Advertisement

The ADP-ATP Carrier in Mitochondrial Membranes

  • Martin Klingenberg

Abstract

The inner mitochondrial membrane is known to contain a number of membrane-bound enzymes which are linked to oxidation and phosphorylation reactions. During the past 10 years it has been found that this membrane also facilitates the specific transport of a number of metabolites which function as intermediates in metabolic pathways of mitochondria. Particularly prominent are the metabolites associated with the tricarboxylic acid cycle, with transamination reactions, and with phosphate transfer reactions in oxidative and substrate-level phosphorylation (for reviews see Klingenberg, 1970; Meijer and VanDam, 1974).

Keywords

Mitochondrial Membrane Adenine Nucleotide Adenine Nucleotide Translocation Bongkrekic Acid Beef Heart Mitochondrion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandolin, G., Meyer, C., Defaye, G., Vignais, P. M., and Vignais, P. V., 1974, Partial purification of an ATR-binding protein from mitochondria, FEBS Lett. 46:149–153.PubMedCrossRefGoogle Scholar
  2. Bruni, A., Luciani, S., Contessa, A. R., and Azzone, G. F., 1964, Inhibition by atractyloside of the binding of adenine nucleotide to rat liver mitochondria, Nature 201:1219–1220.PubMedCrossRefGoogle Scholar
  3. Duée, E. D., and Vignais, P. V., 1969, Kinetics of phosphorylation of intramitochondrial and extramitochondrial adenine nucleotides as related to nucleotide translocation, J. Biol. Chem. 244:3932–3940.PubMedGoogle Scholar
  4. Erdelt, H., Weidemann, M. J., Buchholz, M., and Klingenberg, M., 1972, Some principle effects of bongkrekic acid on the binding of adenine nucleotides to mitochondrial membranes, Eur. J. Biochem. 30:107–122.PubMedCrossRefGoogle Scholar
  5. Heldt, H. W., 1965, The participation of endogenous nucleotides in mitochondrial phosphate-transfer reactions, in: Regulation of Metabolic Processes in Mitochondria (J. M. Tager et al., eds.), BBA Library, Vol. 7, pp. 51–63, Elsevier, Amsterdam.Google Scholar
  6. Heldt, H. W., 1969, The inhibition of adenine nucleotide translocation by atractyloside, in: Inhibitors, Tools in Cell Research (Th. Bücher and H. Sies, eds.), pp. 301–317, Springer-Verlag, Berlin and Heidelberg.Google Scholar
  7. Heldt, H. W., and Klingenberg, M., 1965, Endogenous nucleotides of mitochondria participating in phosphate transfer reactions as studied with 32P-labeled orthophosphate and ultramicro scale ion exchange chromatography, Biochem. Z. 343:433–451.PubMedGoogle Scholar
  8. Heldt, H. W., Jacobs, H., and Klingenberg, M., 1965, Endogenous ADP of mitochondria, an early phosphate acceptor of oxidative phosphorylation as disclosed by kinetic studies with G14-labeled ADP and ATP and with atractyloside, Biochem. Biophys. Res. Commun. 18:174–179.PubMedCrossRefGoogle Scholar
  9. Heldt, H. W., Klingenberg, M., and Milovancev, M., 1972, Differences between the ATP/ADP ratios in the mitochondrial matrix and in the extramitochondrial space, Eur. J. Biochem. 30:434–440.PubMedCrossRefGoogle Scholar
  10. Henderson, P., and Lardy, H. A., 1970, Bongkrekic acid, an inhibitor of the adenine nucleotide translocase of mitochondria, J. Biol. Chem. 245:1319–1326.PubMedGoogle Scholar
  11. Klingenberg, M., 1964, The moving mixing chamber, in: Proceedings of the IUB Symposium on Rapid Mixing and Sampling Techniques in Biochemistry (B. Chance et al., eds.), pp. 61–65, Academic Press, New York.Google Scholar
  12. Klingenberg, M., 1967, Kinetics of the adenine nucleotide exchange, in: Mitochondrial Structure and Compartmentation (E. Quagliariello et al., eds.), pp. 271–277, Adriatica Editrice, Bari.Google Scholar
  13. Klingenberg, M., 1970, Metabolite transport in mitochondria: An example for intracellular membrane function, in: Essays in Biochemistry, Vol. 6 (P. N. Campbell et al., eds.), pp. 119–159, Academic Press, London and New York.Google Scholar
  14. Klingenberg, M., 1972, ATP synthesis and adenine nucleotide transport in mitochondria, in: Mitochondria/Biomembranes, Proceedings of the 8th FEBS Meeting in Amsterdam, pp. 147–162, Elsevier, Amsterdam.Google Scholar
  15. Klingenberg, M., 1974, The mechanism of the mitochondrial ADP, ATP carrier as studied by the kinetics of ligand binding, in: Dynamics of Energy-Transducing Membranes (L. Ernster et al., eds.), pp. 511–528, Elsevier, Amsterdam.Google Scholar
  16. Klingenberg, M., 1975, Energetic aspects of transport of ADP and ATP through the mitochondrial membrane, in: Energy Transformation in Biological Systems (Ciba Foundation Symposium), London, pp. 105–124, Associated Scientific Publishers, Amsterdam.Google Scholar
  17. Klingenberg, M., and Buchholz, M., 1973, On the mechanism of bongkrekate effect on the mitochondrial adenine nucleotide carrier as studied through the binding of ADP, Eur. J. Biochem. 38:346–358.PubMedCrossRefGoogle Scholar
  18. Klingenberg, M., and Pfaff, E., 1965, Structural and functional compartmentation in mitochondria, in: Proceedings of the Symposium on Regulation of Metabolic Processes in Mitochondria (J. M. Tager et al., eds.), pp. 180–201, Elsevier, Amsterdam.Google Scholar
  19. Klingenberg, M., and Pfaff, E., 1967, Means of terminating reactions, in: Methods in Enzymology, Vol. X (R. W. Estabrook et al., eds.), pp. 680–684, Academic Press, New York and London.Google Scholar
  20. Klingenberg, M., Heldt, H. W., and Pfaff, E., 1969a, The role of adenine nucleotide translocation in the generation of phosphorylation energy, in: The Energy Level and Metabolic Control in Mitochondria (S. Papa et al., eds.), pp. 237–253, Adriatica Editrice, Bari.Google Scholar
  21. Klingenberg, M., Wulf, R., Heldt, H. W., and Pfaff, E., 1969b, Control of adenine nucleotide translocation, in: Mitochondria: Structure and Function, Vol. 17 (L. Ernster and Z. Drahota, eds.), pp. 59–77, Academic Press, New York and London.Google Scholar
  22. Klingenberg, M., Grebe, K., and Heldt, H. W., 1970, On the inhibition of the adenine nucleotide translocation by bongkrekic acid, Biochem. Biophys. Res. Commun. 39:344–351.PubMedCrossRefGoogle Scholar
  23. Klingenberg, M., Buchholz, M., Erdelt, H., Falkner, G., Grebe, K., Kadner, H., Scherer, B., Stengel-Rutkowski, L., and Weidemann, M. J., 1971a, The adenine nucleotide carrier: Study of its translocating mechanism by binding with adenosine diphosphate, atractyloside and bongkrekic acid, in: Biochemistry and Biophysics of Mitochondrial Membranes (G. F. Azzone et al., eds.), pp. 465–486, Academic Press, New York and London.Google Scholar
  24. Klingenberg, M., Falkner, G., Erdelt, H., and Grebe, K., 1971b, On the relation between adenine nucleotide carrier sites and atractyloside binding in mitochondria, FEBS Lett. 16:296–300.PubMedCrossRefGoogle Scholar
  25. Klingenberg, M., Grebe, K., and Falkner, G., 1971c, Interaction between the binding of 35S atractyloside and bongkrekic acid at mitochondrial membranes, FEBS Lett. 16:301–303.PubMedCrossRefGoogle Scholar
  26. Klingenberg, M., Scherer, B., Stengel-Rutkowski, L., Buchholz, M., and Grebe, K., 1972, Experimental demonstration of the reorienting (mobile) carrier mechanism exemplified by the mitochondrial adenine nucleotide translocator, in: Mechanisms in Bioenergetics (G. F. Azzone et al., eds.), pp. 257–284, Academic Press, New York and London.Google Scholar
  27. Klingenberg, M., Riccio, P., Aquila, H., Sghmiedt, H., Grebe, K., and Topitsch, P., 1974, Characterization of the ADP/ATP carrier in mitochondria, in: Membrane Proteins in Transport and Phosphorylation (G. F. Azzone et al., eds.), pp. 229–243, North-Holland Publishing, Amsterdam.Google Scholar
  28. Klingenberg, M., Grebe, K., and Scherer, B., 1975, The binding of atractylate and carboxy-atractylate to mitochondria, Eur. J. Biochem. 52:351–363.PubMedCrossRefGoogle Scholar
  29. Kolarov, J., and Klingenberg, M., 1974, The adenine nucleotide translocator in genetically and physiologically modified yeast mitochondria, FEBS Lett. 45:320–323.PubMedCrossRefGoogle Scholar
  30. Leblanc, P., and Clauser, H., 1972, ADP-dependent inhibition of sacrosomal adenine nucleotide translocase by iV-ethylmaleimide, FEBS Lett. 23:107–113.PubMedCrossRefGoogle Scholar
  31. Lerner, E., Shug, A. L., Elson, Ch., and Shrago, E., 1972, Reversible inhibition of adenine nucleotide translocation by long chain fatty acyl coenzyme A esters in liver mitochondria of diabetic and hibernating animals, J. Biol. Chem. 247:1513–1519.PubMedGoogle Scholar
  32. Meijer, A. J., and van Dam, K., 1974, The metabolic significance of anion transport in mitochondria, BBA Rev. Bioenerg. 346:213–244.Google Scholar
  33. Pfaff, E., 1965, Unspezifische Permeabilität und spezifischer Austausch der Adeninnukleotide als Beispiel mitochondrialer Kompartmentierung, Dissertation, Marburg.Google Scholar
  34. Pfaff, E., and Klingenberg, M., 1968, Adenine nucleotide translocation of mitochondria. I. Specificity and control, Eur. J. Biochem. 6:66–79.PubMedCrossRefGoogle Scholar
  35. Pfaff, E., Klingenberg, M., and Heldt, H. W., 1965, Unspecific permeation and specific exchange of adenine nucleotides in mitochondria, Biochim. Biophys. Acta 104:312–315.PubMedCrossRefGoogle Scholar
  36. Pfaff, E., Klingenberg, M., Ritt, E., and Vogell, W., 1968, Korrelation des unspezifischen permeablen mitochondrialen Raums mit dem “Intermembran-Raum,” Eur. J. Biochem. 5:222–232.PubMedCrossRefGoogle Scholar
  37. Pfaff, E., Heldt, H. W., and Klingenberg, M., 1969, Adenine nucleotide translocation of mitochondria, kinetics of the adenine nucleotide exchange, Eur. J. Biochem. 10:484–493.PubMedCrossRefGoogle Scholar
  38. Pressman, B. C., 1958, Intramitochondrial nucleotides. I. Some factors effecting net interconversions of adenine nucleotides, J. Biol. Chem. 232:967–978.PubMedGoogle Scholar
  39. Riccio, P., Scherer, B., and Klingenberg, M., 1973, Isolation of a new atractyloside type compound, FEBS Lett. 31:11–14.PubMedCrossRefGoogle Scholar
  40. Riccio, P., Aquila, H., and Klingenberg, M., 1975a, Solubilization of the carboxy-atractylate binding protein from mitochondria, FEBS Lett. 56:129–132.CrossRefGoogle Scholar
  41. Riccio, P., Aquila, H., and Klingenberg, M., 1975b, Purification of the carboxy-atractylate binding protein from mitochondria, FEBS Lett. 56:133–138.PubMedCrossRefGoogle Scholar
  42. Scherer, B., and Klingenberg, M., 1974, Demonstration of the relationship between the adenine nucleotide carrier and the structural changes of mitochondria as induced by adenosine 5′-diphosphate, Biochemistry 13:161–170.PubMedCrossRefGoogle Scholar
  43. Siekevitz, P., and Potter, V. R., 1955, Biochemical structure of mitochondria. I. Intramitochondrial components and oxidative phosphorylation, J. Biol. Chem. 215:221–255.Google Scholar
  44. Slater, E. C., and Holton, F. A., 1953, Oxidative phosphorylation coupled with the oxidation of α-ketoglutarate by heart muscle sarcosomes. I. Kinetics of the oxidative phosphorylation reaction and adenine nucleotide specificity, Biochem. J. 55:530–544.PubMedGoogle Scholar
  45. Souverijn, J. H. M., Huisman, L. A., Rosing, J., and Kemp, A., Jr., 1973, Comparison of ADP and ATP as substrates for the adenine nucleotide translocator in rat-liver mitochondria, Biochim. Biophys. Acta 305:185–198.PubMedCrossRefGoogle Scholar
  46. Stein, W. D., 1967, The Movement of Molecules Across Cell Membranes, Academic Press, New York and London.Google Scholar
  47. Stoner, C. D., and Sirak, H. D., 1973, Adenine nucleotide-induced contraction of the inner mitochondrial membrane. I. General characterization, J. Cell Biol. 56:51–64.PubMedCrossRefGoogle Scholar
  48. Vignais, P. V., and Vignais, P. M., 1972, Effect of SH reagents on atractyloside binding to mitochondria and ADP translocation. Potentiation by ADP and its prevention by uncoupler FCCP, FEBS Lett. 26:27–31.PubMedCrossRefGoogle Scholar
  49. Vignais, P. V., Vignais, P. M., and Colomb, M. G., 1970, 35S-Atractyloside binding affinity to the inner mitochondrial membrane, FEBS Lett. 8:328–332.PubMedCrossRefGoogle Scholar
  50. Vignais, P. V., Vignais, P. M., Defaye, G., Chabert, J., Doussiere, J., and Brandolin, G., 1972, 35S-Atractyloside and 35S-atractyloside-derivatives as environmental probes of the adenine-nucleotide carrier in mitochondria, in: Biochemistry and Biophysics of Mitochondrial Membranes (G. F. Azzone et al., eds.), pp. 447–464, Academic Press, New York and London.Google Scholar
  51. Vignais, P. V., Vignais, P. M., and Defaye, G., 1973, Adenosine diphosphate translocation in mitochondria. Nature of the receptor site for carboxyatractyloside (gummiferin), Biochemistry 12:1508–1518.PubMedCrossRefGoogle Scholar
  52. Weber, N. E., and Blair, P. V., 1970, Ultrastructural studies of beef heart mitochondria. II. Adenine nucleotide induced modifications of mitochondrial morphology, Biochem. Biophys. Res. Commun. 41:821–829.PubMedCrossRefGoogle Scholar
  53. Weidemann, M. J., Erdelt, H., and Klingenberg, M., 1970a, Effect of bongkrekic acid on the adenine nucleotide carrier in mitochondria: Tightening of adenine nucleotide binding and differentiation between inner and outer sites, Biochem. Biophys. Res. Commun. 39:363–370.PubMedCrossRefGoogle Scholar
  54. Weidemann, M. J., Erdelt, H., and Klingenberg, M., 1970b, Adenine nucleotide translocation of mitochondria. Identification of carrier sites, Eur. J. Biochem. 16:313–335.PubMedCrossRefGoogle Scholar
  55. Welling, W., Cohen, J. A., and Berends, W., 1960, Disturbance of oxidative phosphorylation by an antibioticum produced by Pseudomonas cocovenenans, Biochem. Pharmacol. 3:122–135.PubMedCrossRefGoogle Scholar
  56. Wilbrandt, W., and Rosenberg, T., 1961, The concept of carrier transport and its corollaries in pharmacology, Pharmacol. Rev. 13:109–183.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Martin Klingenberg
    • 1
  1. 1.Institut für Physiologische Chemie und Physikalische BiochemieUniversität MünchenMunichGermany

Personalised recommendations