Advertisement

Membrane-Bound γ-Glutamyl Transpeptidase

  • Alton Meister
  • Suresh S. Tate
  • Leonard L. Ross

Abstract

γ-Glutamyl transpeptidase is a membrane-bound enzyme that catalyzes the transfer of the γ-glutamyl moiety of glutathione (and of other γ-glutamyl compounds) to amino acid (and peptide) acceptors as indicated in reaction (1):
$$ glutathione + a\min o\,acid \to \gamma - glutamyl\,a\min o\,acid + cysteinyl\,glycine $$
(1)
This reaction is the first step in a quantitatively significant pathway of glutathione metabolism, and it has been postulated that this or analogous reactions are involved in amino acid transport. Thus, γ-glutamyl transpeptidase mediates the translocation of the amino acid across the cell membrane by interacting with both extracellular amino acid and intracellular glutathione (or other compounds that contain the γ-glutamyl carrier); according to this idea, the amino acid enters the cell as a γ-glutamyl amino acid.

Keywords

Amino Acid Transport Anterior Horn Cell Mercapturic Acid Glutathione Synthetase Cysteinyl Glycine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson, E. D., Szewgzuk, A., and Connell, G. E., 1971, Purification and properties of γ-glutamyl cyclotransferase from pig liver, Can. J. Biochem. 49:218–226.PubMedCrossRefGoogle Scholar
  2. Albert, Z., Orlowski, M., and Szewczuk, A., 1961, Histochemical demonstration of γ-glutamyl transpeptidase, Nature 191:767–768.PubMedCrossRefGoogle Scholar
  3. Albert, Z., Orlowska, J., Orlowski, M., and Szewczuk, A., 1964, Histochemical and biochemical investigations of γ-glutamyl transpeptidase in the tissues of man and laboratory rodents, Acta Histochem. 18:78–89.PubMedGoogle Scholar
  4. Albert, Z., Orlowski, M., Rzucidlo, Z., and Orlowska, J., 1966, Studies on γ-glutamyl transpeptidase activity and its histochemical localization in the central nervous system of man and different animal species, Acta Histochem. 25:312–320.PubMedGoogle Scholar
  5. Albert, Z., Rzucidlo, Z., and Starzyk, H., 1970a, Comparative biochemical and histochemical studies on the activity of γ-glutamyl transpeptidase in the organs of fetuses, newborns and adult rats, Acta Histochem. 37:34–39.PubMedGoogle Scholar
  6. Albert, Z., Rzucidlo, Z., and Starzyk, H., 1970b, Biochemical and histochemical investigations of the γ-glutamyl transpeptidase in embryonal and adult organs of man, Acta Histochem. 37:74–79.PubMedGoogle Scholar
  7. Angielski, S., Niemiro, R., Iviakarewicz, W., and Rogulski, J., 1958, Aminoaciduria caused by maleic acid, Acta Biochim. Polonica 5:431–436.Google Scholar
  8. Ball, E. G., Cooper, O., and Clarke, E. C., 1953, On the hydrolysis and transpeptidation of glutathione in marine forms, Biol. Bull. 105:369–370.Google Scholar
  9. Bergeron, M., and Vadeboncoeur, M., 1971, Microinjections of L-leucine into tubules and peritubular capillaries of the rat. II. The maleic acid model, Nephron 8:367–374.PubMedCrossRefGoogle Scholar
  10. Berliner, R. W., Kennedy, T. J., and Hilton, J. G., 1950, Effect of maleic acid on renal function, Proc. Soc. Exp. Biol. Med. 75:791–794.PubMedGoogle Scholar
  11. Binkley, F., 1951, Metabolism of glutathione, Nature 167:888–889.PubMedCrossRefGoogle Scholar
  12. Binkley, F., 1954, in: Glutathione (S. Colowick et al., eds.), p. 160, Academic Press, New York.Google Scholar
  13. Binkley, F., 1961, Purification and properties of renal glutathionase, J. Biol. Chem. 236:1075–1082.Google Scholar
  14. Binkley, F., and Nakamura, K., 1948, Metabolism of glutathione. I. Hydrolysis by tissues of the rat, J. Biol. Chem. 173:411–421.PubMedGoogle Scholar
  15. Bloch K., 1949, The synthesis of glutathione in isolated liver, J. Biol. Chem. 179:1245–1254.PubMedGoogle Scholar
  16. Boyland, E., 1962, Mercapturic acid conjugation, First International Pharmacological Meeting 16:65–76.Google Scholar
  17. Boyland, E., and Chasseaud, L. F., 1969, The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis, Adv. Enzymol. 32:173–219.PubMedGoogle Scholar
  18. Bradbury, M. W. B., 1975, Ontogeny of mammalian brain-barrier systems, in: The Fluid Environment of the Brain (H. F. Cserr, J. D. Fenstermacher, V. Fencl, eds.), pp. 81–103, Academic Press, New York.Google Scholar
  19. Connell, G. E., and Hanes, C. S., 1956, Enzymic formation of pyrrolidone carboxylic acid from γ-glutamyl peptides, Nature 177:377–378.PubMedCrossRefGoogle Scholar
  20. Curthoys, N. P., 1975, Subcellular localization of rat kidney glutaminase isozymes and their role in renal ammoniagenesis, in: Isozymes, Vol. 2, Physiology and Function (C. L. Markert, ed.), Academic Press, New York, in press.Google Scholar
  21. Dakin, H. D., and Dudley, H. W., 1913, Glyoxalase, Part III. The distribution of the enzyme and its relation to the pancreas, J. Biol. Chem. 15:463–474.Google Scholar
  22. Das, M., and Radhakrishnan, A. N., 1973, Glycyl-L-leucine hydrolase, a versatile ‘master’ dipeptidase from monkey small intestine, Biochem. J. 135:609–615.PubMedGoogle Scholar
  23. Davidson, B. E., and Hird, F. J. R., 1964, The estimation of glutathione in rat tissues: A comparison of a new spectrophotometric method with the glyoxylase method, Biochem. J. 93:232–236.PubMedGoogle Scholar
  24. Delap, L. W., 1975. Localization and properties of γ-glutamyl transpeptidase, Doctoral thesis, Cornell University Medical College, New York.Google Scholar
  25. Delap, L. W., Tate, S. S., and Meister, A., 1975, γ-Glutamyl transpeptidase of rat seminal vesicles; effect of orchidectomy and hormone administration on the transpeptidase in relation to its possible role in secretory activity, Life Sci. 16:691–704.PubMedCrossRefGoogle Scholar
  26. deRey-Pailhade, J., 1888a, Sur un corps d’origine organique hydrogenant le soufre a froid, Compt. Rend. 106:1683–1684.Google Scholar
  27. deRey-Pailhade, J., 1888a, Nouvelles recherches physiologiques sur la substance organique hydrogenant le soufre a froid, Compt. Rend. 107:43–44.Google Scholar
  28. Fiala, S., Fiala, A. E., and Dixon, B., 1972, y-Glutamyl transpeptidase in transplantable, chemically induced rat hepatomas and “spontaneous” mouse hepatomas, J. Natl. Cancer Inst. 48:1393–1401.PubMedGoogle Scholar
  29. Fodor, P. J., Miller, A., and Waelsch, H., 1953a, Quantitative aspects of enzymatic cleavage of glutathione, J. Biol. Chem. 202:551–565.PubMedGoogle Scholar
  30. Fodor, P. J., Miller, A., Neidle, A., and Waelsch, H., 1953b, Enzymatic synthesis of glutathione by transfer reaction, J. Biol. Chem. 203:991–1002.PubMedGoogle Scholar
  31. George, S. G., and Kenny, A. J., 1973, Studies on the enzymology of purified preparations of brush border from rabbit kidney, Biochem. J. 134:43–57.PubMedGoogle Scholar
  32. Glenner, G. G., and Folk, J. E., 1961, Glutamyl peptidases in rat and guinea pig kidney slices, Nature 192:338–339.PubMedCrossRefGoogle Scholar
  33. Glenner, G. G., Folk, J. E., and McMillan, P. J., 1962, Histochemical demonstration of a γ-glutamyl transpeptidase-like activity, J. Histochem. Cytochem. 10:481–489.CrossRefGoogle Scholar
  34. Glossman, H., and Neville, D. M., Jr., 1972, γ-Glutamyltransferase in kidney brush border membranes, FEBS Lett. 19:340–344.CrossRefGoogle Scholar
  35. Glutathione, 1954, Proceedings of the Symposium, Ridgefield, Connecticut, November, 1953 (S. Golowick, A. Lazarow, E. Racker, D. R. Schwarz, E. Stadtman, and H. Waelsch, eds.), Academic Press, New York.Google Scholar
  36. Glutathione, 1959 Biochemical Society Symposium No. 17, Senate House, University of London, February 15, 1958 (E. M. Crook, ed.), Cambridge University Press.Google Scholar
  37. Glutathione, 1973, Symposium, Tubingen, March 1973 (L. Flohé, H. Ch. Benühr, H. Sies, H. D. Waller, and A. Wendel, eds.), Georg-Thieme-Verlag, Stuttgart.Google Scholar
  38. Goldbarg, J. A., Friedman, O. M., Pineda, P., Smith, E. E., Chatterji, R., Stein, E. H., and Rutenberg, A. M., 1960, The colorimetric determination of γ-glutamyl transpeptidase with a synthetic substrate, Arch. Biochem. Biophys. 91:61–70.PubMedCrossRefGoogle Scholar
  39. Gomori, G., 1954a, Enzymatic hydrolysis of acyl naphthylamines, Proc. Soc. Expt. Biol. Med. 85:570–572.Google Scholar
  40. Gomori, G., 1954b, Chromogenic substrates for aminopeptidase, Proc. Soc. Exp. Biol. Med. 87:559–561.PubMedGoogle Scholar
  41. Grassmann, W., Dyckerhoff, H., and Eibeler, H., 1930, Über die enzymatische Spaltung des Glutathione. I., Hoppe Seyler’s Z. Physiol. Chem. 189:112–120.CrossRefGoogle Scholar
  42. Greenberg, E., Wallaeger, E. E., Fleisher, G. A., and Engstrom, G. W., 1967, Demonstration of γ-glutamyl transpeptidase activity in human jejunal mucosa, Clin. Chem. Acta 16:79–89.CrossRefGoogle Scholar
  43. Hanes, C. S., Hird, F. J. R., and Isherwood, F. A., 1950, Synthesis of peptides in enzymic reactions involving glutathione, Nature 166:288–292.PubMedCrossRefGoogle Scholar
  44. Hanes, C. S., Hird, F. J. R., and Isherwood, F. A., 1952, Enzymic transpeptidation reactions involving y-glutamyl peptides and α-aminoacyl peptides, Biochem. J. 51:25–35.PubMedGoogle Scholar
  45. Harding, J. J., 1970, Free and protein-bound glutathione in normal and cataractous human lenses, Biochem. J. 117:957–960.PubMedGoogle Scholar
  46. Harington, C. R., and Mead, T. H., 1935, Synthesis of glutathione, Biochem. J. 29:1602–1611.PubMedGoogle Scholar
  47. Harrison, H. E., and Harrison, H. C., 1954, Experimental production of renal glycosuria, phosphaturia, and aminoaciduria by injection of maleic acid, Science 120:606–608.PubMedCrossRefGoogle Scholar
  48. Hird, F. J. R., 1950, The y-glutamyl transpeptidation reaction, Doctoral dissertation, Cambridge University, England.Google Scholar
  49. Hird, F. J. R., and Springell, P. H., 1954a, The enzymic hydrolysis of the γ-glutamyl bond in glutathione, Biochim. Biophys. Acta 15:31–37.PubMedCrossRefGoogle Scholar
  50. Hird, F. J. R., and Springell, P. H., 1954b, The enzymic reaction of amino acids with glutathione, Biochem. J. 56:417–425.PubMedGoogle Scholar
  51. Hopkins, F. G., 1921, On an autoxidisable constituent of the cell, Biochem. J. 15:286–305.PubMedGoogle Scholar
  52. Hopkins, F. G., 1929, On glutathione: A reinvestigation, J. Biol. Chem. 84:269–320.Google Scholar
  53. Katunuma, N., Tomino, I., and Nishino, H., 1966, Glutaminase isozymes in rat kidney, Biochem. Biophys. Res. Commun. 22:321–328.PubMedCrossRefGoogle Scholar
  54. Katunuma, N., Huzino, A., and Tomino, I., 1967, Organ specific control of glutamine metabolism, Adv. Enzyme Regul. 5:55–69.PubMedCrossRefGoogle Scholar
  55. Katunuma, N., Katsunuma, T., Tomino, I., and Matsuda, Y., 1968a, Regulation of glutaminase activity and differentiation of the isozyme during development, Adv. Enzyme Regul. 6:227–242.PubMedCrossRefGoogle Scholar
  56. Katunuma, N., Tomino, I., and Sanada, Y., 1968a, Differentiation of organ specific glutaminase, Biochem. Biophys. Res. Commun. 32:426–432.PubMedCrossRefGoogle Scholar
  57. Katunuma, T., Temma, M., and Katunuma, N., 1968c, Allosteric nature of a glutaminase isozyme in rat liver, Biochem. Biophys. Res. Commun. 32:433–437.PubMedCrossRefGoogle Scholar
  58. Katunuma, N., Katsunuma, T., Towatari, T., and Tomino, I., 1973, Regulatory mechanisms of glutamine catabolism, in: The Enzymes of Glutamine Metabolism (S. Prusiner and E. R. Stadt-man, eds.), pp. 227–258, Academic Press, New York.Google Scholar
  59. Kendall, E. C., McKenzie, B. F., and Mason, H. L., 1929, A study of glutathione. I. Its preparation in crystalline form and its identification, J. Biol. Chem. 84:657–674.Google Scholar
  60. Knox, W. E., 1960, Glutathione, The Enzymes, Vol. 2, pp. 253–294, Academic Press, New York.Google Scholar
  61. Konrad, P. N., Richards, F., Valentine, W. N., and Paglia, D. E., 1972, γ-Glutamyl-cysteine synthetase deficiency: A cause of hereditary hemolytic anemia, N. Engl. J. Med. 286:557–561.PubMedCrossRefGoogle Scholar
  62. Leibach, F. H., and Binkley, F., 1968, y-Glutamyl transferase of swine kidney, Arch. Biochem. Biophys. 127:292–301.CrossRefGoogle Scholar
  63. Martin, C. J., Golubow, J., and Axelrod, A. E., 1958, A rapid and sensitive method for the determination of chymotrypsin and trypsin activity, Biochim. Biophys. Acta 27:430–431.PubMedCrossRefGoogle Scholar
  64. Matthews, D. M., 1972, Rates of peptide uptake by small intestine, in Peptide Transport in Bacteria and Mammalian Gut, GIBA Foundation Symposium, pp. 71–92, Elsevier, Amsterdam.Google Scholar
  65. Meister, A., 1956, Metabolism of glutamine, Physiol. Rev. 36:103–127.PubMedGoogle Scholar
  66. Meister, A., 1969, On the synthesis and utilization of glutamine, Harvey Lect. 63:139–178.PubMedGoogle Scholar
  67. Meister, A., 1973, On the enzymology of amino acid transport, Science 180:33–39.PubMedCrossRefGoogle Scholar
  68. Meister, A., 1974a, Glutathione synthesis, The Enzymes, 3rd edition, Vol. 10, pp. 671–697, Academic Press, New York.Google Scholar
  69. Meister, A., 1974b, Glutathione, metabolism and function via the γ-glutamyl cycle, Life Sci. 15:177–190.PubMedCrossRefGoogle Scholar
  70. Meister, A., 1974c, The γ-glutamyl cycle; diseases associated with specific enzymatic deficiencies, Ann. Intern. Med. 81:247–253.PubMedGoogle Scholar
  71. Meister, A., 1974d, An enzymatic basis for a blood-brain barrier? The γ-glutamyl cycle—background and considerations relating to amino acid transport in the brain, Symposium on Brain Dysfunction in Metabolic Disorders, Research Publications of the Association for Research in Nervous and Mental Disease, 53:273–291, Raven Press, New York.Google Scholar
  72. Meister, A., 1975, Biochemistry of glutathione, in: Metabolism of Sulfur Compounds (D. M. Green-berg, ed.), pp. 101–188, Academic Press, New York.Google Scholar
  73. Meister, A., Krishnaswamy, P. R., and Pamiljans, V., 1972, Mechanism of glutamic acid activation, Symposium on Mechanisms of Enzyme Action, Fed. Proc. 21:1013–1022.Google Scholar
  74. Milne, M. D., 1971, Transport of amino acids and peptides in the gut and the kidney, in Sci. Basis Med. Ann. Rev. 161-177.Google Scholar
  75. Morgan, E. J., and Friedmann, E., 1938, Interaction of maleic acid with thiol compounds, Biochem. J. 32:733–742.PubMedGoogle Scholar
  76. Nachlas, M. M., Monis, B., Rosenblatt, D., and Seligman, A. M., 1960, Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leucyl-4-methoxy-2-naphthylamide, J. Biophys. Biochem. Cytol. 7:261–264.PubMedCrossRefGoogle Scholar
  77. Olson, C. K., and Binkley, F., 1950, Metabolism of glutathione. III. Enzymatic hydrolysis of cysteinglycine, J. Biol. Chem. 186:731–735.PubMedGoogle Scholar
  78. Orlowski, M., and Meister, A., 1963, γ-Glutamyl-p-nitroanilide: A new convenient substrate for determination and study of l-and D-γ-glutamyl transpeptidase activities, Biochim. Biophys. Acta 73:679–681.PubMedCrossRefGoogle Scholar
  79. Orlowski, M., and Meister, A., 1965, Isolation of γ-glutamyl transpeptidase from hog kidney, J. Biol. Chem. 240:338–347.PubMedGoogle Scholar
  80. Orlowski, M., and Meister, A., 1970, The γ-glutamyl cycle: A possible transport system for amino acids, Proc. Natl. Acad. Sci. U.S.A. 67:1248–1255.PubMedCrossRefGoogle Scholar
  81. Orlowski, M., and Meister, A., 1971a, Isolation of highly purified γ-glutamylcysteine synthetase from rat kidney, Biochemistry 10:372–380.PubMedCrossRefGoogle Scholar
  82. Orlowski, M., and Meister, A., 1971b, Partial reactions catalyzed by γ-glutamylcysteine synthetase and evidence for an activated glutamate intermediate, J. Biol. Chem. 246:7095–7105.PubMedGoogle Scholar
  83. Orlowski, M., and Meister, A., 1973, γ-Glutamyl cyclotransferase; distribution, isozymic forms, and specificity, J. Biol. Chem. 248:2836–2844.PubMedGoogle Scholar
  84. Orlowski, M., and Szewczuk, A., 1961, Colorimetric determination of γ-glutamyl transpeptidase in human serum and tissue with synthetic substrates, Acta Biochim. Pol. 8:189–200.PubMedGoogle Scholar
  85. Orlowski, M., Richman, P. G., and Meister, A., 1969, Isolation and properties of γ-L-glutamyl-cyclotransferase from human brain, Biochemistry 8:1048–1055.PubMedCrossRefGoogle Scholar
  86. Orlowski, M., Sessa, G., and Green, J. P., 1974, γ-Glutamyl transpeptidase in brain capillaries, Science 184:66–68.PubMedCrossRefGoogle Scholar
  87. Palekar, A. G., Tate, S. S., and Meister, A., 1975, Decrease in glutathione levels of kidney and liver after injection of methionine sulfoximine into rats, Biochem. Biophys. Res. Commun. 62:651–657.PubMedCrossRefGoogle Scholar
  88. Peters, T. J., 1972, Subcellular fractionation of the enterocyte with special reference to peptide hydrolases, in Peptide Transport in Bacteria and Mammalian Gut, GIBA Foundation Symposium, pp. 107–122, Elsevier, Amsterdam.Google Scholar
  89. Ramakrishna, M., Krishnaswamy, P. R., and Rao, D. R., 1970, Metabolism of pyrrolidone-carboxylic acid in the rat, Biochem. J. 118:895–897.PubMedGoogle Scholar
  90. Rathbun, W. B., and Wicker, K., 1973, Bovine lens γ-glutamyl transpeptidase, Exp. Eye Res. 15:161–171.PubMedCrossRefGoogle Scholar
  91. Ravin, H. A., Bernstein, P., and Seligman, A. M., 1954, A colorimetric micromethod for the estimation of chymotrypsin activity, J. Biol. Chem. 208:1–15.PubMedGoogle Scholar
  92. Revel, J. P., and Ball, E. G., 1959, The reaction of glutathione with amino acids and related compounds as catalyzed by γ-glutamyl transpeptidase, J. Biol. Chem. 234:577–582.PubMedGoogle Scholar
  93. Richards, F., Cooper, M. R., Pearce, L. A., Cowan, R. J., and Spurr, C. L., 1974, Familial spinocerebellar degeneration, hemolytic anemia, and glutathione deficiency, Arch. Intern. Med. 134:534–537.PubMedCrossRefGoogle Scholar
  94. Richman, P. G., 1970, γ-Glutamylcysteine synthetase and related studies on the metabolism of the γ-glutamyl group, Doctoral dissertation, 1974, Cornell University Graduate School of Medical Sciences, New York, New York.Google Scholar
  95. Richter, R., 1969, Some properties of y-glutamyl transpeptidase from human kidney, Arch. Immun. Therap. Exp. 17:476–495.Google Scholar
  96. Rosenberg, L. E., and Segal, S., 1964, Maleic acid-induced inhibition of amino acid transport in rat kidney, Biochem. J. 92:345–352.PubMedGoogle Scholar
  97. Rosenblatt, D. H., Nachlas, M. M., and Seligman, A. M., 1958, Synthesis of m-methoxynaphthyl-amines as precursors for chromogenic substrates, J. Am. Chem. Soc. 80:2463–2465.CrossRefGoogle Scholar
  98. Ross, L. L., Barber, L., Tate, S. S., and Meister, A., 1973, Enzymes of the γ-glutamyl cycle in the ciliary body and lens, Proc. Natl. Acad. Sci. U.S.A. 70:1447–1449.PubMedCrossRefGoogle Scholar
  99. Rutenberg, A. M., Kim, H., Fischbein, J. W., Hanker, J. S., Wasserkrug, H. L., and Seligman, A. M., 1969, Histochemical and ultrastructural demonstration of γ-glutamyl transpeptidase activity, J. Histochem. Cytochem. 17:517–526.CrossRefGoogle Scholar
  100. Segal, S., and Thier, S. O., 1973, Renal handling of amino acids, in: Handbook of Physiology (S. R. Geiger, J. Orloff, and R. W. Berliner, eds.), Section 8, pp. 656–676, American Physiological Society, Washington, D.C.Google Scholar
  101. Sekura, R., and Meister, A., 1974, Glutathione turnover in the kidney; considerations relating to the γ-glutamyl cycle and the transport of amino acids, Proc. Natl. Acad. Sci. U.S.A. 71:2969–2972.PubMedCrossRefGoogle Scholar
  102. Seligman, A. M., Wasserkrug, H. L., Plapinger, R. E., Scito, T., and Hawker, J. S., 1970, Membraneous ultrastructural demonstration of aminopeptidase and γ-glutamyl transpeptidase activities with a new diazonium salt that yields a lipophobic, osmiophilic azo dye, J. Histochem. Cytochem. 18:542–551.PubMedCrossRefGoogle Scholar
  103. Smyth, D. H., 1972, Peptide transport by mammalian gut, in Peptide Transport in Bacteria and Mammalian Gut, CIBA Foundation Symposium, pp. 59–70, Elsevier, Amsterdam.Google Scholar
  104. Snoke, J. E., and Block, K., 1954, in Glutathione (Colowick et al., eds.), pp. 129–141, Academic Press, New York.Google Scholar
  105. Springell, P. H., 1953, Amino acid metabolism with special reference to peptide bond transfer, Ph.D. Thesis, Melbourne University, Australia.Google Scholar
  106. Szewgzuk, A., and Baranowski, T., 1963, Purification and properties of γ-glutamyl transpeptidase from beef kidney, Biochem. Z. 338:317–329.Google Scholar
  107. Szewczuk, A., and Gonnell, G. E., 1965, The reaction of iodoacetamide with the active center of γ-glutamyl transpeptidase, Biochim. Biophys. Acta 105:352–367.PubMedGoogle Scholar
  108. Takahashi, S., Pollack, J., and Scifter, S., 1974, Purification of γ-glutamyltransferase of rat kidney by affinity chromatography using concanavalin A conjugated with sepharose 4B, Biochim. Biophys. Acta 371:71–75.PubMedGoogle Scholar
  109. Tanigughi, N., 1974, Purification and some properties of γ-glutamyl transpeptidase from azo dye-induced hepatoma, J. Biochem. 75:473–480.Google Scholar
  110. Tate, S. S., 1975, y-Glutamyl transpeptidase: Properties in relation to its proposed physiological role, in: Isozymes, Vol. 2, Physiology and Function (G. L. Markert, ed.), Academic Press, New York, pp. 743–765.Google Scholar
  111. Tate, S. S., and Meister, A., 1974a, Interaction of γ-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione, J. Biol. Chem. 249:7593–7602.PubMedGoogle Scholar
  112. Tate, S. S., and Meister, A., 1974b, Stimulation of the hydrolytic activity and decrease of the transpeptidase activity of γ-glutamyl transpeptidase by maleate; identity of a rat kidney maleate-stimulated glutaminase and γ-glutamyl transpeptidase, Proc. Natl. Acad. Sci. U.S.A. 71:3329–3333.PubMedCrossRefGoogle Scholar
  113. Tate, S. S., and Meister, A., 1975, Identity of maleate-stimulated “glutaminase ” with γ-glutamyl transpeptidase in rat kidney, J. Biol. Chem. 250:4619–4624.PubMedGoogle Scholar
  114. Tate, S. S., Ross, L. L., and Meister, A., 1973, The γ-glutamyl cycle in the choroid plexus; its possible function in amino acid transport, Proc. Natl. Acad. Sci. U.S.A. 70:1447–1449.PubMedCrossRefGoogle Scholar
  115. Thompson, G. A., and Meister, A., 1975, Utilization of L-cystine by the γ-glutamyl transpeptidase-γ-glutamyl cyclotransferase pathway, Proc. Natl. Acad. Sci. U.S.A. 72:1985–1988.PubMedCrossRefGoogle Scholar
  116. Ugolev, A. M., 1972, Membrane digestion and peptide transport, in Peptide Transport in Bacteria and Mammalian Gut, CIBA Foundation symposium, pp. 123–143, Elsevier, Amsterdam.Google Scholar
  117. Van Der Werf, P., 1970, Metabolism of 5-oxo-L-proline; conversion to L-glutamate in an ATP-dependent reaction catalyzed by 5-oxoprolinase, Doctoral dissertation, 1974, Cornell University Graduate School of Medical Sciences, New York, New York.Google Scholar
  118. Van Der Werf, P., and Meister, A., 1975, The metabolic formation and utilization of 5-oxo-L-proline (L-pyroglutamate, L-pyrrolidone carboxylate), Adv. Enzymol. 43:519–556.PubMedGoogle Scholar
  119. Van Der Werf, P., Orlowski, M., and Meister, A., 1971, Enzymatic conversion of 5-oxo-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with ATP cleavage to ADP: A reaction in the γ-glutamyl cycle, Proc. Natl. Acad. Sci. U.S.A. 68:2982–2985.PubMedCrossRefGoogle Scholar
  120. Van Der Werf, P., Stephani, R. A., Orlowski, M., and Meister, A., 1973, Inhibition of 5-oxoprolinase by 2-imidazolidone-4-carboxylic acid, Proc. Natl. Acad. Sci. U.S.A. 70:759–761.PubMedCrossRefGoogle Scholar
  121. Van Der Werf, P., Stephani, R. A., and Meister, A., 1974, Accumulation of 5-oxoproline in mouse tissues after inhibition of 5-oxoprolinase and administration of amino acids; evidence for function of the γ-glutamyl cycle, Proc. Natl. Acad. Sci. U.S.A. 71:1026–1029.CrossRefGoogle Scholar
  122. Webb, J. L., 1966, Enzyme and Metabolic Inhibitors, Vol. 3, pp. 285–335, Academic Press, New York.Google Scholar
  123. Wellner, V. P., Sekura, R., Meister, A., and Larsson, A., 1974, Glutathione synthetase deficiency, an inborn error of metabolism involving the y-glutamyl cycle in patients with 5-oxo-prolinuria (pyroglutamic aciduria), Proc. Natl. Acad. Sci. U.S.A. 71:2505–2509.PubMedCrossRefGoogle Scholar
  124. Wilfong, R. F., and Neville, D. M., Jr., 1970, The isolation of a brush border membrane fraction from rat kidney, J. Biol. Chem. 245:6106–6112.PubMedGoogle Scholar
  125. Woodward, G. E., and Reinhart, F. E., 1942, The effect of pH on the formation of pyrrolidone-carboxylic acid and glutamic acid during enzymatic hydrolysis of glutathione by rat kidney extract, J. Biol. Chem. 145:471–480.Google Scholar
  126. Worthen, H. G., 1963, Renal toxicity of maleic acid in the rat. Enzymatic and morphologic observations, Lab. Invest. 12:791–801.PubMedGoogle Scholar
  127. Young, J. A., and Freedman, B. S., 1971, Renal tubular transport of amino acids, Clin. Chem. 17:245–266.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Alton Meister
    • 1
  • Suresh S. Tate
    • 1
  • Leonard L. Ross
    • 2
  1. 1.Department of BiochemistryCornell University Medical CollegeNew YorkUSA
  2. 2.Department of AnatomyThe Medical College of PennsylvaniaPhiladelphiaUSA

Personalised recommendations