Small Intestinal Disaccharidases: Their Properties and Role as Sugar Translocators across Natural and Artificial Membranes

  • Giorgio Semenza


This chapter will first review our general knowledge about small intestinal oligo- and disaccharidases and then will cover in more detail what is known about the structure and catalytic mechanism of two of them, i.e., the sucrase-isomaltase complex. Finally, the role of sucrase-isomaltase as group translocator across natural and artificial membranes will be discussed.


Brush Border Sucrase Activity Multilamellar Liposome Intestinal Brush Border Membrane Black Lipid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpers, D. H., 1969, Separation and isolation of rat and human intestinal β-galactosidases, J. Biol. Chem. 244:1238–1246.PubMedGoogle Scholar
  2. Alpers, D. H., and Isselbacher, K. J., 1970, Disaccharidase deficiency, Adv. Metabol Disord. 4:76–122.Google Scholar
  3. Asp, N. G., and Dahlqvist, A., 1974, Intestinal β-galactosidases in adult low lactase activity and in congenital lactase deficiency, Enzyme 18:84–102.PubMedGoogle Scholar
  4. Auricchio, S., Rubino, A., Landolt, M., Semenza, G., and Prader, A., 1963, Isolated intestinal lactase deficiency in the adult, Lancet 2:324–326.PubMedGoogle Scholar
  5. Auricchio, S., Rubino, A., Prader, A., Rey, J., Jos, J., Frézal, J., and Davidson, M., 1965a, Intestinal glycosidase activities in congenital malabsorption of disaccharides, J. Pediatr. 66:555–564.PubMedGoogle Scholar
  6. Auricchio, S., Semenza, G., and Rubino, A., 1965b, Multiplicity of human intestinal disacchari-dases. II. Characterisation of the individual maltases, Biochim. Biophys. Acta 96:498–507.PubMedGoogle Scholar
  7. Barnett, J. E. G., Jarvis, W. T. S., and Munday, K. A., 1967, Enzymic hydrolysis of the carbon-fluorine bond of α-D-glucosyl fluoride by rat intestinal mucosa. Localization of intestinal sucrase, Biochem. J. 103:699–704.PubMedGoogle Scholar
  8. Birch, G. C., 1963, Trehaloses, Adv. Carbohydr. Chem. 18:201–225.PubMedGoogle Scholar
  9. Birkenmeier, E., and Alpers, D. H., 1974, Enzymatic properties of rat lactase-phlorizin hydrolase, Biochim. Biophys. Acta 350:100–112.PubMedGoogle Scholar
  10. Blake, C. C. F., Johnson, L. N., Mair, G. A., North, A. C. T., Phillips, D. G., and Sarma, V. R., 1967, Crystallographic studies of the activity of hen cgg-white lysozyme, Proc. Roy. Soc. London, Ser. B 167:378–388.Google Scholar
  11. Braun, H., 1976, Funktionelle Gruppen an der aktiven Stellen des Saccharase-Isomaltase Komplexes—eines Zuckertranslokators aus der Bürstensaummembran von Enterozyten, Dissertation, ETH-Zürich.Google Scholar
  12. Braun, H., Cogoli, A., and Semenza, G., 1975, Dissociation of small-intestinal sucrase-isomaltase complex into enzymatically active subunits, Eur. J. Biochem. 52:475–480.PubMedGoogle Scholar
  13. Bretsgher, M., 1973, Membrane structure, some general principles, Science 181:622–629.Google Scholar
  14. Caldwell, M. L., and Adams, M. 1950, Action of certain α-amylases, Adv. Carbohydr. Chem. 5:229–268.PubMedGoogle Scholar
  15. Capon, B., 1969, Mechanisms in carbohydrate chemistry, Chem. Rev. 69:407–498.Google Scholar
  16. Capon, B., Smith, M. C., Anderson, E., Dahm, R. H., and Sankey, G. H., 1969, Intramolecular catalysis in the hydrolysis of glycosides and acetals, J. Chem. Soc. Ser. B 1038-1047.Google Scholar
  17. Carnie, J. A., and Porteous, J. W., 1962, The solubilization, thermolability, chromatographic purification and intracellular distribution of some glycosidases of rabbit small intestine, Biochem. J. 85:620–629.PubMedGoogle Scholar
  18. Chipman, D. M., and Sharon, N., 1969, Mechanism of lysozyme action, Science 165:454–465.PubMedGoogle Scholar
  19. Cleland, W. W., 1963, The kinetics of enzyme-catalyzed reactions with two or more substrates or products, Biochim. Biophys. Acta 67:104–137.PubMedGoogle Scholar
  20. Cogoli, A., and Semenza, G., 1975, A probable oxocarbonium ion in the reaction mechanism of small intestinal sucrase and isomaltase, J. Biol. Chem. 250:7802–7809.PubMedGoogle Scholar
  21. Cogoli, A., Mosimann, H., Vogk, C., v. Balthazar, A. K., and Semenza, G., 1972, A simplified procedure for the isolation of the sucrase-isomaltase complex from rabbit intestine, Eur. J. Biochem. 30:7–14.PubMedGoogle Scholar
  22. Cogoli, A., Eberle, A., Sigrist H., Joss, Ch., Robinson, E., Mosimann, H., and Semenza, G., 1973, Subunits of the small intestine sucrase-isomaltase complex and separation of its enzymatically active isomaltase moiety, Eur. J. Biochem. 33:40–48.PubMedGoogle Scholar
  23. Colombo, V., Lorenz-Meyer, H., and Semenza, G., 1973, Small intestinal phlorizin-hydrolase: The “β-glucosidase complex”, Biochim. Biophys. Acta 327:412–424.PubMedGoogle Scholar
  24. Conklin, K. A., Yamashiro, K. M., and Gray, G. M., 1975, Human intestinal sucrase-isomaltase. Identification of free sucrase and isomaltase and cleavage of the hybrid into active distinct subunits, J. Biol. Chem., 250:5735–5741.PubMedGoogle Scholar
  25. Courtois, J. E., 1968, Les disaccharidases, in: Problèmes Actuels de Biochemie Appliquée, 2nd edition (M. L. Girard, ed.), pp. 107–151, Masson, Paris.Google Scholar
  26. Crane, R. K., 1962, Hypothesis for mechanism of intestinal active transport of sugars, Fed. Proc. 21:891–895.PubMedGoogle Scholar
  27. Crane, R. K., 1965, Na +-dependent transport in the intestine and other animal tissues, Fed. Proc. 24:1000–1006.PubMedGoogle Scholar
  28. Crane, R. K., 1970, Organization der digestiv-absorptiven Funktion an der Membran des Bürstensaums, in: Biochemische und Klinische Aspekte der Zuckerabsorption (K. Rommel and P. H. Clodi, eds.), pp. 75–83, F. K. Schattauer-Verlag, Stuttgart.Google Scholar
  29. Critchley, D. R., Howell, K. E., and Eichholz, A., 1975, Solubilization of brush borders of hamster small intestine and fractionation of some of the components, Biochim. Biophys. Acta 394:361–376.PubMedGoogle Scholar
  30. Cuatrecasas, P., Lockwood, D. H., and Caldwell, J. R., 1965, Lactase deficiency in the adult: A common occurrence, Lancet 1:14–18.PubMedGoogle Scholar
  31. Dahlquist, F. W., Rand-Meir, T., and Raftery, M. A., 1968, Demonstration of a carbonium ion intermediate during lysozyme catalysis, Proc. Natl. Acad. Sci. U.S.A. 61:1194–1198.PubMedGoogle Scholar
  32. Dahlqvist, A., 1960a, Characterisation of hog intestinal invertase as glucosido-invertase. III. Specificity of purified invertase, Acta Chem. Scand. 14:63–71.Google Scholar
  33. Dahlqvist, A., 1960b, Characterisation of hog intestinal trehalase, Acta Chem. Scand. 14:9–16.Google Scholar
  34. Dahlqvist, A., 1963, Rat-intestinal dextranase. Localization and relation to the other carbohy-drases of the digestive tract, Biochem. J. 86:72–76.PubMedGoogle Scholar
  35. Dahlqvist, A., 1964, Disorders due to intestinal defective carbohydrate digestion and absorption, in: Il Pensiero Scientifico (P. Durand ed.), p. 5, Rome, Italy.Google Scholar
  36. Dahlqvist, A., and Lindberg, T., 1966, Development of the intestinal disaccharidase and alkaline phosphatase activities in the human foetus, Clin. Sci. 30:517–528.PubMedGoogle Scholar
  37. Dahlqvist, A., and Thompson, D. L., 1963, Separation and characterization of two rat-intestinal amylases, Biochem. J. 89:272–277.PubMedGoogle Scholar
  38. Dahlqvist, A., Hammond, J. B., Crane, R. K., Dunphy, J. V., and Littman, A., 1963, Intestinal lactase deficiency and lactose intolerance in adults: preliminary report, Gastroenterology 45:488–491.PubMedGoogle Scholar
  39. De Laey, P., 1966, Die Membranverdauung der Stärke. 3. Mitt, der Einfluss von alimentären Komponenten des Chymus auf die Membranverdauung der Stärke, Die Nahrung 10:655–663.Google Scholar
  40. Dubs, R., Steinmann, B., and Gitzelmann, R., 1973, Demonstration of an inactive enzyme antigen in sucrase-isomaltase deficiency, Helv. Paediatr. Acta 28:187–198.PubMedGoogle Scholar
  41. Dubs, R., Gitzelmann, R., Steinmann, B., and Lindenmann, J., 1975, Catalytically inactive sucrase antigen of rabbit small intestine: The enzyme precursor, Helv. Paediotr. Acta 30:89–102.Google Scholar
  42. Dunlap, R. B., Ghanim, G. A., and Cordes, E. H., 1969, Secondary valence force catalysis. IX. Catalysis of hydrolysis of para substituted benzaldehyde diethyl acetals by sodium dodecyl sulfate, J. Phys. Chem. 73:1898–1901.Google Scholar
  43. Dunn, B. M., and Bruige, T. C., 1970, Further investigation on the neighboring carboxyl group catalysis of hydrolysis of methyl phenyl acetals of formaldehyde. Electrostatic and solvent effects, J. Am. Chem. Soc. 92:6589–6594.Google Scholar
  44. Dunn, B. M., and Bruice, T. G., 1971, Electrostatic catalysis. IV. Intramolecular carboxyl group electrostatic facilitation of the A-l-catalyzed hydrolysis of alkyl phenyl acetals of formaldehyde. The influence of oxocarbonium ion stability, J. Am. Chem. Soc. 93:5725–5731.Google Scholar
  45. Eichloz, A., and Crane, R. K., 1965, Studies on the organization of the brush border in intestinal epithelial cells. 1. Tris disruption of isolated hamster brush borders and density gradient separation of fractions, J. Cell Biol. 26:687–692.Google Scholar
  46. Elworthy, P. H., and McIntosh, D. S., 1964, The interaction of water with lecithin micelles in benzene, J. Phys. Chem. 68:3448–3452.Google Scholar
  47. Flückiger, R., 1973, Untersuchungen uber den Reaktionsmechanismus der Isomalt ose, Diplomarbeit, ETH-Zürich.Google Scholar
  48. Forstner, G. G., Tanaka, K. and Isselbacher, K. J., 1968, Lipid composition of the isolated rat intestinal microvillus membrane, Biochem. J. 109:51–59.PubMedGoogle Scholar
  49. Gitler, C., and Montal, M., 1972, Formation of decane-soluble proteolipids: influence of monovalent and divalent cations, FEBS Lett. 28:329–332.PubMedGoogle Scholar
  50. Gitzelmann, R., BÄchi, Th., Binz, H., Lindenmann, J., and Semenza, G., 1970, Localization of rabbit intestinal sucrase with ferritin-antibody conjugates, Biochim. Biophys. Acta 196:20–28.PubMedGoogle Scholar
  51. Halevi, E. A., 1963, Secondary isotope effects, Progr. Phys. Organ. Chem. 1:109–221.Google Scholar
  52. Hall, A. N., Hollingshead, S., and Rydon, H. N., 1961, The acid and alkaline hydrolysis of some substituted phenyl-α-D-glucosides, J. Chem. Soc. pp. 4290-4294.Google Scholar
  53. Hamilton, J. D., and McMichael, H. B., 1968, Role of the microvillus in the absorption of disaccha-rides, Lancet 2:154–157.PubMedGoogle Scholar
  54. Hanke, D. W., and Diedrigh, D. F., 1974, Fate of the hydrolyzed glucose moiety from phlorizin in hamster jejunum, Fed. Proc. 33:271.Google Scholar
  55. Holzel, A., Schwarz, V., and Sutgliffe, K. W., 1959, Defective lactose absorption causing malnutrition in infancy, Lancet, 1:1126–1128.PubMedGoogle Scholar
  56. Honegger, P., and Gershon, E., 1974, Further evidence for the multiplicity of carriers for free glucalogues in hamster small intestine, Biochim. Biophys. Acta 352:127–134.PubMedGoogle Scholar
  57. Honegger, P., and Semenza, G., 1972, Multiplicity of carriers for free glucalogues in hamster small intestine, Biochim. Biophys. Acta 318:390–410.Google Scholar
  58. Hopfer, LI., Nelson, K., Perrotto, J., and Isselbacher, K. J., 1973, Glucose transport in isolated brush border membrane from rat small intestine, J. Biol. Chem. 10:25–32.Google Scholar
  59. Imoto, T., Johnson, L. N., North, A. T. G., Phillips, D. C., and Rupley, J. A., 1972, Vertebrate lysozymes, in: The Enzymes, 3rd edition (P. D. Boyer, ed.), Vol. VII, pp. 665–868, Academic Press, New York.Google Scholar
  60. Janett, M., 1974, Identifikation der durch Saccharose und Isomaltase gespaltenen Bindung im Susstrat. Steady-State Kinetik der Isomaltase, Diplomarbeit, ETH-Zürich.Google Scholar
  61. Jesuitova, N. N., De Laey, P., and Ugolev, A. M., 1964, Digestion of starch in vivo and in vitro in a rat intestine, Biochim Biophys. Acta 86:205–210.PubMedGoogle Scholar
  62. Johnson, C. F., 1967, Disaccharidase: Localization in hamster intestine brush borders, Science 155:1670–1672.PubMedGoogle Scholar
  63. Kayser, S. G., and Patton, S., 1965, The function of very long chain fatty acids in membrane structure: Evidence from milk cerebrosides, Biochim. Biophys. Res. Commun. 41:1572–1578.Google Scholar
  64. Kelly, J. K., and Alpers, D. H., 1973a, Properties of human intestinal glucoamylase, Biochim. Biophys. Acta 315:113–120.PubMedGoogle Scholar
  65. Kelly, J. K., and Alpers, D. H., 1973a, Blood group antigenicity of purified human intestinal disaccharidases, J. Biol. Chem. 248:8216–8221.PubMedGoogle Scholar
  66. Kerry, K. R., and Townley, R. R. W., 1965, Genetic aspects of intestinal sucrase-isomaltase deficiency, Aust. Paediatr. J. 1:223–235.Google Scholar
  67. Knüsel, A., BÄchi, Th., Gitzelmann, R., and Lindenmann, J., 1971, Electron microscopic recognition of surface antigen by direct reaction and ferritin capture with guinea pig hybrid antibody, J. Immunol. 106:583–585.PubMedGoogle Scholar
  68. Kolínská, J., and Semenza, G., 1967, Studies on intestinal sucrase and on intestinal sugar transport. V. Isolation and properties of sucrase-isomaltase from rabbit small intestine, Biochim. Biophys. Acta 146:181–195.PubMedGoogle Scholar
  69. Kraml, J., Kolinska, J., Ellederov¡, D., and Hiršová, D., 1972, β-Glucosidase (phlorizin hydrolase) activity of the lactase fraction isolated from the small intestinal mucosa of infant rats, and the relationship between glucosidases and β-galactosidase, Biochim. Biophys. Acta 258:520–530.PubMedGoogle Scholar
  70. Kretchmer, N., 1971, Memorial Lecture. Lactose and lactase—historical perspective, Gastroenterology 61:805–813.PubMedGoogle Scholar
  71. Larner, J., 1955, Hydrolysis of isomaltotriose by oligo-1, 6-α-glucosidase, J. Am. Chem. Soc. 77:6385–6386.Google Scholar
  72. Larner, J. and McNickle, C. M., 1954, Action of intestinal extracts on “branched” oligosaccharides, J. Am. Chem. Soc. 76:4747–4748.Google Scholar
  73. Larner, J., and McNickle, C. M., 1955, Gastrointestinal digestion of starch. I. The action of oligo-1, 6-glucosidase on branched saccharides, J. Biol. Chem. 215:723–736.PubMedGoogle Scholar
  74. LÄuger, P., Lesslauer, W., Marti, E., and Richter, J., 1967, Electrical properties of bimolecular phospholipid membranes, Biochim. Biophys. Acta 135:20–32.PubMedGoogle Scholar
  75. Leese, H. J., and Semenza, F., 1973, On the identity between the small intestinal enzymes phlorizin-hydrolase and glycosylceramidase, J. Biol. Chem. 248:8170.PubMedGoogle Scholar
  76. Lemieux, R. U., and Huber, G., 1955, The solvolysis of alpha-and beta-3,4,6-tri-O-acetyl-D-gluco-pyranosyl chlorides, Can. J. Chem. 33:128–133.Google Scholar
  77. Loew, G. H., and Thomas, D. D., 1972, Molecular orbital calculations of the catalytic effect of lysozyme. 1. Glu 35 as general acid catalyst, J. Theor. Biol. 36:89–104.PubMedGoogle Scholar
  78. Lojda, Z., 1972, An improved histochemical method for the demonstration of disaccharidases with natural substrates, Histochemie 30:277–280.PubMedGoogle Scholar
  79. Lojda, Z., Slaby, J., Kraml, J., and Koínská, J., 1973, Synthetic substrates in the histochemical demonstration of intestinal disaccharidases, Histochemie 34:361–369.PubMedGoogle Scholar
  80. Lorenz-Meyer, H., Blum, A. L., Haemmerli, H. P., and Semenza, G., 1972, A second enzyme defect in acquired lactase deficiency: Lack of small intestinal phlorizin-hydrolase, Eur. J. Clin. Invest. 2:326–331.PubMedGoogle Scholar
  81. Louvard, D., Maroux, S., Baratti, J., Desnuelle, P., and Mutaftschiev, S., 1973, On the preparation and some properties of closed membrane vesicles from hog duodenal and jejunal brush border, Biochim. Biophys. Acta 291:747–763.PubMedGoogle Scholar
  82. Louvard, D., Maroux, S., Vannier, Ch., and Desnuelle, P., 1975, Topological studies on the hydrolases bound to the intestinal brush border membrane. I. Solubilization by papain and Triton X-100, Biochim. Biophys. Acta 375:236–248.Google Scholar
  83. Madžarovová-Nohejlová, J., 1973, Trehalose malabsorption in a family, Gastroenterology, 65:130–133.PubMedGoogle Scholar
  84. Malathi, P., and Crane, K. R., 1969, Phlorizin hydrolase: a x03B2;-glucosidase of hamster intestinal brush border membrane, Biochim. Biophys. Acta 173:245–256.PubMedGoogle Scholar
  85. Malathi, P., Ramaswamy, K., Caspary, W. F., and Crane, R. K., 1973, Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. I. Evidence for a disaccharidase-related transport system, Biochim. Biophys. Acta 307:613–626.PubMedGoogle Scholar
  86. McGeachin, R. L., and Ford, N. K., 1959, Distribution of amylase in the gastrointestinal tract of the rat, Am. J. Physiol. 196:972–974.PubMedGoogle Scholar
  87. McGeachin, R. L., Gleason, J. R., and Adams, M. R., 1958, Amylase distribution in extrapan-creatic, extrasalivary tissues, Arch. Biochem. Biophys. 75:403–411.PubMedGoogle Scholar
  88. Messer, M., and Kerry, K. R., 1967, Intestinal digestion of maltotriose in man, Biochim. Biophys. Acta 132:432–443.PubMedGoogle Scholar
  89. Miller, D., and Crane, R. K., 1961, The digestive function of the epithelium of the small intestine. 1. An intracellular locus of disaccharide and sugar phosphate ester hydrolysis, Biochim. Biophys. Acta 52:281–293.PubMedGoogle Scholar
  90. Millington, P. F., and Critchley, D. R., 1968, Lipid composition of the brush borders of rat intestinal epithelial cells, Life Sci. 7:839–845.Google Scholar
  91. Mosimann, H., Semenza, G., and Sund, H., 1973, Hydrodynamic properties of the sucrase-isomaltase complex from rabbit small intestine, Eur. J. Biochem. 36:489–494.PubMedGoogle Scholar
  92. Müller, P., Rudin, D. O., Ti Tien, H., and Westcott, W. C., 1962, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194:979–980.Google Scholar
  93. Murer, H., and Hopfer, U., 1974, Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes, Proc. Natl. Acad. Sci. U.S.A. 71:484–488.PubMedGoogle Scholar
  94. Myrbäck, K., 1949, Trehalose and trehalase, Ergeh. Enzymforsch. 10:168–190.Google Scholar
  95. Nicolson, G., and Singer, S. J., 1972, Electron microscopic localization of macromolecules on membrane surfaces, Ann. N.Y. Acad. Sci. 195:368–375.PubMedGoogle Scholar
  96. Nishi, Y., Yoshida, O., and Takesue, Y., 1968, Electron microscope studies on the structure of rabbit intestinal sucrase, J. Mol. Biol. 37:441–444.PubMedGoogle Scholar
  97. Oda, T., and Seki, S., 1966, Molecular basis of structure and function of the plasma membrane of the microvilli of intestinal epithelial cells, Int. Congr. Electron Microscopy, 6th, Kyoto, pp. 387-388 (abstract).Google Scholar
  98. Overton, J., Eicholz, A., and Crane, R. K., 1965, Studies on the organization of the brush border in intestinal epithelial cells. II. Fine structure of fractions of Tris-disrupted hamster brush borders, J. Cell Biol. 26:693–706.PubMedGoogle Scholar
  99. Parsons, D. S., and Pritchard, J. S., 1965, Hydrolysis of disaccharides during absorption by the perfused small intestine of amphibia, Nature 208:1097–1098.PubMedGoogle Scholar
  100. Quaroni, A., and Semenza, G., 1976, Partial amino acid sequences around the essential carboxylate in the active sites of intestinal sucrase and isomaltase, J. Biol. Chem. 251: in press.Google Scholar
  101. Quaroni, A., Gershon, E., and Semenza, A., 1974, Affinity labeling of the active sites in the sucrase-isomaltase complex from small intestine, J. Biol. Chem. 249:6424–6433.PubMedGoogle Scholar
  102. Quaroni, A., Gershon-Quaroni, E., and Semenza, G., 1975, Tryptic digestion of native small intestinal sucrase-isomaltase complex: Isolation of the sucrase subunit, Eur. J. Biochem. 52:481–486.PubMedGoogle Scholar
  103. Ramaswamy, S., and Radhakrishnan, A. N., 1975, Lactase-phlorizin hydrolase complex from monkey small intestine: Purification, properties and evidence for two catalytic sites, Biochim. Biophys. Acta, submitted.Google Scholar
  104. Ramaswamy, K., Malathi, P., Caspary, W. F., and Crane, R. K., 1974, Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. II. Characteristics of the disaccharidase-related transport system, Biochim. Biophys. Acta 345:39–48.PubMedGoogle Scholar
  105. Richards, J. H., 1970, Kinetic isotope effects in enzymic reactions, in: The Enzymes, 3rd edition (P. D. Boyer, ed.), Vol. II, pp. 321–333, Academic Press, New York.Google Scholar
  106. Robyt, J. F., and French, D., 1970, Multiple attack and polarity of action of porcine pancreatic α-amylase, Arch. Biochem. Biophys. 138:662–670.PubMedGoogle Scholar
  107. Rubino, A., Zimbalatti, F., and Auricchio, S., 1964, Intestinal disaccharidase activities in adult and suckling rats, Biochim. Biophys. Acta 92:305–311.PubMedGoogle Scholar
  108. Ruttloff, H., Friese, R., and Täufel, K., 1967, Zur Bestimmung der intestinalen Amylase, Die Nahrung 11:206–213.Google Scholar
  109. Sasajima, K., Kawachi, T., Sato, S., and Sugimura, T., 1975, Purification and properties of α,α-trehalase from the mucosa of rat small intestine, Biochim. Biophys. Acta 403:139–146.PubMedGoogle Scholar
  110. Schlegel-Hauter, S., Hore, P., Kerry, K. R., and Semenza, G., 1972, The preparation of lactase and glucoamylase of rat small intestine, Biochim. Biophys. Acta 258:506–519.Google Scholar
  111. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B. K., Cerda, J. J., and Crane, R. K., 1973, Purification of the human intestinal brush border membrane, Biochim. Biophys. Acta 323:98–112.PubMedGoogle Scholar
  112. Segrest, J. P., Kahane, I., Jackson, R. L., and Marchesi, V., 1972, Major glycoprotein of the human erythrocyte membrane: Evidence for an amphipathic molecular structure, Arch. Biochem. Biophys. 155:167–183.Google Scholar
  113. Semenza, G., 1968, Intestinal oligosaccharidases and disaccharidases, in: Handbook of Physiology (C. F. Code, J. R. Brobeck, R. K. Crane, H. W. Davenport, M. I. Grossman, H. D. Janowitz, C. L. Prosser, and T. H. Wilson, eds.), Vol. V, pp. 2543–2566, American Physiological Society, Washington, D.C.Google Scholar
  114. Semenza, G., 1969, A kinetic investigation on the allosteric effects in intestinal sucrase, Eur. J. Biochem. 8:518–529.PubMedGoogle Scholar
  115. Semenza, G., and Balthazar, A. K., 1974, Steady-state kinetics of rabbit-intestinal sucrase, Eur. J. Biochem. 41:149–162.PubMedGoogle Scholar
  116. Semenza, G., and Řihova, L., 1969, Allosteric effects and phlorizin inhibition of intestinal trehalase, Biochim. Biophys. Acta 178:393–396.PubMedGoogle Scholar
  117. Semenza, G., Auricchio, S., Rubino, A., Prader, A., and Welsh, J. D., 1965, Lack of some intestinal maltases in a human disease transmitted by a single genetic factor, Biochim. Biophys. Acta 195:386–389.Google Scholar
  118. Semenza, G., Curtius, C.-H., Kolinska, J., and Müller, M., 1967, Studies on intestinal sucrase and intestinal sugar transport. VI. Liberation of α-glucose by sucrase and isomaltase from the glycone moiety of the substrates, Biochim. Biophys. Acta 146:196–204.PubMedGoogle Scholar
  119. Semenza, G., Curtius, H. Ch., Raunhardt, O., Hore, P., and Müller, M., 1969, The configurations at the anomeric carbon of the reaction products of some digestive carbohydrases, Carbohydr. Res. 10:417–428.Google Scholar
  120. Semenza, G., Cogoli, A., Quaroni, A., and Vögeli, H., 1974, The sucrase-isomaltase complex from small intestine: A possible hydrolytic mechanism and indications on its role in the membrane transport of some sugars. Invited lecture at the Symposium on “Biomembranes: Structures and Function” at the 9th FEBS Meeting, Budapest, Aug. 25-30, 1974, pp. 131-144.Google Scholar
  121. Sigrist, H., Ronner, P., and Semenza, G., 1975, A hydrophobic form of the small-intestinal sucrase-isomaltase complex, Biochim. Biophys. Acta 406:433–446.PubMedGoogle Scholar
  122. Sigrist-Nelson, K., and Hopfer, U., 1974, A distinct fructose transport system in isolated brush border membrane, Biochim. Biophys. Acta 367:247–254.PubMedGoogle Scholar
  123. Sinnott, M. L., and Souchard, I. J. L., 1973, The mechanism of action of β-galactosidase, Biochem. J. 133:89–98.PubMedGoogle Scholar
  124. Smith, L. E. H., Mohr, L. H., and Raftery, M. A., 1973, Mechanism for lysozyme-catalyzed hydrolysis, J. Am. Chem. Soc. 95:7497–7500.PubMedGoogle Scholar
  125. Spatz, L., and Strittmatter, P., 1973, A form of reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductase containing both the catalytic site and an additional hydrophobic membrane binding segment, J. Biol. Chem. 248:793–799.PubMedGoogle Scholar
  126. Stanek, E., 1974, Stopped-Flow-Kinetic mit Saccharose, Diplomarbeit, ETH-Zürich.Google Scholar
  127. Stefani, A., Janett, M., and Semenza, G., 1975, Small intestinal sucrase and isomaltase split the bond between glucosyl-Ci and the glycosyl oxygen, J. Biol. Chem., 250:7810–7813.PubMedGoogle Scholar
  128. Storelli, C., Vögeli, H., and Semenza, G., 1972, Reconstitution of a sucrase-mediated sugar transport system in lipid membranes, FEBS Lett. 24:287–292.PubMedGoogle Scholar
  129. Storelli, C., Kessler, M., Müller, M., Murer, H., and Semenza, G., 1976, in preparation.Google Scholar
  130. Swaminathan, N., and Radhakrishnan, A. N., 1969, Studies on intestinal disaccharidases: Part III—Purification and properties of two lactase fractions from monkey small intestine, Indian J. Biochem. 6:101–105.Google Scholar
  131. Takesue, Y., Yoshida, T. O., Akaza, T., and Nishi, Y., 1973, Localisation of sucrase in the microvillous membrane of rabbit intestinal mucosal cells, J. Biochem. (Japan) 74:415–423.Google Scholar
  132. Ugolev, A. M., 1965, Membrane (contact) digestion, Physiol. Rev. 45:555–595.PubMedGoogle Scholar
  133. Veibel, S., 1950, in: The Enzymes (J. Summer and K. Myrbäck, eds.), Vol. I, pp. 583–620, Academic Press, New York.Google Scholar
  134. Vogeli, H., 1975, Rekonstitution eines Saccharose-abhängigen Zuckertransportsysternes in künstlichen Lipid-Membranen, Dissertation, ETH-Zürich.Google Scholar
  135. Vogeli, H., Brunner, J., and Semenza, C., 1976, Reconstitution of the sucrase-mediated sugar transport system in liposomes, to be submitted.Google Scholar
  136. Wallenfels, K., and Fischer, J., 1960, Untersuchungen über milchzuckérsplatende Enzyme. X. Die Lactase des Kälberdarms, Z. Physiol. Chem. 321:223–245.Google Scholar
  137. Wallenfels, K., and Weil, R., 1972, β-Galactosidase, in: The Enzymes, 3rd edition (P. D. Boyer, ed.), Vol. VII, pp. 617–663, Academic Press, New York.Google Scholar
  138. Whelan, W. J., 1958, Starch and similar polysaccharides, Encyclopedia of Plant Physiology, Vol. 6, pp. 154–240.Google Scholar
  139. Wood, R. E., Wirth, F. P., Jr., and Morgan, H. E., 1968, Glucose permeability of lipid bilayer membranes, Biochim. Biophys. Acta 163:171–178.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Giorgio Semenza
    • 1
  1. 1.Laboratorium für BiochemieETH ZürichZürichSwitzerland

Personalised recommendations