Skip to main content

Bacterial Membrane Transport Proteins

  • Chapter
Book cover The Enzymes of Biological Membranes

Abstract

Bacterial transport systems are historically associated with the acceptance of the idea that the crossing of the cell membrane by a physiologically significant solute was mediated by the specialized operation of a protein or an array of molecules including specific proteins. This idea was in opposition to the predominant-view of permeability, a membrane property, as the principal factor governing the passage of solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpers, D. H., and Tomkins, C. M., 1965, The order of induction and deinduction of the enzymes of the lactose operon in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 53:797.

    Article  PubMed  CAS  Google Scholar 

  • Ames, C. F. L., and Lever, J., Components of histidine transport: Histidine binding proteins and this P protein, Proc. Natl. Acad. Sci. U.S.A. 66:1096.

    Google Scholar 

  • Ames, C. F. L., and Lever, J., 1972, The histidine-binding protein J is a component of histidine transport. Identification of its structural gene this J, J. Biol. Chem. 247:4309.

    PubMed  CAS  Google Scholar 

  • Autisster, F., and Kepes, A., 1971, Segregation of membrane markers during cell division in Escherichia coli. II. Segregation of Lac-permease and Mel-permease studied with a penicillin technique, Biochim. Biopkys. Acta 249:611.

    Article  Google Scholar 

  • Autissier, F., and Kepes, A., 1972, Ségrégation de marqueurs membranaires au cours de la croissance et de la division d—Escherichia coli. III Utilisation de marqueurs variés; perméases, phosphotransférases, oxydoréductases membranaires, Biochimie 54:93.

    Article  PubMed  CAS  Google Scholar 

  • Autissier, F., Jaffe, A., and Kepes, A., 1971, Segregation of galactoside permease, a membrane marker during growth and cell division in E. coli, Mol. Gen. Genet. 112:275.

    PubMed  CAS  Google Scholar 

  • Bentaboulet, M., and Kepes, A., 1973, Energy dependent masking of substrate binding sites of the lactose permease of Escherichia coli, Biochim. Biophys. Acta 307:197.

    Article  Google Scholar 

  • Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70:1514.

    Article  PubMed  CAS  Google Scholar 

  • Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249:7747.

    PubMed  CAS  Google Scholar 

  • Burstein, 1967, Voie métabolique des α galactosides chez E. coli. Thesis. University of Paris.

    Google Scholar 

  • Carter, J. R., Fox, C. F., and Kennedy, E. P., 1968, Interaction of sugars with the membrane protein component of the lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 60:725.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, G. N., and Monod, J., 1957, Bacterial permeases, Bacteriol. Rev. 21:169.

    PubMed  CAS  Google Scholar 

  • Cohn, M., and Horibata, K., 1959, Analysis of the differentiation and of the heterogeneity within a population of Escherichia coli undergoing induced β-galactosidase synthesis, J. Bacteriol. 78:613.

    PubMed  CAS  Google Scholar 

  • D’Albis, A., and Pantaloni, D., 1972, Fast kinetic studies of the oxidative deamination of glutamate catalyzed by glutamate dehydrogenase, Eur. J. Biochem. 30:553.

    Article  PubMed  Google Scholar 

  • Deere, C J., Dulaney, A. D., and Michelson, I. B., 1939, The lactase activity of E. coli mutabile, J. Bacteriol. 37:355.

    PubMed  CAS  Google Scholar 

  • Devor, K. A., Schairer, H. U., Renz, D., and Overath, P., 1974, Active transport of β-galacto-sides by a mutant of Escherichia coli defective in heme synthesis, Eur. J. Biochem. 45:451.

    Article  PubMed  CAS  Google Scholar 

  • Donachie, W. D., and Begg, K. J., 1970, Growth of the bacterial cell, Nature 227:1220.

    Article  PubMed  CAS  Google Scholar 

  • Fournier, R., and Pardee, A. B., 1974, Evidence for inducible L-malate binding proteins in the membrane of Bacillus subtilis. Identification of presumptive components of the C4dicarboxylate transport system, J. Biol. Chem. 249:5948.

    PubMed  CAS  Google Scholar 

  • Fox, C. F., and Kennedy, E. P., 1965, Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 54:891.

    Article  PubMed  CAS  Google Scholar 

  • Fox, C. F., Carter, J. R., and Kennedy, E. P., 1967, Genetic control of the membrane protein component of the lactose transport system of E. coli, Proc. Natl. Acad. Sci. U.S.A. 57:698.

    Article  PubMed  CAS  Google Scholar 

  • Futai, M., 1974, Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases, Biochemistry 13:2327.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A. S., Lombardi, F. J., and Kaback, H. R., 1972, Solubilization and partial purification of amino acid-specific components of the D-lactate dehydrogenase coupled amino acid transport systems, Proc. Natl. Acad. Sci. U.S.A. 69:358.

    Article  PubMed  CAS  Google Scholar 

  • Gradzigker, T., and Zipser, D., 1968, A mutation which creates a new site for the reinitiation of polypeptide synthesis in the Z gene of the Lac operon of Escherichia coli, J. Mol. Biol. 38:305.

    Article  Google Scholar 

  • Haddock, B. A., and Sghairer, H. U., 1973, Electron-transport chains of E. coli. Reconstitution of respiration in a 5-aminolaevulinic acid-requiring mutant, Eur. J. Biochem. 35:34.

    Article  PubMed  CAS  Google Scholar 

  • Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bac-teriol. Rev. 36:172.

    CAS  Google Scholar 

  • Hirata, H., Altendorf, K., and Harold, F. M., 1974, Energy coupling in membrane vesicles of E. coli. I Accumulation of metabolites in response of an electrical potential, J. Biol. Chem. 249:2939.

    PubMed  CAS  Google Scholar 

  • Hofnung, M., 1974, Divergent apercus and the genetic structure of the maltose B region in Escherichia coli K12, Genetics 76:169.

    PubMed  CAS  Google Scholar 

  • Hofnung, M., Hatfield, D., and Schwartz, M., 1974, mal-β region in Escherichia coli K 12. Characterization of new mutations, J. Bacteriol. 17:40.

    Google Scholar 

  • Hong, J. S., and Kaback, H. R., 1972, Mutants of Salmonella typhimurium and Escherichia coli pleio-tropically defective in active transport, Proc. Natl. Acad. Sci. U.S.A. 69:3336.

    Article  PubMed  CAS  Google Scholar 

  • Jimeno-Abendano, J., and Kepes, A., 1973, Sensitization of D-glucuronic acid transport system of Escherichia coli to protein group reagents in presence of substrate or absence of energy source, Biochem. Biophys. Res. Commun. 54:1342.

    Article  CAS  Google Scholar 

  • Jones, T. H. D., and Kennedy, E. P., 1969, Characterization of the membrane protein component of the lactose transport system of Escherichia coli, J. Biol. Chem. 244:5981.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1970, Transport, Ann. Rev. Biochem. 39:561.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1971, Bacterial membranes, in: Methods in Enzymology, Vol. XXII (S. P. Colowick, and N. O. Kaplan, eds.), pp. 99–120, Academic Press, New York.

    Google Scholar 

  • Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265:367.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., and Barnes, E. M., 1971, Mechanisms of active transport in isolated membrane vesicles. II The mechanism of energy coupling between D-lactic dehydrogenase and β-galactoside transport in membrane preparation from Escherichia coli, J. Biol. Chem. 246:5523.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., and Milner, L. S., 1970, Relationship of a membrane bound d-(—)-lactic dehydrogenase to amino-acid transport in isolated bacterial membrane preparations, Proc. Natl. Acad. Sci. U.S.A. 66:1008.

    Article  PubMed  CAS  Google Scholar 

  • Kellerman, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coli K12 involvement of a periplasmic maltose binding protein, Eur. J. Biochem. 47:139.

    Article  Google Scholar 

  • Kennedy, E. P., 1970, The lactose permease system of Escherichia coli, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), pp. 49-92, Cold Spring Harbor Lab.

    Google Scholar 

  • Kennedy, E. P., Rumley, M. K., and Armstrong, J. B., 1974, Direct measurement of the binding of labeled sugars to the lactose permease M-protein, J. Biol. Chem. 249:33.

    PubMed  CAS  Google Scholar 

  • Kepes, A., 1957, Métabolisme oxydatif lié au fonctionnement de la galactoside perméase d’Escherichia coli, C. R. Acad. Sci. Paris 244:1550.

    PubMed  CAS  Google Scholar 

  • Kepes, A., 1960, Etudes cinétiques sur la galactoside perméase d’Escherichia coli, Biochim. Biophys. Acta 40:70.

    Article  PubMed  CAS  Google Scholar 

  • Kepes, A., 1964, The place of permeases in cellular organisation, in: The Cellular Functions of Membrane Transport (J. F. Hoffman, ed.), pp. 155–169, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Kepes, A., 1967, Sequential transcription and translation in the lactose operon of Escherichia coli, Biochim. Biophys. Acta 138:107.

    PubMed  CAS  Google Scholar 

  • Kepes, A., 1969, Carrier properties of β-galactoside permease: The role of permease in the leak of β-galactosides from Escherichia coli, in: Molecular Basis of Membrane Functions (Tosteson, ed.), pp. 353–389, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Kepes, A., 1971, The β-galactoside permease of Escherichia coli, J. Membr. Biol. 4:87.

    Article  CAS  Google Scholar 

  • Kepes, A., 1974, Energy coupling mechanisms in bacterial transport systems, in: Membrane Proteins Transport and Phosphorylation (J. F. Azzone et al., eds.), pp. 217–228, North Holland, Amsterdam.

    Google Scholar 

  • Kepes, A., and Richarme, G., 1972, Interactions between galactose and galactose binding protein of Escherichia coli, in: Mitochondria/Biomembrances, pp. 327–338, North-Holland, Amsterdam.

    Google Scholar 

  • Kleemann, W., and McConnell, H. M., 1974, Lateral phase separations in Escherichia coli membranes, Biochim. Biophys. Acta 345:220.

    Article  PubMed  CAS  Google Scholar 

  • Kohn, L. D., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles. XV Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli, J. Biol. Chem. 248:7012.

    PubMed  CAS  Google Scholar 

  • Konings, W. N., and Freese, E., 1972, Amino acid transport in membrane vesicles of Bacillus subtilis, J. Biol. Chem. 247:2408.

    PubMed  CAS  Google Scholar 

  • Konings, W. N., and Kaback, H. R., 1973, Anaerobic transport in Escherichia coli membrane vesicles, Proc. Natl. Acad. Sci. U.S.A. 70:3376.

    Article  PubMed  CAS  Google Scholar 

  • Konings, W. N., Barnes, E. M., and Kaback, H. R., 1971, Mechanisms of active transport in isolated membrane vesicles. III The coupling of reduced phenazine methosulfate to the con-centrative uptake of β-galactosides and amino-acids, J. Biol. Chem. 246:5857.

    PubMed  CAS  Google Scholar 

  • Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 52:1067.

    Article  PubMed  CAS  Google Scholar 

  • Kusch, M., and Wilson, T. H., 1973, Defective lactose utilization by a mutant of Escherichia coli energy-uncoupled for lactose transport. The advantages of active transport versus facilitated diffusion, Biochim. Biophys. Acta 311:109.

    Article  PubMed  CAS  Google Scholar 

  • Leive, L., and Kollin, V., 1967, Synthesis, utilisation and degradation of lactose Operon mRNA in Escherichia coli, J. Mol. Biol. 24:247.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi, F. J., Reeves, J. P., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles. XIII Valinomycin-induced rubidium transport, J. Biol. Chem. 248:3551.

    PubMed  CAS  Google Scholar 

  • Maloney, P. C., Kashket, E. R., and Wilson, T. H., 1974, A protonmotive force drives ATP synthesis in bacteria, Proc. Natl. Acad. Sci. U.S.A. 71:3896.

    Article  PubMed  CAS  Google Scholar 

  • Mühlradt, P. F., Menzel, J., Goletski, J. R., and Speth, V., 1973, Outer membrane of salmonella. Sites of export of newly synthesized lipopolysaccharides on the bacterial surface, Eur. J. Biochem. 35:471.

    Article  PubMed  Google Scholar 

  • Neu, H. C., and Heppel, L. A., 1965, J. Biol. Chem. 240:1385–1392.

    Google Scholar 

  • Nunn, W. D., and Cronan, J. E., 1973, Unsaturated fatty acid synthesis is not required for induction of lactose transport in E. coli, J. Biol. Chem. 249:724.

    Google Scholar 

  • Ordal, G. B., and Adler, J., 1974a, Isolation and complementation of mutants in galactose Taxis and transport, J. Bacteriol. 117:509.

    PubMed  CAS  Google Scholar 

  • Ordal, G. B., and Adler, J., 1974b, Properties of mutants in galactose taxis and transport, J. Bacteriol. 117:517.

    PubMed  CAS  Google Scholar 

  • Overath, P., Shairer, H. U., and Stoffel, W., 1970, Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 67:606.

    Article  PubMed  CAS  Google Scholar 

  • Parnes, J. R., and Boos, W., 1973, Unidirectional transport activity mediated by the galactose binding protein of Escherichia coli, J. Biol. Chem. 248:4436.

    PubMed  CAS  Google Scholar 

  • Reeves,. J. P., Hong, J. S., and Kaback, H. R., 1973a, Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70:1917.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, J. P., Schechter, E., Weil, R., and Kaback, H. R., 1973b, Dansyl-galactoside, a fluorescent probe of active transport in bacterial membrane vesicles, Proc. Natl. Acad. Sci. U.S.A. 70:2722.

    Article  PubMed  CAS  Google Scholar 

  • Richarme, G., and Kepes, A., 1974, Release of glucose from purified galactose binding protein of Escherichia coli upon addition of galactose, Eur. J. Biochem. 45:127.

    Article  PubMed  CAS  Google Scholar 

  • Rickenberg, H. V., Cohen, G. N., Buttin, G., and Monod, J., 1956, La galactoside perméase d’Escherichia coli, Ann. Inst. Pasteur 91:829.

    CAS  Google Scholar 

  • Robin, A., and Kepes, A., 1973, The mechanism of maintenance of electroneutrality during the transport of gluconate by E. coli, FEBS Lett. 36:133.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, B. P., 1973, β-galactoside transport and proton movements in an adenosine triphosphatase deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 53:1289.

    Article  PubMed  CAS  Google Scholar 

  • Ryter, A., Shuman, H., and Schwartz, M., 1975, Integration of the receptor for phage in the outer membrane of Escherichia coli. Coupling with cell division, J. Bacteriol. 122:295–301.

    PubMed  CAS  Google Scholar 

  • Sackmann, E., Träuble, H., Galla, H. J., and Overath, P., 1973, Lateral diffusion, protein mobility and phase transitions in Escherichia coli membranes: A pin label study, Biochemistry 12:5360.

    Article  PubMed  CAS  Google Scholar 

  • Schachter, D., and Mindlin, A. J., 1969, Dual influx model of thiogalactoside accumulation in E. coli, J. Biol. Chem. 244:1808.

    PubMed  CAS  Google Scholar 

  • Schairer, H. U., and Gruber, D., 1973, Mutants of Escherichia coli K12 defective in oxidative phosphorylation, Eur. J. Biochem. 37:282.

    Article  PubMed  CAS  Google Scholar 

  • Schechter, E., Letellier, L., and Gulik-Krzywicki, T., 1974, Relations between structure and function in cytoplasmic membrane vesicles isolated from an Escherichia coli fatty-acid auxotrophe. High-angle X-ray diffraction freeze-etch electron microscopy and transport studies, Eur. J. Biochem. 49:61.

    Article  Google Scholar 

  • Shen, B. H. P., and Boos, W., 1973, Regulation of the β-methyl galactoside transport system and the galactose-binding protein by the cell cycle of E, coli, Proc. Natl. Acad. Sci. U.S.A. 70:1481.

    Article  PubMed  CAS  Google Scholar 

  • Short, S. A., and White, D. C., 1972, Active transport in isolated bacterial membrane vesicles. V The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus, J. Biol. Chem. 247:298.

    PubMed  CAS  Google Scholar 

  • Short, S. A., Kaback, H. R., and Kohn, L. D., 1974, D-lactate dehydrogenase binding in E. coli dld-membrane vesicles reconstituted for active transport, Proc. Natl. Acad. Sci. U.S.A. 71:1461.

    Article  PubMed  CAS  Google Scholar 

  • Simoni, R. D., and Shallenberger, M. K., 1972, Coupling of energy to active transport of amino-acids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69:2663.

    Article  PubMed  CAS  Google Scholar 

  • Träuble, H., and Overath, P., 1973, The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta 307:491.

    Article  PubMed  Google Scholar 

  • Tsukagoshi, N., and Fox, C. F., 1973a, Abortive assembly of the lactose transport system in Escherichia coli, Biochemistry 12:2816.

    Article  PubMed  CAS  Google Scholar 

  • Tsukagoshi, N., and Fox, C. F., 1973b, Transport system assembly and the mobility of membrane lipids in Escherichia coli, Biochemistry 12:2822.

    Article  PubMed  CAS  Google Scholar 

  • West, I. C., 1970, Lactose transport coupled to proton movements in Escherichia coli, Biochem. Biophys. Res. Commun. 41:655.

    Article  PubMed  CAS  Google Scholar 

  • West, I. C., and Mitchell, P., 1972, Proton-coupled β-galactoside translocation in nonmetabolizing Escherichia coli, J. Bioenergetics 3:445.

    Article  CAS  Google Scholar 

  • West, I. C., and Mitchell, P., 1973, Stoichiometry of lactose-H+ symport across the plasma membrane of Escherichia coli, Biochem. J. 132:587.

    PubMed  CAS  Google Scholar 

  • West, I. C., and Stein, W. D., 1973, The kinetics of induction of β-galactoside permease, Biochim. Biophys. Acta 308:161.

    PubMed  CAS  Google Scholar 

  • Wilbrandt, W., 1972, Coupling between simultaneous movements of carrier substrates, J. Membr. Biol. 10:357.

    Article  PubMed  CAS  Google Scholar 

  • Wilbrandt, W., and Rosenberg, T., 1961, The concept of carrier transport and its corollaries in pharmacology, Pharmacol. Rev. 13:109.

    PubMed  CAS  Google Scholar 

  • Wilson, T. H., and Kusch, M., 1972, A mutant of Escherichia coli K12 energy-uncoupled for lactose transport, Biochim. Biophys. Acta 255:786.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, H. H., and Wilson, T. H., 1966, The role of energy coupling in the transport of β-galacto-side by Escherichia coli, J. Biol. Chem. 241:2200.

    PubMed  CAS  Google Scholar 

  • Zipser, D., 1970, Polarity and translational punctuation, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), pp. 221-232. Cold Spring Harbor Lab.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Kepes, A. (1976). Bacterial Membrane Transport Proteins. In: Martonosi, A. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2658-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2658-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2660-1

  • Online ISBN: 978-1-4684-2658-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics