Potassium-Activated Phosphatase

  • Alcides F. Rega
  • Patricio J. Garrahan


The existence of a phosphatase activated by K in piasma membranes was first demonstrated by Judah et al. (1962). These authors showed that human red blood cell (RBC) membranes, incubated at neutral pH and in the presence of Mg, are capable of accelerating the hydrolysis of P -nitrophenylphosphate (P-NPP), the rate of hydrolysis in Mg-containing media being almost doubled by K. The activating effect of K required Mg since the activity in the absence of the divalent cation was shown to be very low and insensitive to K. A distinctive property of the enzyme was that 10−4 M ouabain abolished the activating effect of K, leaving unaltered the activity in the absence of the monovalent cation. The report of Judah et al. (1962) was followed by many others describing activities with characteristics similar to that from human RBCs in membrane preparations from tissues as diverse as brain (Ahmed and Judah, 1964; Fujita et al., 1965; Israel and Titus, 1966; Yoshida et al., 1966; Nagai et al., 1966), kidney (Ahmed and Judah, 1964; Bader and Sen, 1966; Nagai et al., 1966), gastric mucosa (Forte et al., 1967), intestinal epithelia (Boyd et al., 1968), liver (Ahmed and Judah, 1964; Nagai et al., 1966), and smooth muscle (Ahmed and Judah, 1964). The distribution and some kinetic parameters of K-activated phosphatase in different tissues are summarized in Table 1.


Phosphatase Activity Monovalent Cation Adenosine Triphosphatase Apparent Affinity Acetyl Phosphate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, K., and Judah, J. D., 1964, Preparation of lipoproteins containing cation-dependent ATPase, Biochim. Biophys. Acta 93:603.PubMedCrossRefGoogle Scholar
  2. Albers, R. W., and Koval, G. J., 1972, Sodium-potassium-activated adenosine triphosphatase. VII. Concurrent inhibition of Na++K+-adenosinetriphosphatase and activation of K +-nitrophenylphosphatase activities, J. Biol. Chem. 247:3088.PubMedGoogle Scholar
  3. Albers, W. R., and Koval, G. J., 1973, Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. VIII. Monovalent cation sites regulating phosphatase activity, J. Biol. Chem. 248:777.PubMedGoogle Scholar
  4. Askari, A., and Koyal, D., 1971, Studies on the partial reactions catalized by the (Na++K +)-activated ATPase. II. Effects of oligomycin and other inhibitors of the ATPase on the p-nitro-phenylphosphatase, Biochim. Biophys. Acta 225:20.PubMedCrossRefGoogle Scholar
  5. Bader, H., and Sen, A. K., 1966, (K +)-dependent acyl phosphatase as part of the (Na++K+)-dependent ATPase of cell membranes, Biochim. Biophys. Acta 118:116.PubMedGoogle Scholar
  6. Bader, H., Post, R. L., and Bond, G. H., 1968, Comparison of sources of a phosphorylated intermediate in transport ATPase, Biochim. Biophys. Acta 150:41.PubMedCrossRefGoogle Scholar
  7. Bond, G. H., Bader, H., and Post, R. L., 1971, Acetyl phosphate as a substitute for ATP in (Na+ + K+)-dependent ATPase, Biochim. Biophys. Acta 241:57.PubMedCrossRefGoogle Scholar
  8. Boyd, C. A. R., Parsons, D. S., and Thomas, A. V., 1968, The presence of K+-dependent phosphatase in intestinal epithelia cell brush borders isolated by a new method, Biochim. Biophys. Acta 150:723.PubMedCrossRefGoogle Scholar
  9. Dudding, W. F., and Winter, Ch. G., 1971, On the reaction sequence of the K-dependent acetyl phosphatase activity of the Na+ pump, Biochim. Biophys. Acta 241:605.Google Scholar
  10. Forte, J. G., Forte, G. M., and Saltman, P., 1967, K+-stimulated phosphatase of microsomes from gastric mucosa, J. Cell. Physiol. 69:293.PubMedCrossRefGoogle Scholar
  11. Fujita, M., Nakao, T., Tashima, Y., Mizuno, N., Nagano, K., and Nakao, M., 1965, Potassium-ion stimulated p-nitrophenylphosphatase activity occurring in a highly specific adenosine triphosphatase preparation from rabbit brain, Biochim. Biophys. Acta 117:42.CrossRefGoogle Scholar
  12. Garrahan, P. J., and Rega, A. F., 1972, Potassium activated phosphatase from human red blood cells. The effects of p-nitrophenylphosphate on cation fluxes, J. Physiol. 223:595.PubMedGoogle Scholar
  13. Garrahan, P. J., Pouchan, M. I., and Rega, A. F., 1969, Potassium activated phosphatase from human red blood cells. The mechanism of potassium activation, J. Physiol. 202:305.PubMedGoogle Scholar
  14. Garrahan, P. J., Pouchan, M. I., and Rega, A. F., 1970, Potassium-activated phosphatase from human red blood cells. The effects of adenosine triphosphate, J. Membr. Biol. 3:26.CrossRefGoogle Scholar
  15. Glynn, I. M., and Karlish, S. J. D., 1975, The sodium pump, Ann. Rev. Physiol. 37:13.CrossRefGoogle Scholar
  16. Goldemberg, A. L., Farías, N. R., and Trucco, R. E., 1972, Allosteric changes of p-nitrophenyl-phosphatase from rat erythrocytes in fat deficiency, J. Biol. Chem. 247:4299.PubMedGoogle Scholar
  17. Inturrisi, Ch. E., 1969, Thallium activation of K+-activated phosphatases from beef brain, Biochim. Biophys. Acta 173:567.PubMedCrossRefGoogle Scholar
  18. Israel, Y., and Titus, E., 1966, A comparison of microsomal (Na+ + K+)-ATPase with K +-acetyl phosphatase, Biochim. Biophys. Acta 139:450.Google Scholar
  19. Judah, J. D., Ahmed, K., and McLean, A. E. M., 1962, Ion transport and phosphoproteins of human red cells, Biochim. Biophys. Acta 65:472.CrossRefGoogle Scholar
  20. Kepner, G. R., and Macey, R. I., 1968, Membrane enzyme systems. Molecular size determination by radiation inactivation, Biochim. Biophys. Acta 163:188.PubMedCrossRefGoogle Scholar
  21. Koyal, D., Rao, S. N., and Askari, A., 1971, Studies on the partial reactions catalized by the (Na+ + K +)-activated ATPase. I. Effects of simple anions and nucleoside triphosphates on the alkali-cation specificity of the P-nitrophenylphosphatase, Biochim. Biopkys. Acta 225:11.CrossRefGoogle Scholar
  22. Mayer, M., and Avi-dor, Y., 1970, Interaction of solvents with membranal and soluble K ion-dependent enzymes, Biochem. J. 116:49.PubMedGoogle Scholar
  23. Mullins, L. J., and Brinley, F. J., 1969, Potassium fluxes in dialyzed squid axons, J. Gen. Physiol. 53:704.PubMedCrossRefGoogle Scholar
  24. Nagai, K., and Yoshida, H., 1966, Biphasic effects of nucleotides on potassium-dependent phosphatase, Biochim. Biophys. Acta 129:410.Google Scholar
  25. Nagai, K., Izumi, F., and Yoshida, H., 1966, Studies on potassium dependent phosphatase; its distribution and properties, J. Biochem. 59:295.PubMedGoogle Scholar
  26. Pitts, B. J. R., and Askari, A., 1971, Stimulation of the phosphatase activity of (Na+ + K +)-ATPase preparations by ouabain, Biochim. Biophys. Acta 225:388.PubMedCrossRefGoogle Scholar
  27. Post, R. L., Sen, A. K., and Rosenthal, A. S., 1965, A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes, J. Biol. Chem. 240:1437.PubMedGoogle Scholar
  28. Post, R. L., Hegyvary, C., and Kume, S., 1972, Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase, J. Biol. Chem. 247:6530.PubMedGoogle Scholar
  29. Poughan, M. I., Garrahan, P. J., and Rega, A. F., 1969, Effects of ATP and Ca++ on a K+activated phosphatase from red blood cell membranes, Biochim. Biophys. Acta 173:151.CrossRefGoogle Scholar
  30. Rega, A. F., Garrahan, P. J., and Pouchan, M. I., 1968, Effects of ATP and Na+ on a K+activated phosphatase from red blood cell membranes, Biochim. Biophys. Acta 150:742.PubMedCrossRefGoogle Scholar
  31. Rega, A. F., Pouchan, M. I., and Garrahan, P. J., 1970a, Potassium ions asymmetrically activate erythrocyte membrane phosphatase, Science 167:55.PubMedCrossRefGoogle Scholar
  32. Rega, A. F., Garrahan, P. J., and Pouchan, M. I., 1970b, Potassium-activated phosphatase from human red blood cells. The asymmetrical effects of K +, Na +, Mg++ and adenosine triphosphate, J. Membr. Biol. 3:14.CrossRefGoogle Scholar
  33. Rega, A. F., Richards, D. E., and Garrahan, P. J., 1973, Calcium ion-dependent p-nitrophenyl phosphate phosphatase activity and calcium ion-dependent adenosine triphosphatase activity from human erythrocyte membranes, Biochem. J. 136:185.PubMedGoogle Scholar
  34. Rega, A. F., Richards, D. E., and Garrahan, P. J., 1974, The effects of Ca2+ on ATPase and phosphatase activities of erythrocyte membranes, Ann. N.Y. Acad. Sci. 242:317.PubMedCrossRefGoogle Scholar
  35. Robinson, J. D., 1969, Kinetic studies on a brain microsomal adenosinetriphosphatase. II. Potassium-dependent phosphatase activity, Biochemistry 8:3348.PubMedCrossRefGoogle Scholar
  36. Robinson, J. D., 1970a, Interactions between monovalent cations and the (Na+ + K +)-dependent adenosine triphosphatase, Arch. Biochem. Biophys. 139:17.PubMedCrossRefGoogle Scholar
  37. Robinson, J. D., 1970b, Phosphatase activity stimulated by Na+ plus K+: Implications for the (Na+ plus K +)-dependent adenosine triphosphatase, Arch. Biochem. Biophys. 139:164.PubMedCrossRefGoogle Scholar
  38. Robinson, J. D., 1971, K+-stimulated incorporation of 32P from nitrophenyl phosphate into a (Na+ + K +)-activated ATPase preparation, Biochem. Biophys. Res. Commun. 42:880.PubMedCrossRefGoogle Scholar
  39. Robinson, J. D., 1973, Variable affinity of the (Na+ + K +)-dependent adenosine triphosphatase for potassium, Arch. Biochem. Biophys. 156:232.PubMedCrossRefGoogle Scholar
  40. Robinson, J. D., 1974, Specific modifications of the (Na+ + K +)-dependent ATPase by dimethyl sulfoxide, Ann. N.Y. Acad. Sci. (DMSO Conference), in press.Google Scholar
  41. Skou, J. C., 1974, Effects of ATP on the intermediary steps of the reaction of the (Na+ + K +)-dependent enzyme system. III. Effect on the p-nitrophenylphosphatase activity of the system, Biochim. Biophys. Acta 339:258.CrossRefGoogle Scholar
  42. Tosteson, D. C., 1962, Active cation transport, ATP-ase and phosphomonoester-ase, Proc. XXII Int. Congr. Physiol. Sci. 2:615 (abstract).Google Scholar
  43. Uesugi, S., Dulak, C. N., Dixon, F. J., Hexum, D. T., Dahl, J. L., Perdue, J. F., and Hokin, L. E., 1971, Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. VI. Large scale partial purification and properties of a Lubrol solubilized bovine brain enzyme, J. Biol. Chem. 246:531.PubMedGoogle Scholar
  44. Vigliocco, A. M., Rega, A. F., and Garrahan, P. J., 1970, Membrane phosphatase and active transport in red cells from different species, J. Cell Physiol. 75:293.PubMedCrossRefGoogle Scholar
  45. Yoshida, H., Izumi, F., and Nagai, K., 1966, Carbamyl phosphate, a preferential substrate of K+dependent phosphatase, Biochim. Biophys. Acta 120:183.PubMedCrossRefGoogle Scholar
  46. Yoshida, H., Nagai, K., Ohasi, T., and Nakagawa, Y., 1969, K+-dependent phosphatase activity observed in the presence of both adenosine triphosphate and Na+, Biochim. Biophys. Acta 171:178.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Alcides F. Rega
    • 1
  • Patricio J. Garrahan
    • 1
  1. 1.Departamento de Química Biológica, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations