd Ann. Meeting Am. Soc. Microbiol. p. 157 (p-100).Google Scholar
  29. Cox, G. B., and Gibson, F., 1974, Studies on electron transport and energy-linked reactions using mutants of Escherichia coli, Biochem. Biophys. Acta 346:1.PubMedGoogle Scholar
  30. Cox, G. B., Newton, N. A., Gibson, F., Snoswell, A. M., and Hamilton, J. A., 1970, The function of ubiquinone in Escherichia coli, Biochem. J. 117:551.PubMedGoogle Scholar
  31. Cox, G. B., Gibson, F., McCann, L. M., Butlin, J. D., and Crane, F. L., 1973a, Reconstitution of the energy-linked transhydrogenase activity in membranes from a mutant strain of Escherichia coli K12 lacking magnesium ion-or calcium ion-stimulated adenosine triphosphatase, Biochem. J. 132:689.PubMedGoogle Scholar
  32. Cox, G. B., Gibson, F., and McCann, L., 1973b, Reconstruction of oxidative phosphorylation and adenosine triphosphatase-dependent transhydrogenase activity of membrane fractions from unc A and une B mutant strains of Escherichia coli K12, Biochem. J. 134:1015.PubMedGoogle Scholar
  33. Cox, G. B., Gibson, F., and McCann, L., 1974, Oxidative phosphorylation in Escherichia coli K12: An uncoupled mutant with altered membrane structure, Biochem. J. 138:211.PubMedGoogle Scholar
  34. Curtis, S. J., 1974, Mechanism of energy coupling for transport of D-ribose in Escherichia coli, J. Bacteriol. 120:295.PubMedGoogle Scholar
  35. Danielson, L., and Ernster, L., 1963, Energy-dependent reduction of TPN by DPNH, in: Energy-Linked Functions of Mitochondria (B. Chance, ed.), pp. 167–175, Academic Press, New York.Google Scholar
  36. Deeb, S. S., and Hager, L. P., 1964, Crystalline cytochrome b 1 from Escherichia coli, J. Biol. Chem. 239:1024.PubMedGoogle Scholar
  37. DeMoss, R. D., Bard, R. C., and Gunsalus, I. C., 1951, The mechanism of heterolactic fermentation: A new route of ethanol formation, J. Bacteriol. 62:499.PubMedGoogle Scholar
  38. Devor, K. A., Schairer, H. LI., Renz, D., and Overath, P., 1974, Active transport of β-galac-tosides by a mutant of Escherichia coli defective in heme synthesis, Eur. J. Biochem. 45:451.PubMedGoogle Scholar
  39. Enoch, H. C., and Lester, R. L., 1974, Purification of formate dehydrogenase from Escherichia coli: Identification as a selenoenzyme, Fed. Proc. 33:1577 (Abstr. #2000).Google Scholar
  40. Ernster, L., 1963, The phosphorylation occurring in the flavoprotein region of the respiratory chain, in: Symposium on Intracellular Respiration (E. C. Slater, ed.), Proc. 5th Int. Congr. Biochem. Moscow, 1961. Vol. 5, pp. 115–145, Pergamon Press Ltd., Oxford.Google Scholar
  41. Evans, D. J., Jr., 1969, Membrane adenosine triphosphatase of Escherichia coli: Activation by calcium ion and inhibition by monovalent cations, J. Bacteriol. 100:914.PubMedGoogle Scholar
  42. Evans, D. J., Jr., 1970, Membrane Mg2+-(Ca2+)-activated adenosine triphosphatase of Escherichia coli: Characterization in the membrane-bound and solubilized states, J. Bacteriol. 104:1203.PubMedGoogle Scholar
  43. Futai, M., 1973, Membrane D-lactate dehydrogenase from Escherichia coli. Purification and properties, Biochemistry 12:2468.PubMedGoogle Scholar
  44. Futai, M., 1974a, Orientation of membrane vesicles from Escherichia coli prepared by different procedures, J. Membr. Biol. 15:15.PubMedGoogle Scholar
  45. Futai, M., 1974b, Stimulation of transport into Escherichia coli membrane vesicles by internally generated NADH, J. Bacteriol. 120:861.PubMedGoogle Scholar
  46. Futai, M., 1974c, Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases, Biochemistry 13:2327.PubMedGoogle Scholar
  47. Futai, M., Sternweis, P. C., and Heppel, L. A., 1974, Purification and properties of recon-stitutively active and inactive adenosinetriphosphatase from Escherichia coli, Proc. Natl. Acad. Sct. U.S.A. 71:2725.Google Scholar
  48. Gel′man, N. S., Lukoyanova, M. A., and Ostrovskii, D. N., 1967, in: Respiration and Phosphorylation of Bacteria (G. B. Pinchot, transi, ed.), pp. 71–140, Plenum Press, New York.Google Scholar
  49. Gel′man, N. S., Lukoyanova, M. A., and Ostrovskii, D. N., 1972, in: Membraney Bakteriy e Dichatelnaya Tzepy (in Russian) (Bacterial Membranes and the Respiratory Chain), Nauka, Moscow.Google Scholar
  50. Gibson, F., and Cox, G. B., 1973, The use of mutants of Escherichia coli K12 in studying electron transport and oxidative phosphorylation, in: Essays in Biochemistry (P. N. Campbell and F. Dickens, eds.), pp. 1–29, Academic Press, London.Google Scholar
  51. Gunsalis, I. C., and Gibbs, M., 1952, The heterolactic fermentation: II. Position of 14C in the products of glucose dissimilation by Leuconostic mesenteroides, J. Biol. Chem. 194:871.Google Scholar
  52. Gutman, M., Schejter, A., and Avi-Dor, Y., 1968, The preparation and properties of the mem-branal DPNH dehydrogenase from Escherichia coli, Biochim. Biophys. Acta 162:506.PubMedGoogle Scholar
  53. Gutnigk, D. L., Kanner, B. I., and Postma, P. W., 1972, Oxidative phosphorylation in mutants of Escherichia coli defective in energy transduction, Biochim. Biophys. Acta 283:217.Google Scholar
  54. Hall, D. O., and Palmer, S. M., 1969, Mitochondrial research today, Nature 221:717.PubMedGoogle Scholar
  55. Hamilton, J. A., Cox, G. B., Looney, F. D., and Gibson, B. J., 1970, Ubisemiquimone in membranes from Escherichia coli, Biochem. J. 116:319.PubMedGoogle Scholar
  56. Hampton, M. L., and Freese, E., 1974, Explanation for the apparent inefficiency of reduced nicotinamide adenine dinucleotide in energizing amino acid transport in membrane vesicles, J. Bacteriol. 118:497.PubMedGoogle Scholar
  57. Hanson, R. L., and Kennedy, E. P., 1973, Energy-transducing adenosine triphosphatase from Escherichia coli: Purification, properties and inhibition by antibody, J. Bacteriol. 114:772.PubMedGoogle Scholar
  58. Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36:172.PubMedGoogle Scholar
  59. Harold, F. M., and Baarda, J. R., 1968, Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction, J. Bacteriol. 96:2025.PubMedGoogle Scholar
  60. Harrison, D. E. F., and Loveless, J. E., 1971, The effect of growth conditions on respiratory activity and growth efficiency in facultative anaerobes grown in chemostat culture, J. Cen. Microbiol. 68:35.Google Scholar
  61. Hempfling, W. P., 1970a, Studies of the efficiency of oxidative phosphorylation in intact Escherichia coli B, Biochim. Biophys. Acta 205:169.PubMedGoogle Scholar
  62. Hempfling, W. P., 1970b, Repression of oxidative phosphorylation in Escherichia coli B by growth in glucose and other carbohydrates, Biochim. Biophys. Res. Commun. 41:9.Google Scholar
  63. Hendler, R. W., 1971, Respiration and protein synthesis in Escherichia coli membrane envelope fragments: V. On the reduction of nonheme iron and cytochromes by nicotinamide adenine dinucleotide and succinate, J. Cell. Biol. 51:664.PubMedGoogle Scholar
  64. Hendler, R. W., and Burgess, A. H., 1972, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments: VI. Solubilization and characterization of the electron transport chain, J. Cell Biol. 55:266.PubMedGoogle Scholar
  65. Hendler, R. W., and Burgess, A. H., 1974, Fractionation of the electron transport chain of Escherichia coli, Biochim. Biophys. Acta 357:215.PubMedGoogle Scholar
  66. Hendler, R. W., and Nanninga, N., 1970, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments: III. Electron microscopy and analysis of cytochromes, J. Cell Biol. 46:114.PubMedGoogle Scholar
  67. Hendler, R. W., Burgess, A. H., and Sgharff, R., 1969, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments: I. Oxidative activities with soluble substrates, J. Cell Biol. 42:715.PubMedGoogle Scholar
  68. Hendler, R. W., Burgess, A. H., and Sgharff, R., 1970, Respiration and protein synthesis in Escherichia coli membrane envelope fragments: II. Effects of fatty acids and albumin on respiration, J. Cell Biol. 44:376.PubMedGoogle Scholar
  69. Hendler, R. W., Towne, D. W., and Shrager, R. L., 1975, Redox properties of b-type cytochromes in E. coli and rat liver mitochondria and techniques for their analysis, Biochim. Biophys. Acta 376:42.PubMedGoogle Scholar
  70. Heppel, L. A., 1969, The effect of osmotic shock on release of bacterial proteins and on active transport, in: Membrane Proteins, pp. 95–109, Little, Brown & Co., Boston.Google Scholar
  71. Heppel, L. A., Rosen, B. P., Friedberg, I., Berger, E. A., and Weiner, J. H., 1972, in: Molecular Basis of Biological Transport (J. F. Woessner and F. Huijung, eds.), pp. 133–149, Academic Press, New York.Google Scholar
  72. Hertzberg, E. L., and Hinkle, P. C., 1974, Oxidative phosphorylation and proton translocation in membrane vesicles prepared from Escherichia coli, Biochem. Biophys. Res. Commun. 58:178.PubMedGoogle Scholar
  73. Hirata, H., and Brodie, A. F., 1972, Membrane orientation and active transport of proline, Biochem. Biophys. Res. Commun. 47:633.PubMedGoogle Scholar
  74. Hirata, H., Altendorf, K., and Harold, F. M., 1973, Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70:1804.PubMedGoogle Scholar
  75. Hong, J.-S., and Kaback, H. R., 1972, Mutants of Salmonella typhimurium and Escherichia coli pleio-tropically defective in active transport, Proc. Natl. Acad. Sci. U.S.A. 69:336.Google Scholar
  76. Hurwitz, J., 1958, Pentose phosphate cleavage by Leuconostic mesenteroides, Biochim. Biophys. Acta 28:599.PubMedGoogle Scholar
  77. Itagaki, E., Fujita, T., and Sato, R., 1961, Solubilization and some properties of formic dehydrogenase from Escherichia coli, Biochem. Biophys. Res. Commun. 5:30.PubMedGoogle Scholar
  78. Itagaki, E., Fujita, T., and Sato, R., 1962, Solubilization and properties of formate dehydrogenase and cytochrome b 1 from Escherichia coli, J. Biochem. (Tokyo) 52:131.Google Scholar
  79. Jarett, L., and Hendler, R. W., 1967, 2,4-Dinitrophenol and azide as inhibitors of protein and ribonucleic acid synthesis in anaerobic yeast, Biochemistry 6:1693.PubMedGoogle Scholar
  80. Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265:367.PubMedGoogle Scholar
  81. Kaback, H. R., and Barnes, E. M., Jr., 1971, Mechanisms and active transport in isolated membrane vesicles: The mechanism of energy coupling between D-lactic dehydrogenase and β-galactoside transport in membrane preparations from Escherichia coli, J. Biol. Chem. 246:5523.PubMedGoogle Scholar
  82. Kaback, H. R., and Milner, L. S., 1970, Relationship of a membrane-bound d-(—)-lactic dehydrogenase to amino acid transport in isolated bacterial membrane preparations, Proc. Natl. Acad. Sci. U.S.A. 66:1008.PubMedGoogle Scholar
  83. Kaback, H. R., Reeves, J. P., Short, S. A., and Lombardi, F. J., 1974, Mechanisms of active transport in isolated bacterial membrane vesicles: XVIII. The mechanism of action of car-bonylcyanide m-chlorophenylhydrazone, Arch. Biochem. Biophys. 160:215.PubMedGoogle Scholar
  84. Kanen, M. D., and Horio, T., Bacterial cytochromes: I. Structural aspects, Ann. Rev. Biochem. 39:673.Google Scholar
  85. Kanner, B. I., and Gutnick, D. L., 1972a, Energy linked nicotinamide adenine dinucleotide transhydrogenase in a mutant of Escherichia coli K12 lacking membrane Mg2+-Ca2+-activated adenosine triphosphatase, FEBS Lett. 22:197.PubMedGoogle Scholar
  86. Kanner, B. I., and Gutnick, D. L., 1972b, Use of neomycin in the isolation of mutants blocked in energy conservation in Escherichia coli, J. Bacteriol. 111:287.PubMedGoogle Scholar
  87. Kasahara, M., and Anraku, Y., 1974, Transport of sugars and amino acids in bacteria: XI. Mechanism of energy coupling reaction for the concentrative uptake of proline by Escherichia coli membrane vesicles, J. Biochem. Tokyo) 76:977.Google Scholar
  88. Kashket, E. R., and Brodie, A. F., 1963a, Oxidative phosphorylation in fractionated bacterial systems: X. Different roles for the natural quinones of Escherichia coli W in oxidative metabolism, J. Biol. Chem. 238:2564.Google Scholar
  89. Kashket, E. R., and Brodie, A. F., 1963b, Oxidative phosphorylation in fractionated bacterial systems: VIII. Role of particulate and soluble fractions from Escherichia coli, Biochim. Biophys. Acta 78:52.PubMedGoogle Scholar
  90. Kashket, E. R., and Wilson, T. H., 1972, Role of metabolic energy in the transport of β-galactos-ides by Streptococcus lactis, J. Bacteriol. 109:784.PubMedGoogle Scholar
  91. Kim, I. C., and Bragg, P. D., 1971, Some properties of the succinate dehydrogenase of Escherichia coli, Can. J. Biochem. 49:1098.PubMedGoogle Scholar
  92. King, T. E., 1966, Reconstitution of the respiratory chain, Adv. Enzymol. Relat. Subj. Biochem. 28:155.Google Scholar
  93. Klein, W. L., and Boyer, P. D., 1972, Energization of active transport by Escherichia coli, J. Biol. Chem. 247:7257.PubMedGoogle Scholar
  94. Kobayashi, H., and Anraku, Y., 1972, Membrane-bound adenosine triphosphatase of Escherichia coli. I. Partial purification and properties, J. Biochem. (Tokyo) 71:387.Google Scholar
  95. Kobayashi, H., Kin, E., and Anraku, Y., 1974, Transport of sugars and amino acids in bacteria: X. Sources of energy and energy coupling reactions of the active transport systems for iso-leucine and proline in E. coli, J. Biochem. (Tokyo) 76:251.Google Scholar
  96. Kohn, L. D., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial vesicles: XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli, J. Biol. Chem. 248:7012.PubMedGoogle Scholar
  97. Konings, W., and Freese, E., 1971, L-Serine transport in membrane vesicles of B. subtilis energized by NADH or reduced phenazine methosulfate, FEBS Lett. 14:65.PubMedGoogle Scholar
  98. Konings, W. N., and Freese, E., 1972, Amino acid transport in membrane vesicles of Bacillus subtilis, J. Biol. Chem. 247:2408.PubMedGoogle Scholar
  99. Konings, W. N., and Kaback, H. R., 1973, Anaerobic transport in Escherichia coli membrane vesicles, Proc. Natl. Acad. Sci. U.S.A. 70:3376.PubMedGoogle Scholar
  100. Konings. W. N., Barnes, E. M., and Kaback, H. R., 1971, Mechanisms of active transport in isolated membrane vesicles: III. The coupling of reduced phenazine methosulfate to the concentrative uptake of β-galactosides and amino acids, J. Biol. Chem. 246:5857.PubMedGoogle Scholar
  101. Lardy, H. A., and Ferguson, S. M., 1969, Oxidative phosphorylation in mitochondria, Annu. Rev. Biochem. 38:991.PubMedGoogle Scholar
  102. Lehninger, A. L., 1964, Energetics and mechanisms of electron transport and oxidative phosphorylation, in: The Mitochondrion, pp. 106–156, W. A. Benjamin, New York.Google Scholar
  103. Linnane, A. W., and Wrigley, C. W., 1963, Fragmentation of the electron transport chain of Escherichia coli: Preparation of a soluble formate dehydrogenase-cytochrome b 1 complex, Biochim. Biophys. Acta 77:408.PubMedGoogle Scholar
  104. Lombardi, F. J., and Kaback, H. R., 1972, Mechanisms of active transport in bacterial membrane vesicles: VIII. The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem. 247:7844.PubMedGoogle Scholar
  105. Lombardi, F. J., Reeves, J. P., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles: XIII. Valinomycin-induced rubidium transport, J. Biol. Chem. 248:3551.PubMedGoogle Scholar
  106. Matin, A., and Konings, W. N., 1973, Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis, and a Pseudomonas species, Eur. J. Biochem. 34:58.PubMedGoogle Scholar
  107. Mevel-Ninio, M. T., and Valentine, R. C., 1975, Energy requirement for biosynthesis of DNA in E. coli: Role of membrane-bound energy-transducing ATPase (coupling factor), Biochim. Biophys. Acta 376:485.PubMedGoogle Scholar
  108. Meyer, D. J., and Jones, C. W., 1973, Oxidative phosphorylation in bacteria which contain different cytochrome oxidases, Eur. J. Biochem. 36:144.PubMedGoogle Scholar
  109. Mitchell, P., 1963, Molecule group and electron translocation through natural membranes, Biochem. Soc. Symp. 22:142.Google Scholar
  110. Monod, J., 1942, in: Recherches sur la Croissance des Cultures Bacterienne, 2nd ed., pp. 5–136, Herman et cie., Paris.Google Scholar
  111. Nelson, N., Deters, D. W., Nelson, H., and Racker, E., 1973, Partial resolution of the enzymes catalyzing photophosphorylation XIII. Properties of isolated subunits of coupling factor 1 from spinach chloroplasts, J. Biol. Chem. 248:2049.PubMedGoogle Scholar
  112. Nelson, N., Kanner, B. I., and Gutnick, D. L., 1974, Purification and properties of Mg2+-Ca2+ adenosinetriphosphatase from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71:2720.PubMedGoogle Scholar
  113. Newton, N. A., Cox, C. B., and Gibson, F., 1971, The function of menaquinone (Vitamin K2) in Escherichia coli K-12, Biochim. Biophys. Acta 244:155.PubMedGoogle Scholar
  114. Nieuwenhuis, F. J. R. M., Kanner, B. I., Gutnick, D. L., Postma, P. W., and VanDam, K., 1973, Energy conservation in membranes of mutants of Escherichia coli defective in oxidative phosphorylation, Biochim. Biophys. Acta 325:62.PubMedGoogle Scholar
  115. Overath, P., Raufuss, E., Stoffel, W., and Ecker, W., 1967, The induction of the enzymes of fatty acid degradation in Escherichia coli, Biochem. Biophys. Res. Commun. 29:28.PubMedGoogle Scholar
  116. Pavlasova, E., and Harold, F. M., 1969, Energy coupling in the transport of β-galactosides by Escherichia coli: Effect of proton conductors, J. Bacteriol. 98:198.PubMedGoogle Scholar
  117. Pirt, S. J., 1965, The maintenance energy of bacteria in growing cultures, Proc. R. Soc. London, Ser. B 163:224.Google Scholar
  118. Prezioso, G., Hong, J.-S., Kerwar, G. K., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles: XII. Active transport by a mutant of Escherichia coli uncoupled for oxidative phosphorylation, Arch. Biochem. Biophys. 154:575.PubMedGoogle Scholar
  119. Racker, E., 1970, Function and structure of the inner membrane of mitochondria and chloro-plasts, in: Membranes of Mitochondria and Chloroplasts (E. Racker, ed.), pp. 127–171, Van Nostrand Reinhold, New York.Google Scholar
  120. Rayman, M. K., Theodore, C. Y. Lo, and Sanwal, B. D., 1972, Transport of succinate in Escherichia coli: II. Characteristics of uptake and energy coupling with transport in membrane preparations, J. Biol. Chem. 247:6332.PubMedGoogle Scholar
  121. Reeves, J. P., Hong, J.-S., and Kaback, H. R., 1973, Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70:1917.PubMedGoogle Scholar
  122. Ringler, R. L., Minakami, S., and Singer, T. P., 1963, Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase: II. Isolation and molecular properties of the enzyme from beef heart, J. Biol. Chem. 238:801.PubMedGoogle Scholar
  123. Roisin, M. P., and Kepes, A., 1972, The membrane ATPase of Escherichia coli I. Ion dependence and ATP-ADP exchange reaction, Biochim. Biophys. Acta 275:333.PubMedGoogle Scholar
  124. Roisin, M. P., and Kepes, A., 1973, The membrane ATPase of Escherichia coli II. Release into solution, allotropic properties and reconstitution of membrane-bound ATPase, Biochim. Biophys. Acta 305:249.PubMedGoogle Scholar
  125. Rosen, B. P., 1973a, β-Galactoside transport and proton movements in an adenosine triphosphatase-deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 53:1289.PubMedGoogle Scholar
  126. Rosen, B. P., 1973b, Restoration of active transport in an Mg2+-adenosine triphosphatase-deficient mutant of Escherichia coli, J. Bacteriol. 116:1124.PubMedGoogle Scholar
  127. Schairer, H. U., and Gruber, D., 1973, Mutants of Escherichia coli K12 defective in oxidative phosphorylation, Eur. J. Biochem. 37:282.PubMedGoogle Scholar
  128. Schairer, H. U., and Haddock, B. A., 1972, β-Galactoside accumulation in a Mg2+-Ca2−-activated ATPase deficient mutant of E. coli, Biochem. Biophys. Res. Commun. 48:544.PubMedGoogle Scholar
  129. Scharff, R., Hendler, R. W., Nanninga, N., and Burgess, A. H., 1972, Respiration and protein synthesis in Escherichia coli membrane-envelope fragments: IV. Chemical and cytological characterization and biosynthetic capabilities of fragments obtained by mild procedures, J. Cell Biol. 53:1.PubMedGoogle Scholar
  130. Senior, A. E., 1973, The structure of mitochondrial ATPase, Biochim. Biophys. Acta 301:249.PubMedGoogle Scholar
  131. Simoni, R. D., and Shallenberger, M. K., 1972, Coupling of energy to active transport of amino acids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69:2663.PubMedGoogle Scholar
  132. Singer, T. P., 1974, Determination of the activity of succinate, NADH, choline, and α-glycero-phosphate dehydrogenases, in: Methods of Biochemical Analysis (D. Glick, ed.), pp. 123–175, Wiley-Interscience, New York.Google Scholar
  133. Singer, T. P., Gutman, M., and Massey, V., 1973, Iron-sulfur flavoprotein dehydrogenases, in: Iron-Sulfur Proteins (W. Lovenberg, ed.), pp. 225–300, Academic Press, New York.Google Scholar
  134. Singh, A. P., and Bragg, P. D., 1974, Energization of phenylalanine transport and energy-dependent transhydrogenase by ATP in cytochrome-deficient Escherichia coli K-12, Biochem. Biophys. Res. Commun. 57:1200.PubMedGoogle Scholar
  135. Slater, E. C., 1967, Application of inhibitors and uncouplers for as tudy of oxidative phosphorylation, in: Methods in Enzymology (R. W. Estabrook and M. E. Pullman, eds.), pp. 48–57, Academic Press, New York.Google Scholar
  136. Snoswell, A. M., 1962, The reduction of diphosphopyridine nucleotide of rabbit-heart sarcosomes by succinate, Biochim. Biophys. Acta 60:143.PubMedGoogle Scholar
  137. Stouthamer, A. H., and Bettenhaussen, C., 1973, Utilization of energy for growth and maintenance in continuous batch cultures of microorganisms: A re-evaluation of the method for the determination of ATP production by measuring molar growth yields, Biochim. Biophys. Acta 301:53.PubMedGoogle Scholar
  138. Turnock, G., Erickson, S. K., Ackrell, A. C., and Birch, B., 1972, A mutant of Escherichia coli with a defect in energy metabolism, J. Cen. Microbiol. 70:507.Google Scholar
  139. VanThienen, G., and Postma, P. W., 1973, Coupling between energy conservation and active transport of serine in Escherichia coli, Biochim. Biophys. Acta 323:429.Google Scholar
  140. Weiner, J. H., 1974, The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli, J. Membr. Biol. 15:1.PubMedGoogle Scholar
  141. West, I., and Mitchell, P., 1972, Proton-coupled β-galactoside translocation in non-metabolizing Escherichia coli, J. Bioenerg. 3:445.PubMedGoogle Scholar
  142. West, I. C., and Wilson, T. H., 1973, Galactoside transport dissociated from proton movement in mutants of Escherichia coli, Biochem. Biophys. Res. Commun. 50:551.PubMedGoogle Scholar
  143. Wilson, D. F., and Dutton, P. L., 1970, Energy dependent changes in the oxidation-reduction potential of cytochrome b, Biochem. Biophys. Res. Commun. 39:59.PubMedGoogle Scholar
  144. Wilson, D. F., Dutton, P. L., and Wagner, M., 1973, Energy-transducing components in mitochondrial respiration, in: Current Topics in Bioenergetics (D. R. Sanadi and L. Packer, eds.), pp. 233–265, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Richard W. Hendler
    • 1
  1. 1.Laboratory of Cell Biology, National Heart and Lung InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations