Advertisement

The Bacterial Phosphoenolpyruvate Phosphotransferase System

  • Werner Kundig

Abstract

Translocation of certain carbohydrates (monosaccharides and disaccharides) across the cytoplasmic membranes of bacteria can occur by two major processes. These processes are distinguished by the nature of the primary energy source involved as well as the actual mechanism by which the translocation proceeds. The two systems are schematically shown in Figure 1 and can be described in the following manner:
  • Active transport. Systems of this type accumulate the solute in an unaltered form in the cytoplasm. The energy for the translocation is primarily derived from an energized membrane state (membrane potential or proton-motive force derived from electron transport or ATP hydrolysis).

  • Group translocation. This differs thermodynamically from “active transport” since the solute is accumulated in the cytoplasm in a derivatized form. Group translocation has so far been associated only with the translocation of sugars; these are accumulated in the form of phosphate esters. The mechanism responsible for this form of translocation is the phosphotransferase system (Figure 2) which uses phosphoenolpyruvate as its primary source of energy.

Keywords

Clostridium Thermocellum Phosphotransferase System Phosphoryl Transfer Lactose Transport Phosphoryl Moiety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, J., and Epstein, W., 1974, Phosphotransferase system enzymes II as chemoreceptors for certain sugars in Escherichia coli Chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 71:2895.PubMedCrossRefGoogle Scholar
  2. Anderson, B., Weigel, N., Kundig, W., and Roseman, S., 1971, Sugar transport. III: Purification and properties of a phosphocarrier protein (HPr) of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli, J. Biol. Chem. 246:7023.PubMedGoogle Scholar
  3. Berkowitz, D., 1971, D-Mannitol utilization in Salmonella typhimurium, J. Bacteriol. 105:232.PubMedGoogle Scholar
  4. Brown, C. E., and Romano, A. H., 1969, Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans, J. Bacteriol. 100:1198.PubMedGoogle Scholar
  5. Burd, G. I., Andreeva, I. V., Shabolenko, V. P., and Gershanovich, V. N., 1968, Absence of phosphotransferase system components in mutant Escherichia coli K12 with a disrupted carbohydrate transfer system, Mol. Biol. 2:89.Google Scholar
  6. Burd, G. I., Boil’shakova, T. N., and Gershanovich, V. N., 1973, Relationship between β-galac-toside transport and phosphoenolpyruvate dependent phosphotransferase system in Escherichia coli K12, Mol. Biol. 7:318.Google Scholar
  7. Cirillo, V. P., and Razin, S., 1972, Distribution of phosphoenolpyruvate-dependent sugar phosphotransferase systems in Mycoplasma, J. Bacteriol. 113:212.Google Scholar
  8. Cordaro, J. C., and Roseman, S., 1972, Deletion mapping of the genes coding for HPr and enzyme I of the phosphoenolpyruvate sugar phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 112:17.PubMedGoogle Scholar
  9. Cordaro, J. C., Anderson, B. P., Grogan, W. E., Jr., Wenzel, D. J., Engler, M., and Roseman, S., 1974a, Promoter-like mutation affecting HPr and enzyme I of the phosphoenolpyruvate phosphotransferase system in Salmonella typhimurium, J. Bacteriol. 120:245.PubMedGoogle Scholar
  10. Cordaro, J. C., Postma, P. W., and Roseman, S., 1974b, A mutation affecting membrane-bound enzymes in Salmonella typhimurium, Fed. Proc. 33:1326.Google Scholar
  11. Egan, J. B., and Morse, M. L., 1965, Carbohydrate transport in Staphylococcus aureus. II. Characterization of a pleiotropic transport mutation, Biochim. Biophys. Acta 109:172.PubMedCrossRefGoogle Scholar
  12. Epstein, W., Jewett, S., and Fox, C. F., 1970, Isolation and mapping of phosphotransferase mutants in Escherichia coli, J. Bacteriol. 104:293.Google Scholar
  13. Fox, C. F., and Wilson, G., 1968, The role of a phosphoenolpyruvate-dependent phosphotransferase system in β-glucoside transport in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 59:988.PubMedCrossRefGoogle Scholar
  14. Fraenkel, D. G., 1968, The phosphoenolpyruvate initiated pathway of fructose metabolism in Escherichia coli, J. Biol. Chem. 243:6458.PubMedGoogle Scholar
  15. Freese, E., Klofat, A., and Galliers, E., 1970, Commitment to sporulation and induction of glucose phosphoenolpyruvate phosphotransferase in Bacillus subtilis, Biochim. Biophys. Acta 222:265.PubMedCrossRefGoogle Scholar
  16. Gershanovich, V. N., Yurotskaya, N. V., and Burd, G. I., 1970, Pleiotropic disturbances of enzyme systems in Escherichia coli mutants with defects in Roseman’s phosphotransferase system, Mol. Biol. 4:534.Google Scholar
  17. Hanson, T. E., and Anderson, R. L., 1968, Phosphoenolpyruvate-dependent formation of D-fructose-1-phosphate by a four component phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 61:269.PubMedCrossRefGoogle Scholar
  18. Harold, F. N., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36:172.PubMedGoogle Scholar
  19. Hays, J. B., Simoni, R. D., and Roseman, S., 1973, Sugar transport. V: A trimeric lactose-specific phosphocarrier protein of the Staphylococcus aureus phosphotransferase system, J. Biol. Chem. 248:941.PubMedGoogle Scholar
  20. Hengstenberg, W., Egan, J. B., and Morse, M. L., 1967, Carbohydrate transport in Staphylococcus aureus: The accumulation of phosphorylated carbohydrate derivatives and evidence for a new enzyme splitting lactose-phosphate, Proc. Natl. Acad. Sci. U.S.A. 58:274.PubMedCrossRefGoogle Scholar
  21. Hengstenberg, W., Penberthy, W. K., Hill, K. L., and Morse, M. L., 1969, Phosphotransferase system of Staphylococcus aureus: Its requirement for the accumulation and metabolism of gaiac-tosides, J. Bacteriol. 99:383.PubMedGoogle Scholar
  22. Hugo, H. von, and Gottschalk, G., 1974, Distribution of 1-phosphofructokinase and the phospho-enolpyruvate phosphotransferase activity in Clostridia, FEBS Lett. 46:106.CrossRefGoogle Scholar
  23. Kabagk, H. R., 1968, The role of the phosphoenolpyruvate phosphotransferase system in the transport of sugars by isolated membrane preparation of Escherichia coli, J. Biol. Chem. 243:3711.Google Scholar
  24. Kornberg, H. L., and Smith, J., 1971, Genetic control of glucose uptake by Escherichia coli, FEBS Lett. 20:270.CrossRefGoogle Scholar
  25. Korte, T., and Hengstenberg, W., 1971, Purification and characterization of the inducible lactose specific membrane-bound complex of the Staphylococcus aureus phosphoenolpyruvate-dependent phosphotransferase system, Eur. J. Biochem. 23:295.PubMedCrossRefGoogle Scholar
  26. Kundig, W., 1974a, Molecular interactions in the bacterial phosphoenolpyruvate phosphotransferase system, J. Supramol. Struct. 2:695.PubMedCrossRefGoogle Scholar
  27. Kundig, W., 1974b, The bacterial phosphoenolpyruvate phosphotransferase system: Molecular interactions and biological function, Proceedings 1st Inter sectional Congress of the International Societies for Microbiology, Tokyo, Japan, 1974, vol. 1, p. 613.Google Scholar
  28. Kundig, W., and Roseman, S., 1971a, Sugar transport. I: Isolation of a phosphotransferase system from Escherichia coli, J. Biol. Chem. 246:1393.PubMedGoogle Scholar
  29. Kundig, W., and Roseman, S., 1971b, Sugar transport. II: Characterization of constitutive membrane-bound enzyme II of the Escherichia coli phosphotransferase system, J. Biol. Chem. 246:1407.PubMedGoogle Scholar
  30. Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 52:1067.PubMedCrossRefGoogle Scholar
  31. Kundig, W., Kundig, F. D., Anderson, B., and Roseman, S., 1966, Restoration of active transport of glycosides in Escherichia coli by a component of a phosphotransferase system, J. Biol. Chem. 241:3243.PubMedGoogle Scholar
  32. Lehninger, A. L., 1971, Biochemistry, Worth Publishers, Inc., New York.Google Scholar
  33. Levinson, S. L., and Krulwich, T. A., 1973, Alternate pathway for L-rhamnose transport in Arthrob acter pyridinolis, Arch. Biochem. Biophys. 160:445.CrossRefGoogle Scholar
  34. Lin, E. C. C., 1970, The genetics of bacterial transport systems, Annu. Rev. Cenet. 4:225.CrossRefGoogle Scholar
  35. McKay, L. L., Walter, L. A., Sandine, W. E., and Elliker, D. R., 1969, Involvement of phosphoenolpyruvate in lactose utilization by group N Streptococci, J. Bacteriol. 99:603.PubMedGoogle Scholar
  36. Nakazawa, T., Simoni, R. D., Hays, J. B., and Roseman, S., 1971, Phosphorylation of a sugar-specific protein component of the lactose transport system in Staphylococcus aureus, Biochem. Biophys. Res. Commun. 42:836.PubMedCrossRefGoogle Scholar
  37. Neville, M. M., Suskind, S. R., and Roseman, S., 1971, A derepressible active transport system for glucose in Neurospora crassa, J. Biol. Chem. 246:1294.PubMedGoogle Scholar
  38. Pastan, I., and Perlman, R. C., 1969, Repression of β-galactosidase synthesis by glucose in phosphotransferase mutants of Escherichia coli, J. Biol. Chem. 244:5836.PubMedGoogle Scholar
  39. Patni, N. J., and Alexander, J. K., 1971a, Utilization of glucose by Clostridium thermocellum: Presence of glucokinase and other glycolytic enzymes in cell extracts, J. Bacteriol. 105:220.PubMedGoogle Scholar
  40. Patni, N. J., and Alexander, J. K., 1971b, Catabolism of fructose and mannitol in Clostridium thermocellum: Presence of phosphoenolpyruvate: fructose phosphotransferase, fructose-1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase and mannitol 1-phosphate dehydrogenase in cell extracts, J. Bacteriol. 105:276.Google Scholar
  41. Romano, A. H., Eberhard, S. J., Dingle, S. L., and McDowell, T. D., 1970, Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria, J. Bacteriol. 104:808.PubMedGoogle Scholar
  42. Rose, S. P., and Fox, C. F., 1973, The β-glucoside phosphotransferase system of Escherichia coli. III: Properties of a P-HPr β-glucoside phosphotransferase extracted from membranes with detergents, J. Supramol. Struct. 1:565.PubMedCrossRefGoogle Scholar
  43. Roseman, S., 1972, Carbohydrate transport in bacterial cells, in: Metabolic Pathways, Vol. VI, Metabolic Transport (L. E. Hokin, ed.), p. 41, Academic Press, New York.Google Scholar
  44. Saier, M. H., Jr., and Roseman, S., 1971, Regulation of enzyme induction by a bacterial phosphotransferase system, Fed. Proc. 30:1097.Google Scholar
  45. Saier, M. H., Jr., and Roseman, S., 1972, Inducer exclusion and repression of enzyme synthesis in mutants of Salmonella typhimurium defective in enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system, J. Biol. Chem. 247:972.PubMedGoogle Scholar
  46. Saier, M. H., Jr., Simoni, R. D., and Roseman, S., 1970, The physiological behavior of enzyme I and heat-stable protein mutants of a bacterial phosphotransferase system, J. Biol. Chem. 245:5870.PubMedGoogle Scholar
  47. Saier, M. H., Jr., Feucht, B. U., and Roseman, S., 1971, Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria, J. Biol. Chem. 246:7819.PubMedGoogle Scholar
  48. Schaghter, H., 1973, On the interaction of Michaelis constants for transport, J. Biol. Chem. 248:974.Google Scholar
  49. Schaefler, S. J., 1967, Inducible systems for the utilization of β-glucosides, J. Bacteriol. 93:254.PubMedGoogle Scholar
  50. Schrecker, O., and Hengstenberg, W., 1971, Purification of the lactose-specific factor III of the staphylococcal phosphoenolpyruvate-dependent phosphotransferase system, FEBS Lett. 13:209.PubMedCrossRefGoogle Scholar
  51. Simoni, R. D., and Roseman, S., 1973, Sugar transport. VII: Lactose transport in Staphylococcus aureus, J. Biol. Chem. 248:966.PubMedGoogle Scholar
  52. Simoni, R. D., Levinthal, M., Kundig, F. D., Kundig, W., Anderson, B., Hartman, P. E., and Roseman, S., 1967, Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport, Proc. Natl. Acad. Sci. U.S.A. 58:1963.PubMedCrossRefGoogle Scholar
  53. Simoni, R. D., Smith, M., and Roseman, S., 1968, Resolution of a staphylococcal phosphotransferase system into four protein components and its relation to sugar transport, Biochem. Biophys. Res. Commun. 31:804.PubMedCrossRefGoogle Scholar
  54. Simoni, R. D., Nakazawa, T., Hays, J. B., and Roseman, S., 1973a, Sugar transport. IV: Isolation and characterization of a lactose phosphotransferase system in Staphylococcus aureus, J. Biol. Chem. 248:932.PubMedGoogle Scholar
  55. Simoni, R. D., Hays, J. B., Nakazawa, T., and Roseman, S., 1973b, Sugar transport. VI: Phos-phoryl transfer in the lactose phosphotransferase system of Staphylococcus aureus, J. Biol. Chem. 248:957.PubMedGoogle Scholar
  56. Sobel, M. E., and Krulwich, T. A., 1973, Metabolism of D-fructose in Arthrobacter pyridinolis, J. Bacteriol. 113:907.PubMedGoogle Scholar
  57. Stein, R., Schrecker, O., Lauppe, W. F., and Hengstenberg, W., 1974, The staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: Demonstration of a phosphor-ylated intermediate of the enzyme I component, FEBS Lett. 42:98.PubMedCrossRefGoogle Scholar
  58. Suzuki, F., Fukunishi, K., and Takeda, Y., 1969, Studies on ATP citrate lyase of rat liver. V. The binding site of phosphate, J. Biochem (Tokyo) 66:767.Google Scholar
  59. Tanaka, S., and Lin, E. C. C., 1967, Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 57:913.PubMedCrossRefGoogle Scholar
  60. Tanaka, S., Fraenkel, D. G., and Lin, E. C. C., 1967a, The enzymatic lesion of strain MM6, a pleiotropic carbohydrate-negative mutant, Biochem. Biophys. Res. Commun. 27:63.PubMedCrossRefGoogle Scholar
  61. Tanaka, S., Lerner, S. A., and Lin, E. C. C., 1967b, Replacement of a phosphoenolpyruvate-dependent phosphotransferase system by a nicotinamide-adenine dinucleotide linked dehydrogenase for the utilization of mannitol, J. Bacteriol. 93:642.PubMedGoogle Scholar
  62. Walter, R. W., and Anderson, R. L., 1973, Evidence that the inducible phosphoenolpyruvate: D-fructose-1-phosphotransferase system of Aerobacter aerogenes does not require HPr, Biochem. Biophys. Res. Commun. 52:93.PubMedCrossRefGoogle Scholar
  63. Weigel, N., and Powers, D. A., 1975, Studies on the primary structure of a phosphocarrier protein of the bacterial phosphotransferase system, Fed. Proc. 34:491.Google Scholar
  64. Weiser, M. M., and Isselbacher, K. J., 1970, Phosphoenolpyruvate activated phosphorylation of sugars by intestinal mucosa, Biochim. Biophys. Acta 208:349.PubMedCrossRefGoogle Scholar
  65. White, R. J., 1969, The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-glucosamine in Escherichia coli, Biochem. J. 118:89.Google Scholar
  66. Wolfson, E. B., and Krulwigh, T. A., 1974, Requirement for a functional respiration-coupled transport system for the induction of phosphoenolpyruvate: D-fructose phosphotransferase activity in Arthrob acter pyridinolis, Proc. Natl. Acad. Sci. U.S.A. 71:1739.PubMedCrossRefGoogle Scholar
  67. Yoda, A., Kahlenberg, A., Galsworthy, P. R., Dulak, N. C. N., and Hokin, L. E., 1967, The synthesis of reagent quantities of [2,3-3H]N-(n-propyl)hydroxylamine of high specific activity for derivatizing trace amounts of acylphosphates, Biochemistry 6:1886.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Werner Kundig
    • 1
  1. 1.Department of Biology and The McCollum-Pratt InstituteThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations