Advertisement

Plasma Membrane Calcium Transport and Membrane-Bound Enzymes

  • Frank F. Vincenzi
  • Thomas R. Hinds

Abstract

This chapter will consider evidence demonstrating the existence in the plasma membrane of an active transport system for calcium. (The terms calcium and Ca are used here to denote calcium in general, including bound calcium and, possibly, free ionized calcium. When free ionized calcium is meant, the symbol Ca2+ will be employed.) Evidence gained mainly from studies using the human red blood cell (RBC) will be reviewed. Reference and inference to calcium transport in other plasma membranes will be made where this seems justified. The relationship of plasma membrane calcium transport to several membrane-bound enzymes will be discussed, consideration of the potential significance of plasma membrane transport to cellular biology will be undertaken, and the possible role of plasma membrane calcium transport in several diseases will be considered. We shall attempt to critically assess the evidence for plasma membrane calcium transport and will attempt to show that transport of calcium in the RBC plasma membrane is representative of most cellular plasma membranes. While not necessarily comprehensive this approach reflects our desire to bridge the gap between basic biochemistry-biophysics and clinical medicine.

Keywords

Calcium Transport Adenosine Triphosphatase Hereditary Spherocytosis Human Erythrocyte Membrane Dependent ATPase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, S., and Mawatari, S., 1971, Oubain and erythrocyte-ghost adenosine triphosphatase. Effects in human muscular dystrophies, Arch. Neurol. 24:187–190.PubMedCrossRefGoogle Scholar
  2. Baker, P. F., 1972, Transport and metabolism of calcium ions in nerve, in: Progress in Biophysics and Molecular Biology (J. A. V. Butler and D. Noble, eds.), pp. 179–223, Pergamon Press, New York.Google Scholar
  3. Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A., 1969, The influence of calcium on sodium efflux in squid axons, J. Physiol. (London) 200:431–458.Google Scholar
  4. Baker, R., Powars, D., and Haywood, L.J., 1974, Restoration of the deformability of “irreversibly” sickled cells by procaine hydrochloride, Biochem. Biophys. Res. Commun. 59:548–556.PubMedCrossRefGoogle Scholar
  5. Balfe, J. W., Cole, C., and Welt, L. G., 1968, Red-cell transport defect in patients with cystic fibrosis and in their parents, Science 162:689–690.PubMedCrossRefGoogle Scholar
  6. Blostein, R., and Burt, V. K., 1971, Interaction of N-ethylmaleimide and Ca2+ with human erythroctye membrane ATPase, Biochim. Biophys. Acta 241:68–74.PubMedCrossRefGoogle Scholar
  7. Blum, R. M., and Hoffman, J. F., 1971, The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells, J. Membr. Biol. 6:315–328.CrossRefGoogle Scholar
  8. Blum, R. M., and Hoffman, J. F., 1972, Ga-induced K transport in human red cells: Localization of the Ga-sensitive site to the inside of the membrane, Biochem. Biophys. Res. Commun. 46:1146–1152.PubMedCrossRefGoogle Scholar
  9. Bodemann, H., and Passow, H., 1972, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membr. Biol. 8:1–26.PubMedCrossRefGoogle Scholar
  10. Bolingbroke, V., and Maizels, M., 1959, Calcium ions and the permeability of human erythrocytes, J. Physiol. (London) 149:563–585.Google Scholar
  11. Bond, G. H., 1972, Ligand-induced conformational changes in the (Mg2++Ca2+)-dependent ATPase of red cell membranes, Biochim. Biophys. Acta 288:423–433.PubMedCrossRefGoogle Scholar
  12. Bond, G. H., and Clough, D. L., 1973, A soluble protein activator of (Mg2++Ca2+)-dependent ATPase in human red cell membranes, Biochim. Biophys. Acta 323:592–599.PubMedCrossRefGoogle Scholar
  13. Bond, G. H., and Green, J. W., 1971, Effects of monovalent cations on the (Mg2++Ca2 +)-dependent ATPase of the red cell membrane, Biochim. Biophys. Acta 241:393–398.PubMedCrossRefGoogle Scholar
  14. Borle, A. B., 1968, Calcium metabolism in HeLa cells and the effects of parathyroid hormone, J. Cell Biol. 36:567–582.PubMedCrossRefGoogle Scholar
  15. Borle, A. B., 1969a, Kinetic analyses of calcium movements in HeLa cell cultures. I. Calcium influx, J. Gen. Physiol. 53:43–56.PubMedCrossRefGoogle Scholar
  16. Borle, A. B., 1969b, Kinetic analyses of calcium movements in HeLa cell cultures. II. Calcium efflux, J. Gen. Physiol. 53:57–69.PubMedCrossRefGoogle Scholar
  17. Borle, A. B., 1972, Kinetic analyses of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells, J. Membr. Biol. 10:45–66.PubMedCrossRefGoogle Scholar
  18. Bramley, T. A., and Coleman, R., 1972, Effects of inclusion of Ca2 +, Mg2 +, EDTA or EGTA during the preparation of erythrocyte ghosts by hypotonic haemolysis, Biochim. Biophys. Acta 290:219–228.PubMedCrossRefGoogle Scholar
  19. Bramley, T. A., Coleman, R., and Finean, J. B., 1971, Chemical, enzymological and permeability properties of human erythrocyte ghosts prepared by hypotonic lysis in media of different osmolarities, Biochim. Biophys. Acta 241:752–759.PubMedCrossRefGoogle Scholar
  20. Brown, H. D., Chattopadhyay, S. K., and Patel, A. B., 1967, Erythrocyte abnormality in human myopathy, Science 157:1577–1578.PubMedCrossRefGoogle Scholar
  21. Buckley, J. T., and Hawthorne, J. H., 1972, Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding, J. Biol. Chem. 247:7218–7223.PubMedGoogle Scholar
  22. Carsten, M. E., and Mommaerts, W. F. H. M., 1964, The accumulation of calcium ions by sarcotubular vesicles, J. Gen. Physiol. 48:183–197.PubMedCrossRefGoogle Scholar
  23. Gha, Y. N., Shin, B. C., and Lee, K. S., 1971, Active uptake of Ca++ and Ca++-activated Mg++ ATPase in red cell membrane fragments, J. Gen. Physiol. 57:202–215.CrossRefGoogle Scholar
  24. Chau-Wong, M., and Seeman, P., 1971, The control of membrane-bound Ca2+ by ATP, Biochim. Biophys. Acta 241:473–482.PubMedCrossRefGoogle Scholar
  25. Cole, C. H., and Dirks, J. H., 1972, Changes in erythrocyte membrane ATPase in patients with cystic fibrosis of the pancreas, Pediat. Res. 6:616–621.PubMedGoogle Scholar
  26. Davis, P. W., and Vingenzi, F. F., 1971, Ca-ATPase activation and NaK-ATPase inhibition as a function of calcium concentration in human red cell membranes, Life Sci. 10:401–406.CrossRefGoogle Scholar
  27. Dodge, J. T., Mitchell, G., and Hanahan, D. J., 1963, The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes, Biochim. Biophys. Acta 100:119–130.Google Scholar
  28. Douglas, W. W., 1968, Stimulus-secretion coupling: The concept and clues from chromaffin and other cells, B. J. Pharmacol. 34:451–474.Google Scholar
  29. Duffy, M. J., and Schwarz, V., 1973, Calcium binding by the erythrocyte membrane, Biochim. Biophys. Acta 330:294–301.PubMedCrossRefGoogle Scholar
  30. Duncan, C. J., 1967, The Molecular Properties and Evolution of Excitable Cells, Pergamon Press, Oxford.Google Scholar
  31. Dunham, E. T., and Glynn, I. M., 1961, Adenosinetriphosphatase activity and the active movements of alkali metal ions, J. Physiol (London) 156:274–293.Google Scholar
  32. Dunham, P., and Gunn, R. B., 1972, Adenosine triphosphatase and active cation transport in red blood cell membranes, Arch. Intern. Med. 129:241–247.PubMedCrossRefGoogle Scholar
  33. Dunn, M. J., 1974, Red blood cell calcium and magnesium: Effects upon sodium and potassium transport and cellular morphology, Biochim. Biophys. Acta 352:97–116.PubMedCrossRefGoogle Scholar
  34. Eaton, J. W., Skelton, T. D., Swofford, H. S., Kolpin, C. E., and Jacob, H. S., 1973, Elevated erythrocyte calcium in sickle cell disease, Nature 246:105–106.PubMedCrossRefGoogle Scholar
  35. Epstein, F. H., and Whittam, R., 1966, The mode of inhibition by calcium of cell-membrane adenosine-triphosphatase activity, Biochem. J. 99:232–238.PubMedGoogle Scholar
  36. Feig, S. A., and Guidotti, G., 1974, Relative deficiency of Ca2 +-dependent adenosine triphosphatase activity of red cell membranes in hereditary spherocytosis, Biochem. Biophys. Res. Commun. 58:487–494.PubMedCrossRefGoogle Scholar
  37. Feig, S. A., Segel, G. B., Kern, K. A., Osher, A. B., and Schwartz, R. H., 1974, Erythrocyte transport function in cystic fibrosis, Pediat. Res. 8:594–597.PubMedCrossRefGoogle Scholar
  38. Fitzpatrick, D. F., Landon, E. J., Debbas, G., and Hurwitz, L., 1972, A calcium pump in vascular smooth muscle, Science 176:305–306.PubMedCrossRefGoogle Scholar
  39. Foreman, J. C., Mongar, J. L., and Gomperts, B. D., 1973, Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process, Nature 245:249–251.PubMedCrossRefGoogle Scholar
  40. Forstner, J., and Manery, J. F., 1971a, Calcium binding by human erythrocyte membranes, Biochem. J. 124:563–571.PubMedGoogle Scholar
  41. Forstner, J., and Manery, J. F., 1971b, Calcium binding by human erythrocyte membranes. Significance of carboxyl, amino and thiol groups, Biochem. J. 125:343–351.PubMedGoogle Scholar
  42. Gallin, J. I., and Rosenthal, A. S., 1974, The regulatory role of divalent cations in human granulocyte Chemotaxis. Evidence for an association between calcium exchanges and microtubule assembly, J. Cell. Biol. 62:594–609.PubMedCrossRefGoogle Scholar
  43. GÁrdos, G., 1958, The role of calcium in the potassium permeability of human erythrocytes, Acta Physiol. Acad. Sci. Hung. 15:121–125.Google Scholar
  44. Garrahan, P. J., and Glynn, I. M., 1967, The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump, J. Physiol. (London) 192:237–256.Google Scholar
  45. Garrison, J. C., and Terepka, A. R., 1972, Calcium-stimulated respiration and ctive calcium transport in the isolated chick chorioallantoic membrane, J. Membr. Biol. 7:128–145.CrossRefGoogle Scholar
  46. Glynn, I. M., 1964, The action of cardiac glycosides on ion movements, Pharmacol. Rev. 16:381–407.PubMedGoogle Scholar
  47. Hadden, J. W., Hansen, L. G., Shapiro, B. L., and Warwick, W. J., 1973, Erythrocyte enigmas in cystic fibrosis, Proc. Soc. Exp. Biol. Med. 142:577–579.PubMedGoogle Scholar
  48. Hanahan, D. J., 1973, The erythrocyte membrane variability and membrane enzyme activity, Biochim. Biopkys. Acta 300:319–340.Google Scholar
  49. Hanahan, D. J., Ekholm, J. E., and Luthra, M. G., 1974, Is lipid lost during preparation of erythrocyte membranes?, Biochim. Biophys. Acta 363:283–286.PubMedCrossRefGoogle Scholar
  50. Harrison, D. G., and Long, G., 1968, The calcium content of human erythrocytes, J. Physiol. (London) 199:367–381.Google Scholar
  51. Hoffman, J. F., 1962, Cation transport and structure of the red-cell plasma membrane, Circulation 26:1201–1213.Google Scholar
  52. Horton, C. R., Cole, W. Q., and Bader, H., 1970, Depressed (Ca++)-transport ATPase in cystic fibrosis erythrocytes, Biochem. Biophys. Res. Commun. 40:505–509.PubMedCrossRefGoogle Scholar
  53. Hurwitz, L., Fitzpatrick, D. F., Debbas, G., and Landon, E. J., 1973, Localization of calcium pump activity in smooth muscle, Science 179:384–386.PubMedCrossRefGoogle Scholar
  54. Huxley, H. E., 1973, Muscular contraction and cell motility, Nature, 243:445–449.PubMedCrossRefGoogle Scholar
  55. Jacob, H., Amsden, T., and White, J., 1972, Membrane microfilaments of erythrocytes: Alteration in intact cells reproduces the hereditary spherocytosis syndrome, Proc. Natl. Acad. Sci. U.S.A. 69:471–474.PubMedCrossRefGoogle Scholar
  56. Jacob, H. S., Ruby, A., Overland, E. S., and Mazia, D., 1971, Abnormal membrane protein of red blood cells in hereditary spherocytosis, J. Clin. Invest. 50:1800–1805.PubMedCrossRefGoogle Scholar
  57. Jay, A. W. L., and Burton, A. C., 1969, Direct measurement of potential difference across the human red blood cell membrane, Biophys. J. 9:115–121.PubMedCrossRefGoogle Scholar
  58. Jensen, M., Shohet, S. B., and Nathan, D. G., 1973, The role of red cell energy metabolism in the generation of irreversibly sickled cells in vitro, Blood 42:835–842.PubMedGoogle Scholar
  59. Juliano, R. L., 1973, The proteins of the erythrocyte membrane, Biochim. Biophys. Acta 300:341–378.PubMedGoogle Scholar
  60. Kahlenberg, A., Walker, C., and Rohrlick, R., 1974, Evidence for an asymmetric distribution of phospholipids in the human erythrocyte membrane, Can. J. Biochem. 52:803–806.PubMedCrossRefGoogle Scholar
  61. Kalix, P., 1971, Uptake and release of calcium in rabbit vagus nerve, Pfluegers Arch. 326:1–14.CrossRefGoogle Scholar
  62. Kant, J. A., and Steck, T. L., 1972, Cation-impermeable inside-out and right-side-out vesicles from human erythrocyte membranes, Nature (London), New Biol. 240:26–28.Google Scholar
  63. Klassen, G. A., and Blostein, R., 1969, Adenosine triphosphatase and myopathy, Science 163:492–493.PubMedCrossRefGoogle Scholar
  64. Knauf, P. A., Proverbio, F., and Hoffman, J. F., 1974, Electrophoretic separation of different phosphoproteins associated with Ca-ATPase and Na, K-ATPase in human red cell ghosts, J. Gen. Physiol. 63:324–336.PubMedCrossRefGoogle Scholar
  65. Kregenow, F. M., and Hoffman, J. F., 1972, Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells, J. Gen. Physiol. 60:406–429.PubMedCrossRefGoogle Scholar
  66. LaCelle, P. L., 1970, Alteration of membrane deformability in hemolytic anemias, Semin. Hematol. 7:355–371.PubMedGoogle Scholar
  67. LaCelle, P. L., Kirkpatrick, F. H., Udkow, M. P., and Arkin, B., 1973, Membrane fragmentation and Ca++-membrane interaction: Potential mechanisms of shape change in the senescent red cell, in: Red Blood Cell Shape (M. Bessis, R. I. Weed, and P. F. Leblond, eds.), pp. 69–78, Springer-Verlag, New York.CrossRefGoogle Scholar
  68. Lamb, J. F., and Lindsay, R., 1971, Effect of Na, metabolic inhibitors and ATP on Ca movements in L cells, J. Physiol. (London) 218:691–708.Google Scholar
  69. Lee, K. S., and Shin, B. C., 1969, Studies on the active transport of calcium in human red cells, J. Gen. Physiol. 54:713–729.PubMedCrossRefGoogle Scholar
  70. Lew, V. L., 1971a, On the ATP dependence of the Ca2 +-induced increase in K+ permeability observed in human red cells, Biochim. Biophys. Acta 233:827–830.PubMedCrossRefGoogle Scholar
  71. Lew, V. L., 1971b, Effect of ouabain on the Ca2 +-dependent increase in K+ permeability in depleted guinea-pig red cells, Biochim. Biophys. Acta 249:236–239.PubMedCrossRefGoogle Scholar
  72. Lichtman, M. A., and Weed, R. I., 1973, Divalent cation content of normal and ATP-depleted erythrocytes and erythrocyte membranes, in: Red Blood Cell Shape (M. Bessis, R. I. Weed, and P. F. Leblond, eds.), pp. 79–93, Springer-Verlag, New York.CrossRefGoogle Scholar
  73. Ling, G. N., 1962, A Physical Theory of the Living State, Blaisdell, New York.Google Scholar
  74. Long, G., and Mouat, B., 1971, The binding of calcium ions by erythrocytes and ‘ghost’-cell membranes, Biochem. J. 123:829–836.PubMedGoogle Scholar
  75. Luft, J. H., 1971, Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action, Anat. Rec. 171:347–368.PubMedCrossRefGoogle Scholar
  76. Ma, S. W. Y., Shami, Y., Messer. H. H., and Copp, D. H., 1974, Properties of Ca2 +-ATPase from the gill of rainbow trout, Biochim. Biophys. Acta 345:243–251.PubMedCrossRefGoogle Scholar
  77. Maddy, A. H., 1970, Erythrocyte membrane proteins, Semin. Hematol. 7:275–295.PubMedGoogle Scholar
  78. Marghesi, V. T., and Palade, G. E., 1967, The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes, J. Cell Biol. 35:385–404.CrossRefGoogle Scholar
  79. Marchesi, V. T., and Steers, E., Jr., 1968, Selective solubilization of a protein component of the red cell membrane, Science 159:203–204.PubMedCrossRefGoogle Scholar
  80. Marchesi, V. T., Steers, E., Tillagk, T. W., and Marghesi, S. L., 1969, Some properties of spectrin, in: Red Cell Membrane, Structure, and Function (G. A. Jamieson and T.J. Greenwalt, eds.), pp. 117–130, Lippincott, Philadelphia.Google Scholar
  81. Matheson, D. W., and Howland, J. L., 1974, Erythrocyte deformation in human muscular dystrophy, Science 184:165–166.PubMedCrossRefGoogle Scholar
  82. Mirčevová, L., 1974, Scanning electron microscopy of erythrocyte ghosts prepared with and without ATP addition, Blut 29:108–114.PubMedCrossRefGoogle Scholar
  83. Mirčevová, L., and Ćimonová, A., 1972, Effect of caffeine and theophylline on Mg++-dependent ATPase, Arch. Int. Physiol. Biochim. 80:815–818.PubMedCrossRefGoogle Scholar
  84. Mirčevová, L., and Ćimonová, A., 1973, Effect of barbiturate on Mg++-dependent ATPase in human erythrocytes, Experientia 29:660.PubMedCrossRefGoogle Scholar
  85. Moore, L., Fitzpatrick, D. F., Chen, T. S., and Landon, E. J., 1974, Calcium pump activity of the renal plasma membrane and renal microsomes, Biochim. Biophys. Acta 345:405–418.CrossRefGoogle Scholar
  86. Morse, P. F., and Howland, J. L., 1973, Erythrocytes from animals with genetic muscular dystrophy, Nature 245:156–157.PubMedCrossRefGoogle Scholar
  87. McEvoy, F. A., Davies, R. J., Goodghild, M. C., and Anderson, C. M., 1974, Erythrocyte membrane properties in cystic fibrosis, Clin. Chim. Acta 54:195–204.PubMedCrossRefGoogle Scholar
  88. Nakamaru, Y., and Schwartz, A., 1971, Adenosine triphosphate-dependent calcium-binding vesicles; magnesium, calcium adenosine triphosphatase and sodium, potassium adenosine triphosphatase: Distributions in dog brain, Arch. Biochem. Biophys. 144:16–29.CrossRefGoogle Scholar
  89. Ohashi, T., Uchida, S., Nagai, K., and Yoshida, H., 1970, Studies on phosphate hydrolyzing activities in the synaptic membrane, J. Biochem. (Tokyo) 67:635–641.Google Scholar
  90. Olson, E. J., and Cazort, R. J., 1969, Active calcium and strontium transport in human erythrocyte ghosts, J. Gen. Physiol 53:311–322.PubMedCrossRefGoogle Scholar
  91. Olson, E. J., and Cazort, R. J., 1974, Investigation of the accompaniment of calcium during active calcium transport from human erythrocyte ghosts, J. Gen. Physiol. 63:590–600.PubMedCrossRefGoogle Scholar
  92. Orentligher, M., and Ornstein, R. S., 1971, Influence of external cations on caffeine-induced tension: Calcium extrusion in crayfish muscle, J. Membr. Biol. 5:319–333.CrossRefGoogle Scholar
  93. Palek, J., Curby, W. A., and Lionetti, F. J., 1971a, Effects of calcium and adenosine triphosphate on volume of human red cell ghosts, Am. J. Physiol. 220:19–26.PubMedGoogle Scholar
  94. Palek, J., Curby, W. A., and Lionetti, F. J., 1971b, Relation of Ca++-activated ATPase to Ca++-linked shrinkage of human red cell ghosts, Am. J. Physiol. 220:1028–1032.PubMedGoogle Scholar
  95. Palek, J., Curby, W. A., and Lionetti, F. J., 1972, Size dependence of ghosts from stored erythrocytes on calcium and adenosine triphosphate, Blood 40:261–275.PubMedGoogle Scholar
  96. Parkinson, D. K., and Radde, I. C., 1969, Calcitonin action on membrane ATPase—a hypothesis, in: Calcitonin 1969, Proceedings of the Second International Symposium, pp. 466–471, Springer-Verlag, New York.Google Scholar
  97. Patrick, G., 1973, The regulation of intestinal calcium transport by vitamin D, Nature 243:89–91.PubMedCrossRefGoogle Scholar
  98. Porzig, H., 1970, Calcium efflux from human erythrocyte ghosts, J. Membr. Biol. 2:324–340.CrossRefGoogle Scholar
  99. Porzig, H., 1973, Calcium-calcium and calcium-strontium exchange across the membrane of human red cell ghosts, J. Membr. Biol. 11:21–46.PubMedCrossRefGoogle Scholar
  100. Probstfield, J. L., Wang, Y., and From, A. H. L., 1972, Cation transport in Duchenne muscular dystrophy erythrocytes, Proc. Soc. Exp. Biol. Med. 141:479–481.PubMedGoogle Scholar
  101. Rasmussen, H., 1970, Cell communication, calcium ion, and cyclic adenosine monophosphate, Science 170:404–412.PubMedCrossRefGoogle Scholar
  102. Rasmussen, H., and Bordier, P., 1974, The Physiological and Cellular Basis of Metabolic Bone Disease, Williams and Wilkins, Baltimore.Google Scholar
  103. Reuter, H., 1974, Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance, Circ. Res. 34:599–605.PubMedGoogle Scholar
  104. Riordan, J. R., and Passow, H., 1971, Effects of calcium and lead on potassium permeability of human erythrocyte ghosts, Biochim. Biopkys. Acta 249:601–605.CrossRefGoogle Scholar
  105. Romero, P. J., 1974, The role of membrane-bound magnesium in the permeability of ghosts to K +, Biochim. Biophys. Acta 339:116–125.PubMedCrossRefGoogle Scholar
  106. Romero, P. J., and Whittam, R., 1971, The control by internal calcium of membrane permeability to sodium and potassium, J. Physiol. (London) 214:481–507.Google Scholar
  107. Rosenthal, A. S., Kregenow, F. M., and Moses, H. L., 1970, Some characteristics of a Ca2 +-dependent ATPase activity associated with a group of erythrocyte membrane proteins which form fibrils, Biochim. Biophys. Acta 196:254–262.PubMedCrossRefGoogle Scholar
  108. Rubin, R. P., 1974, Calcium and the Secretory Process, Plenum Press, New York.Google Scholar
  109. Rummel, W., Scifen, E., and Baldauf, J., 1962, Aufnahme und Abgabe von Calcium an Erythro-cyten vom Menschen, Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 244:172–184.CrossRefGoogle Scholar
  110. Rummel, W., Scifen, E., and Baldauf, J., 1963, Influence of calcium and ouabain upon the potassium influx in human erythrocytes, Biochem. Pharmacol. 12:557–563.PubMedCrossRefGoogle Scholar
  111. Russell, J. M., and Blaustein, M. P., 1974, Calcium efflux from barnacle muscle fibers. Dependence on external cations, J. Gen. Physiol. 63:144–167.PubMedCrossRefGoogle Scholar
  112. Scharff, O., 1972, The influence of calcium ions on the preparation of the (Ca2++Mg2+)-activated membrane ATPase in human red cells, Scand. J. Clin. Lab. Invest. 30:313–320.PubMedCrossRefGoogle Scholar
  113. Schatzmann, H. J., 1953, Herzglykoside als Hemmstoffe fuer den aktiven Kalium-und Natriumtransport durch die Erythrocytenmembran, Helv. Physiol. Pharmacol. Acta 11:346–354.PubMedGoogle Scholar
  114. Schatzmann, H. J., 1966, ATP-dependent Ca++ extrusion from human red cells, Experientia 22:364–365.PubMedCrossRefGoogle Scholar
  115. Schatzmann, H. J., 1970, Transmembrane calcium movements in resealed human red cells, in: Calcium and Cellular Function (A. W. Cuthbert, ed.), pp. 85–95, St. Martin’s Press, New York.Google Scholar
  116. Schatzmann, H. J., 1973, Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells, J. Physiol. (London) 235:551–569.Google Scholar
  117. Schatzmann, H. J., 1975, Active calcium transport and Ca2 +-activated ATPase in human red cells, in: Current Topics in Membranes and Transport, Vol. 6 (F. Bronner and A. Kleinzeller, eds.), pp. 125–168, Academic Press, New York.Google Scholar
  118. Schatzmann, H. J., and Rossi, G. L., 1971, (Ca2++Mg2+)-activated membrane ATPases in human red cells and their possible relations to cation transport, Biochim. Biophys. Acta 241:379–392.PubMedCrossRefGoogle Scholar
  119. Schatzmann, H. J., and Tschabold, M., 1971, The lanthanides Ho3+ and Pr3+ as inhibitors of calcium transport in human red cells, Experientia 27:59–61.PubMedCrossRefGoogle Scholar
  120. Schatzmann, H. J., and Vincenzi, F. F., 1969, Calcium movements across the membrane of human red cells, J. Physiol. (London) 201:369–395.Google Scholar
  121. Schwoch, G., and Passow, H., 1973, Preparation and properties of human erythrocyte ghosts, Mol. Cell. Biochem. 2:197–218.PubMedCrossRefGoogle Scholar
  122. Shami, Y., and Radde, I. C., 1971, Calcium-stimulated ATPase of guinea pig placenta, Biochim. Biophys. Acta 249:345–352.PubMedCrossRefGoogle Scholar
  123. Singer, S. J. and Nicolson G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175:720–731.PubMedCrossRefGoogle Scholar
  124. Skou, J. C., 1957, The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23:394–401.PubMedCrossRefGoogle Scholar
  125. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62:1–19.PubMedCrossRefGoogle Scholar
  126. Steck, T. L., Weinstein, R. S., Straus, J. H., and Wallach, D. F. H., 1970, Inside-out red cell membrane vesicles: Preparation and purification, Science 168:255–257.PubMedCrossRefGoogle Scholar
  127. Sulakhe, P. V., and Dhalla, N. S., 1971, Excitation-contraction coupling in heart. VI. Demonstration of calcium activated ATPase in the dog heart sarcolemma, Life Sci. 10:185–191.CrossRefGoogle Scholar
  128. Sulakhe, P. V., Drummond, G. I., and Ng, D. G., 1973a, Calcium binding by skeletal muscle sarcolemma, J. Biol. Chem. 248:4150–4157.PubMedGoogle Scholar
  129. Sulakhe, P. V., Drummond, G. I., and Ng, D. C., 1973b, Adenosine triphosphatase activities of muscle sarcolemma, J. Biol. Chem. 248:4158–4162.PubMedGoogle Scholar
  130. Swanson, P. D., Anderson, L., and Stahl, W. L., 1974, Uptake of calcium ions by synaptosomes from rat brain, Biochim. Biophys. Acta 356:174–183.PubMedCrossRefGoogle Scholar
  131. Szász, I., Teitel, P., and Gardos, G., 1970, Structure and function of erythrocytes. V. Differences in the Ga2+-dependence of the ATP requiring functions of erythrocytes, Acta Biochim. Biophys. Acad. Sci. Hung. 5:409–413.PubMedGoogle Scholar
  132. Taylor, D. L., Gondeelis, J. S., Moore, P. L., and Allen, R. D., 1973, The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm, J. Cell Biol. 59:378–394.PubMedCrossRefGoogle Scholar
  133. van Rossum, G. D. V., 1970, Net movements of calcium and magnesium in slices of rat liver, J. Gen. Physiol. 55:18–32.PubMedCrossRefGoogle Scholar
  134. van Rossum, G. D. V., Smith, K. P., and Morris, H. P., 1973, The net extrusion of calcium and its temporal relation to the accumulation of potassium in slices of rat liver and of Morris hepatoma 5123tc and 3924A, Cancer Res. 33:1086–1091.PubMedGoogle Scholar
  135. Vingenzi, F. F., 1968, The calcium pump of erythrocyte membrane and its inhibition by ethacrynic acid, Proc. West. Pharmacol. Soc. 11:58–60.Google Scholar
  136. Vingenzi, F. F., 1971, A calcium pump in red cell membranes, in: Cellular Mechanisms for Calcium. Transfer and Homeostasis (G. Nichols and R. H. Wasserman, eds.), pp. 135–149, Academic Press, New York.Google Scholar
  137. Vingenzi, F. F., and Schatzmann, H. J., 1967, Some properties of Ga-activated ATPase in human red cell membranes, Helv. Physiol. Pharmacol. Acta 25: CR233–CR234.Google Scholar
  138. Wallach, D. F. H., 1972, The Plasma Membrane: Dynamic Perspectives, Genetics and Pathology, Springer-Verlag, New York.Google Scholar
  139. Wallach, S., Ghausmer, A. B., and Sherman, B. S., 1971, Hormonal effects on calcium transport in liver, Clin. Orthop. Relat. Res., 1971, 40–46.CrossRefGoogle Scholar
  140. Watson, E. L., Vincenzi, F. F., and Davis, P. W., 1971a, Ca2 +-activated membrane ATPase: Selective inhibition by ruthenium red, Biochim. Biophys. Acta 249:606–610.PubMedCrossRefGoogle Scholar
  141. Watson, E. L., Vincenzi, F. F., and Davis, P. W., 1971b, Nucleotides as substrates of Ca-ATPase and NaK-ATPase in isolated red cell membranes, Life Sci. 10:1399–1404.CrossRefGoogle Scholar
  142. Weed, R. I., and Chailley, B., 1972, Calcium-pH interactions in the production of shape change in erythrocytes, Nouv. Rev. Fr. Hematol. 12:775–788.PubMedGoogle Scholar
  143. Weed, R. I., LaGelle, P. L., and Merrill, E. W., 1969, Metabolic dependence of red cell deform-ability, J. Clin. Invest. 48:795–809.PubMedCrossRefGoogle Scholar
  144. Weiner, M. L., and Lee, K. S., 1972, Active calcium ion uptake by inside-out and right side-out vesicles of red blood cell membranes, J. Gen. Physiol. 59:462–475.PubMedCrossRefGoogle Scholar
  145. Weinstein, R. S., and MgNutt, N. S., 1970, Ultrastructure of red cell membranes, Semin. Hematol. 7:259–274.PubMedGoogle Scholar
  146. Whittam, R., 1962, The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport, Biochem. J. 84:110–118.PubMedGoogle Scholar
  147. Whittam, R., 1968, Control of membrane permeability to potassium in red blood cells, Nature, 219:610.PubMedCrossRefGoogle Scholar
  148. Wins, P., and Dargent-Salée, M. L., 1970, The effects of calcium on the ATPase activity of electric tissue extracts, Biochim. Biophys. Acta 203:342–344.PubMedCrossRefGoogle Scholar
  149. Wins, P., and Schoffeniels, E., 1966a, ATP+Ca++-linked contraction of red cell ghosts, Arch. Int. Physiol. Biochim. 74:812–820.PubMedCrossRefGoogle Scholar
  150. Wins, P., and Schoffeniels, E., 1966b, Studies on red-cell ghost ATPase systems: Properties of a (Mg+++Ca++-dependent ATPase, Biochim. Biophys. Acta 120:341–350.PubMedCrossRefGoogle Scholar
  151. Wolf, H. U., 1970, Purification of the Ca2+-dependent ATPase of human erythrocyte membranes, Biochim. Biophys. Acta 219:521–524.PubMedCrossRefGoogle Scholar
  152. Wolf, H. LI., 1972, Studies on a Ca2+-dependent ATPase of human erythrocyte membranes. Effects of Ca2+ and H+, Biochim. Biophys. Acta 266:361–375.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Frank F. Vincenzi
    • 1
  • Thomas R. Hinds
    • 2
  1. 1.Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pharmacology, School of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Department of Pharmacology, School of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations