Structure and Function of Membrane-Bound ATPase in Bacteria

  • Adolph Abrams


An ATPase first came to be recognized as a firmly bound component of bacterial cytoplasmic membranes from studies of S. faecalis protoplast ghosts (Abrams et al., 1960). It was suspected at that time that the enzyme might be involved in ATP-dependent energy transduction processes occurring in the permeability barrier of the cell. Evidence accumulated in recent years by many investigators has now clearly established that bacterial membrane ATPases catalyze respiratory-linked ATP synthesis, ATP-dependent transhydrogenation and ATP-dependent solute transport across the cytoplasmic membrane (Harold, 1972; Abrams and Smith, 1974; Cox and Gibson, 1974). Harold (1972) has discussed the energy-linked functions of bacterial ATPase in terms of the chemosmotic theory of Mitchell (1966). In studies with S. faecalis an aqueous extraction procedure was devised which is generally applicable for releasing the ATPase (Abrams, 1965). In vitro reconstitution of the ATPase-membrane complex, first accomplished with the S. faecalis system (Abrams, 1965; Abrams and Baron, 1968b), permits restoration of ATPase-dependent energy transductions. The ATPases from many bacteria have been purified and are now fairly well characterized although there is still much to be learned and surprising new aspects continually appear. An example of the latter is the discovery of tightly bound nucleotide in the enzyme (Abrams and Nolan, 1972; Abrams et al., 1973; Smith and Abrams, 1974).


Bacterial Membrane Zonal Sedimentation Adenosine Triphosphatase Subunit Structure Multivalent Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, A., 1965, The release of bound adenosine triphosphatase from isolated bacterial membranes and the properties of the solubilized enzyme, J. Biol. Chem. 240:3675.PubMedGoogle Scholar
  2. Abrams, A., and Baron, C., 1967, The isolation and subunit structure of streptococcal membrane adenosine triphosphatase, Biochemistry 6:225.PubMedCrossRefGoogle Scholar
  3. Abrams, A., and Baron, C., 1968a, Purification and characterization of protoplast membrane ATPase, in: Microbial Protoplasts, Spheroplasts and L-Forms (L. B. Guze, ed.), p. 163, Williams and Wilkins Co., Baltimore.Google Scholar
  4. Abrams, A., and Baron, C., 1968b, Reversible attachment of adenosine-triphosphatase to streptococcal membranes and the effect of magnesium ions, Biochemistry 7:501.PubMedCrossRefGoogle Scholar
  5. Abrams, A., and Baron, C., 1970, Inhibitory action of carbodiimides on bacterial membrane ATPase, Biochem. Biophys. Res. Commun. 41:858.PubMedCrossRefGoogle Scholar
  6. Abrams, A., and MgNamara, P., 1962, Polynucleotide Phosphorylase in bacterial cell membranes, J. Biol. Chem. 237:170.PubMedGoogle Scholar
  7. Abrams, A., and Nolan, E. A., 1972, Cellular incorporation of 32P-orthophosphate into the membrane ATPase of Streptococcus faecalis, Biochem. Biophys. Res. Commun. 48:982.PubMedCrossRefGoogle Scholar
  8. Abrams, A., and Smith, J. B., 1971, Increased membrane ATPase and K+ transport rates in Streptococcus faecalis induced by K+ restriction during growth, Biochem. Biophys. Res. Commun. 44:1488.PubMedCrossRefGoogle Scholar
  9. Abrams, A., and Smith, J. B., 1974, Bacterial membrane ATPase, in: The Enzymes, Vol. X (P. Boyer, ed.), pp. 395–429, Academic Press, New York.Google Scholar
  10. Abrams, A., McNamara, P., and Johnson, F. B., 1960, Adenosine triphosphatase in isolated bacterial cell membranes, J. Biol. Chem. 235:3659.Google Scholar
  11. Abrams, A., Smith, J. B., and Baron, C., 1972, Carbodiimide-resistant membrane adenosine triphosphatase in mutants of Streptcscus faecalis. Studies of the mechanism of resistance, J. Biol. Chem. 247:1484.PubMedGoogle Scholar
  12. Abrams, A., Nolan, E. A., Jensen, C., and Smith, J. B., 1973, Tightly bound adenine nucleotide in bacterial membrane ATPase, Biochem. Biophys. Res. Commun. 22:29.Google Scholar
  13. Abrams, A., Baron, C., and Sghnebli, H., 1974, The isolation of bacterial membrane ATPase and nectin, in: Methods in Enzymology, Vol. 32 (S. Fleischer and L. Packer, eds.), Part B, pp. 428–439, Academic Press, New York.Google Scholar
  14. Adolfsen, R., and Moudrianakis, E. N., 1973, Roles for metal ions in the hydrolysis of adenosine triphosphate by the 13S coupling factors of bacterial and mitochondrial oxidative phosphorylation, Biochemistry 12:2926.PubMedCrossRefGoogle Scholar
  15. Baron, C., and Abrams, A., 1971, Isolation of a bacterial membrane protein, nectin, essential for the attachment of adenosine triphosphatase, J. Biol. Chem. 246:1542.PubMedGoogle Scholar
  16. Beechey, R. B., Holloway, C. T., Knight, I. G., and Robertson, A. M., 1966, Dicyclohexyl-carbodiimide—an inhibitor of oxidative phosphorylation, Biochem. Biophys. Res. Commun. 23:75.PubMedCrossRefGoogle Scholar
  17. Bragg, P. D., and Hou, C., 1972, Purification of a factor for both aerobic-driven and ATP-driven energy-dependent transhydrogenases of Escherichia coli, FEBS Lett. 28:309.PubMedCrossRefGoogle Scholar
  18. Bragg, P. D., and Hou, C., 1973, Reconstitution of energy-dependent transhydrogenase in ATPase-negative mutants of Escherichia coli, Biochem. Biophys. Res. Commun. 50:729.PubMedCrossRefGoogle Scholar
  19. Bragg, P. D., Davies, P. L., and Hou, C., 1973, Effect of removal or modification of subunit polypeptides on the coupling factor and hydrolytic activities of the Ca2+ and Mg2+-activated adenosine triphosphatase of Escherichia coli, Arch. Biochem. Biophys. 159:664.CrossRefGoogle Scholar
  20. Butin, J. D., Cox, C. G., and Gibson, F., 1971, Oxidative phosphorylation in Escherichia coli K12. Mutations affecting magnesium ion or calcium ion-stimulated adenosine triphosphatase, Biochem. J. 124:75.Google Scholar
  21. Catterall, W. A., and Pederson, P. L., 1972, Adenosine triphosphatase from rat liver mitochondria. II. Interaction with adenosine diphosphate, J. Biol. Chem. 247:7969.PubMedGoogle Scholar
  22. Cox, C. B., and Gibson, F., 1974, Studies on electron transport and energy-linked reactions using mutants of Escherichia coli, Biochim. Biophys. Acta 346:1.PubMedGoogle Scholar
  23. Cox, G. B., Gibson, F., and MgCann, L., 1973, Reconstitution of oxidative phosphorylation and adenosine triphosphate dependent transhydrogenase activity by a combination of membrane fractions from unc A and unc B mutant strains of Escherichia coli K12, Biochem. J. 134:1015.PubMedGoogle Scholar
  24. Dahl, J. L., and Hokin, L. E., 1974, The sodium-potassium adenosine-triphosphatase, Ann. Rev Biochem. 43:327.PubMedCrossRefGoogle Scholar
  25. Davies, P. L., and Bragg, P. D., 1972, Properties of a soluble Ca2+ and Mg2+ activated ATPase released from Escherichia coli membranes, Biochim. Biophys. Acta 266:273.PubMedCrossRefGoogle Scholar
  26. Faust, D. J., and Vandemark, P. S., 1970, Phosphorylation coupled to NADH oxidation with fumarate in Streptococcus faecalis 10C1, Arch. Biochem. Biophys. 137:393.CrossRefGoogle Scholar
  27. Futai, M., Sternweiss, P. C., and Heppel, L. A., 1974, Purification and properties of reconstitu-tively active and inactive adenosinetriphosphatase from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71:2725.PubMedCrossRefGoogle Scholar
  28. Hachimori, A., Muramatsu, N., and Nosoh, Y., 1970, Studies on an ATPase of thermophilic bacteria. I. Purification and properties, Biochim. Biophys. Acta 206:426.PubMedGoogle Scholar
  29. Hanson, R. L., and Kennedy, E. P., 1973, Energy-transducing adenosine triphosphatase from Escherichia coli: Purification, properties and inhibition by antibody, J. Bacteriol. 114:772.PubMedGoogle Scholar
  30. Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36:172.PubMedGoogle Scholar
  31. Harold, F. M., Baarda, J. R., Baron, C., and Abrams, A., 1969, Inhibition of membrane-bound adenosine triphosphatase and of cation transport in Streptococcus faecalis by N,N′-dicyclohexyl-carbodiimide, J. Biol. Chem. 244:2261.PubMedGoogle Scholar
  32. Harris, D. A., Rosing, J., Van de Stadt, R. J., and Slater, E. C., 1973, Tight binding of adenine nucleotides to beef-heart mitochondrial ATPase, Biochim. Biophys. Acta 314:149.PubMedCrossRefGoogle Scholar
  33. Hasselbach, W., 1974, Sarcoplasmic membrane ATPases, in: The Enzymes, Vol. X (P. Boyer, ed.), pp. 431–467, Academic Press, New York.Google Scholar
  34. Ishida, M., and Mizushima, S., 1969, The membrane ATPase of Bacillus megaterium. II. Purification of membrane ATPases and their recombination with membrane, J. Biochem. 66:133.PubMedGoogle Scholar
  35. Johansson, B. C., Baltscheffsky, M., and Baltscheffsky, H., 1973, Purification and properties of a coupling factor (Ca2+-dependent adenosine triphosphatase) from Rhodospirillum rubrum, Eur. J. Biochem. 40:109.PubMedCrossRefGoogle Scholar
  36. Kaback, H. R., 1974, Transport studies in bacterial membrane vesicles, Science 186:882.PubMedCrossRefGoogle Scholar
  37. Kanner, B. I., and Gutnick, D. L., 1972, Energy-linked nicotine adenine dinucleotide transhydrogenase in a mutant of Escherichia coli K12 lacking membrane Mg2+, Ca2+-activated adenosine triphosphatase, FEBS Lett. 22:197.PubMedCrossRefGoogle Scholar
  38. Koning, A., and Guillory, R. J., 1973, Resolution of enzymes catalyzing energy-linked trans-hydrogenation, J. Biol. Chem. 248:1045.Google Scholar
  39. Mirsky, R., and Barlow, V., 1971, Purification and properties of ATPase from the cytoplasmic membrane of Bacillus megaterium KM, Biochim. Biophys. Acta 241:835.PubMedCrossRefGoogle Scholar
  40. Mirsky, R., and Barlow, V., 1973, Molecular weight, amino acid composition and other properties of membrane-bound ATPase from Bacillus megaterium KM, Biochim. Biophys. Acta 291:480.PubMedCrossRefGoogle Scholar
  41. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. Cambridge Phil. Soc. 41:445.CrossRefGoogle Scholar
  42. Munoz, E., Freer, J. H., Eller, D. J., and Salton, M. R. J., 1968, Membrane-associated ATPase activity from Micrococcus lysodeikticus, Biochim. Biophys. Acta 150:531.PubMedCrossRefGoogle Scholar
  43. Nelson, N., Kanner, B. I., and Gutnick, D. L., 1974, Purification and properties of Mg2+-Ca2+ adenosinetriphosphatase from Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 71:2720.PubMedCrossRefGoogle Scholar
  44. Oppenheim, J. D., and Salton, M. R. J., 1973, Localization and distribution of Micrococcus lyso-deikticus membrane ATPase determined by ferritin labeling, Biochim. Biophys. Acta 298:297.PubMedCrossRefGoogle Scholar
  45. Penefsky, H. S., 1974, Mitochondrial and chloroplast ATPases, in: The Enzymes, Vol. X (P. Boyer, ed.), pp. 375–394, Academic Press, New York.Google Scholar
  46. Racker, E., and Stoeckenius, W., 1974, Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, J. Biol. Chem. 249:662.PubMedGoogle Scholar
  47. Reed, D. W., and Raveed, D., 1972, Some properties of the ATPase from chromatophores of Rhodopseudomonas spheroides and its structural relationship to the bacteriochlorophyll proteins, Biochim. Biophys. Acta 281:79.Google Scholar
  48. Roisin, M. P., and Kepes, A., 1973, The membrane ATPase of Escherichia coli. II. Release into solution, allotopic properties and reconstitution of membrane-bound ATPase, Biochim. Biophys. Acta 305:249.PubMedCrossRefGoogle Scholar
  49. Roy, H., and Moudrianakis, E., 1971, Interactions between ADP and the coupling factor of photophosphorylation, Proc. Natl. Acad. Sci. U.S.A. 68:464.PubMedCrossRefGoogle Scholar
  50. Salton, M. R. J., and Schor, M. T., 1972, Subunit structure and properties of two forms of adenosine triphosphatase released from Micrococcus lysodeikticus membranes, Biochem. Biophys. Res. Commun. 49:350.PubMedCrossRefGoogle Scholar
  51. Salton, M. R. J., and Schor, M. T., 1974, Release and purification of Micrococcus lysodeikticus ATPase from membranes extracted with n-butanol, Biochim. Biophys. Acta 345:74.PubMedCrossRefGoogle Scholar
  52. Schairer, H. U., and Haddock, B. A., 1972, β-galactoside accumulation in a Mg2+-Ca2+ activated ATPase deficient mutant, Biochem. Biophys. Res. Commun. 48:544.PubMedCrossRefGoogle Scholar
  53. Schnebli, H., and Abrams, A., 1969, Purification and properties of membrane ATPase from Streptococcus faecalis, Fed. Proc. 28:464.Google Scholar
  54. Schnebli, H., and Abrams, A., 1970, Membrane adenosine triphosphatase from Streptococcus faecalis. Preparation and homogeneity, J. Biol. Chem. 245:1115.PubMedGoogle Scholar
  55. Schnebli, H., Vatter, A. E., and Abrams, A., 1970, Membrane adenosine triphosphatase from Streptococcus faecalis. Molecular weight, subunit structure and amino acid composition, J. Biol. Chem. 245:1122.PubMedGoogle Scholar
  56. Simoni, R. D., and Shallenberger, M. K., 1972, Coupling of energy to active transport of amino acids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69:2663.PubMedCrossRefGoogle Scholar
  57. Singh, A. P., and Bragg, P. D., 1974, Effect of dicyclohexylcarbodiimide on growth and membrane-mediated processes in wild type and heptose-deficient mutants of Escherichia coli K12, J. Bac-teriol. 119:129.Google Scholar
  58. Smith, J. B., and Abrams, A., 1973, Role of bacterial membrane ATPase in the active transport of amino acids, Fed. Proc. 32(3):599.Google Scholar
  59. Smith, J. B., and Abrams, A., 1974, Properties of the S. faecalis and E. coli ATPase-nucleotide complex formed in vitro, Fed. Proc. 55(5): 1257.Google Scholar
  60. Weber, K., and Osborn, M., 1969, J. Biol. Chem. 244:4406.PubMedGoogle Scholar
  61. Weltman, J. K., and Dowben, R. M., 1973, Relatedness among contractile and membrane proteins: Evidence for evolution from common ancestral genes, Proc. Natl. Acad. Sci. U.S.A. 70:3230.PubMedCrossRefGoogle Scholar
  62. Yamamoto, F. H., Mevel-Ninio, M., and Valentine, R. C., 1973, Essential role of membrane ATPase or coupling factor for anaerobic growth and anerobic active transport, Biochim. Biophys. Acta 314:267.PubMedCrossRefGoogle Scholar
  63. Zarlengo, M. H., and Schultz, S. G., 1966, Cation transport and metabolism in Streptococcus faecalis, Biochim. Biophys. Acta 126:308.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Adolph Abrams
    • 1
  1. 1.Department of BiochemistryUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations