Advertisement

Bacterial Membrane Transport Proteins

  • Adam Kepes

Abstract

Bacterial transport systems are historically associated with the acceptance of the idea that the crossing of the cell membrane by a physiologically significant solute was mediated by the specialized operation of a protein or an array of molecules including specific proteins. This idea was in opposition to the predominant-view of permeability, a membrane property, as the principal factor governing the passage of solutes.

Keywords

Transport System Active Transport Membrane Marker Thiol Reagent Lactose Permease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alpers, D. H., and Tomkins, C. M., 1965, The order of induction and deinduction of the enzymes of the lactose operon in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 53:797.PubMedCrossRefGoogle Scholar
  2. Ames, C. F. L., and Lever, J., Components of histidine transport: Histidine binding proteins and this P protein, Proc. Natl. Acad. Sci. U.S.A. 66:1096.Google Scholar
  3. Ames, C. F. L., and Lever, J., 1972, The histidine-binding protein J is a component of histidine transport. Identification of its structural gene this J, J. Biol. Chem. 247:4309.PubMedGoogle Scholar
  4. Autisster, F., and Kepes, A., 1971, Segregation of membrane markers during cell division in Escherichia coli. II. Segregation of Lac-permease and Mel-permease studied with a penicillin technique, Biochim. Biopkys. Acta 249:611.CrossRefGoogle Scholar
  5. Autissier, F., and Kepes, A., 1972, Ségrégation de marqueurs membranaires au cours de la croissance et de la division d—Escherichia coli. III Utilisation de marqueurs variés; perméases, phosphotransférases, oxydoréductases membranaires, Biochimie 54:93.PubMedCrossRefGoogle Scholar
  6. Autissier, F., Jaffe, A., and Kepes, A., 1971, Segregation of galactoside permease, a membrane marker during growth and cell division in E. coli, Mol. Gen. Genet. 112:275.PubMedGoogle Scholar
  7. Bentaboulet, M., and Kepes, A., 1973, Energy dependent masking of substrate binding sites of the lactose permease of Escherichia coli, Biochim. Biophys. Acta 307:197.CrossRefGoogle Scholar
  8. Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70:1514.PubMedCrossRefGoogle Scholar
  9. Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249:7747.PubMedGoogle Scholar
  10. Burstein, 1967, Voie métabolique des α galactosides chez E. coli. Thesis. University of Paris.Google Scholar
  11. Carter, J. R., Fox, C. F., and Kennedy, E. P., 1968, Interaction of sugars with the membrane protein component of the lactose transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 60:725.PubMedCrossRefGoogle Scholar
  12. Cohen, G. N., and Monod, J., 1957, Bacterial permeases, Bacteriol. Rev. 21:169.PubMedGoogle Scholar
  13. Cohn, M., and Horibata, K., 1959, Analysis of the differentiation and of the heterogeneity within a population of Escherichia coli undergoing induced β-galactosidase synthesis, J. Bacteriol. 78:613.PubMedGoogle Scholar
  14. D’Albis, A., and Pantaloni, D., 1972, Fast kinetic studies of the oxidative deamination of glutamate catalyzed by glutamate dehydrogenase, Eur. J. Biochem. 30:553.PubMedCrossRefGoogle Scholar
  15. Deere, C J., Dulaney, A. D., and Michelson, I. B., 1939, The lactase activity of E. coli mutabile, J. Bacteriol. 37:355.PubMedGoogle Scholar
  16. Devor, K. A., Schairer, H. U., Renz, D., and Overath, P., 1974, Active transport of β-galacto-sides by a mutant of Escherichia coli defective in heme synthesis, Eur. J. Biochem. 45:451.PubMedCrossRefGoogle Scholar
  17. Donachie, W. D., and Begg, K. J., 1970, Growth of the bacterial cell, Nature 227:1220.PubMedCrossRefGoogle Scholar
  18. Fournier, R., and Pardee, A. B., 1974, Evidence for inducible L-malate binding proteins in the membrane of Bacillus subtilis. Identification of presumptive components of the C4dicarboxylate transport system, J. Biol. Chem. 249:5948.PubMedGoogle Scholar
  19. Fox, C. F., and Kennedy, E. P., 1965, Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 54:891.PubMedCrossRefGoogle Scholar
  20. Fox, C. F., Carter, J. R., and Kennedy, E. P., 1967, Genetic control of the membrane protein component of the lactose transport system of E. coli, Proc. Natl. Acad. Sci. U.S.A. 57:698.PubMedCrossRefGoogle Scholar
  21. Futai, M., 1974, Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases, Biochemistry 13:2327.PubMedCrossRefGoogle Scholar
  22. Gordon, A. S., Lombardi, F. J., and Kaback, H. R., 1972, Solubilization and partial purification of amino acid-specific components of the D-lactate dehydrogenase coupled amino acid transport systems, Proc. Natl. Acad. Sci. U.S.A. 69:358.PubMedCrossRefGoogle Scholar
  23. Gradzigker, T., and Zipser, D., 1968, A mutation which creates a new site for the reinitiation of polypeptide synthesis in the Z gene of the Lac operon of Escherichia coli, J. Mol. Biol. 38:305.CrossRefGoogle Scholar
  24. Haddock, B. A., and Sghairer, H. U., 1973, Electron-transport chains of E. coli. Reconstitution of respiration in a 5-aminolaevulinic acid-requiring mutant, Eur. J. Biochem. 35:34.PubMedCrossRefGoogle Scholar
  25. Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bac-teriol. Rev. 36:172.Google Scholar
  26. Hirata, H., Altendorf, K., and Harold, F. M., 1974, Energy coupling in membrane vesicles of E. coli. I Accumulation of metabolites in response of an electrical potential, J. Biol. Chem. 249:2939.PubMedGoogle Scholar
  27. Hofnung, M., 1974, Divergent apercus and the genetic structure of the maltose B region in Escherichia coli K12, Genetics 76:169.PubMedGoogle Scholar
  28. Hofnung, M., Hatfield, D., and Schwartz, M., 1974, mal-β region in Escherichia coli K 12. Characterization of new mutations, J. Bacteriol. 17:40.Google Scholar
  29. Hong, J. S., and Kaback, H. R., 1972, Mutants of Salmonella typhimurium and Escherichia coli pleio-tropically defective in active transport, Proc. Natl. Acad. Sci. U.S.A. 69:3336.PubMedCrossRefGoogle Scholar
  30. Jimeno-Abendano, J., and Kepes, A., 1973, Sensitization of D-glucuronic acid transport system of Escherichia coli to protein group reagents in presence of substrate or absence of energy source, Biochem. Biophys. Res. Commun. 54:1342.CrossRefGoogle Scholar
  31. Jones, T. H. D., and Kennedy, E. P., 1969, Characterization of the membrane protein component of the lactose transport system of Escherichia coli, J. Biol. Chem. 244:5981.PubMedGoogle Scholar
  32. Kaback, H. R., 1970, Transport, Ann. Rev. Biochem. 39:561.PubMedCrossRefGoogle Scholar
  33. Kaback, H. R., 1971, Bacterial membranes, in: Methods in Enzymology, Vol. XXII (S. P. Colowick, and N. O. Kaplan, eds.), pp. 99–120, Academic Press, New York.Google Scholar
  34. Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265:367.PubMedGoogle Scholar
  35. Kaback, H. R., and Barnes, E. M., 1971, Mechanisms of active transport in isolated membrane vesicles. II The mechanism of energy coupling between D-lactic dehydrogenase and β-galactoside transport in membrane preparation from Escherichia coli, J. Biol. Chem. 246:5523.PubMedGoogle Scholar
  36. Kaback, H. R., and Milner, L. S., 1970, Relationship of a membrane bound d-(—)-lactic dehydrogenase to amino-acid transport in isolated bacterial membrane preparations, Proc. Natl. Acad. Sci. U.S.A. 66:1008.PubMedCrossRefGoogle Scholar
  37. Kellerman, O., and Szmelcman, S., 1974, Active transport of maltose in Escherichia coli K12 involvement of a periplasmic maltose binding protein, Eur. J. Biochem. 47:139.CrossRefGoogle Scholar
  38. Kennedy, E. P., 1970, The lactose permease system of Escherichia coli, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), pp. 49-92, Cold Spring Harbor Lab.Google Scholar
  39. Kennedy, E. P., Rumley, M. K., and Armstrong, J. B., 1974, Direct measurement of the binding of labeled sugars to the lactose permease M-protein, J. Biol. Chem. 249:33.PubMedGoogle Scholar
  40. Kepes, A., 1957, Métabolisme oxydatif lié au fonctionnement de la galactoside perméase d’Escherichia coli, C. R. Acad. Sci. Paris 244:1550.PubMedGoogle Scholar
  41. Kepes, A., 1960, Etudes cinétiques sur la galactoside perméase d’Escherichia coli, Biochim. Biophys. Acta 40:70.PubMedCrossRefGoogle Scholar
  42. Kepes, A., 1964, The place of permeases in cellular organisation, in: The Cellular Functions of Membrane Transport (J. F. Hoffman, ed.), pp. 155–169, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  43. Kepes, A., 1967, Sequential transcription and translation in the lactose operon of Escherichia coli, Biochim. Biophys. Acta 138:107.PubMedGoogle Scholar
  44. Kepes, A., 1969, Carrier properties of β-galactoside permease: The role of permease in the leak of β-galactosides from Escherichia coli, in: Molecular Basis of Membrane Functions (Tosteson, ed.), pp. 353–389, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  45. Kepes, A., 1971, The β-galactoside permease of Escherichia coli, J. Membr. Biol. 4:87.CrossRefGoogle Scholar
  46. Kepes, A., 1974, Energy coupling mechanisms in bacterial transport systems, in: Membrane Proteins Transport and Phosphorylation (J. F. Azzone et al., eds.), pp. 217–228, North Holland, Amsterdam.Google Scholar
  47. Kepes, A., and Richarme, G., 1972, Interactions between galactose and galactose binding protein of Escherichia coli, in: Mitochondria/Biomembrances, pp. 327–338, North-Holland, Amsterdam.Google Scholar
  48. Kleemann, W., and McConnell, H. M., 1974, Lateral phase separations in Escherichia coli membranes, Biochim. Biophys. Acta 345:220.PubMedCrossRefGoogle Scholar
  49. Kohn, L. D., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles. XV Purification and properties of the membrane-bound D-lactate dehydrogenase from Escherichia coli, J. Biol. Chem. 248:7012.PubMedGoogle Scholar
  50. Konings, W. N., and Freese, E., 1972, Amino acid transport in membrane vesicles of Bacillus subtilis, J. Biol. Chem. 247:2408.PubMedGoogle Scholar
  51. Konings, W. N., and Kaback, H. R., 1973, Anaerobic transport in Escherichia coli membrane vesicles, Proc. Natl. Acad. Sci. U.S.A. 70:3376.PubMedCrossRefGoogle Scholar
  52. Konings, W. N., Barnes, E. M., and Kaback, H. R., 1971, Mechanisms of active transport in isolated membrane vesicles. III The coupling of reduced phenazine methosulfate to the con-centrative uptake of β-galactosides and amino-acids, J. Biol. Chem. 246:5857.PubMedGoogle Scholar
  53. Kundig, W., Ghosh, S., and Roseman, S., 1964, Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system, Proc. Natl. Acad. Sci. U.S.A. 52:1067.PubMedCrossRefGoogle Scholar
  54. Kusch, M., and Wilson, T. H., 1973, Defective lactose utilization by a mutant of Escherichia coli energy-uncoupled for lactose transport. The advantages of active transport versus facilitated diffusion, Biochim. Biophys. Acta 311:109.PubMedCrossRefGoogle Scholar
  55. Leive, L., and Kollin, V., 1967, Synthesis, utilisation and degradation of lactose Operon mRNA in Escherichia coli, J. Mol. Biol. 24:247.PubMedCrossRefGoogle Scholar
  56. Lombardi, F. J., Reeves, J. P., and Kaback, H. R., 1973, Mechanisms of active transport in isolated bacterial membrane vesicles. XIII Valinomycin-induced rubidium transport, J. Biol. Chem. 248:3551.PubMedGoogle Scholar
  57. Maloney, P. C., Kashket, E. R., and Wilson, T. H., 1974, A protonmotive force drives ATP synthesis in bacteria, Proc. Natl. Acad. Sci. U.S.A. 71:3896.PubMedCrossRefGoogle Scholar
  58. Mühlradt, P. F., Menzel, J., Goletski, J. R., and Speth, V., 1973, Outer membrane of salmonella. Sites of export of newly synthesized lipopolysaccharides on the bacterial surface, Eur. J. Biochem. 35:471.PubMedCrossRefGoogle Scholar
  59. Neu, H. C., and Heppel, L. A., 1965, J. Biol. Chem. 240:1385–1392.Google Scholar
  60. Nunn, W. D., and Cronan, J. E., 1973, Unsaturated fatty acid synthesis is not required for induction of lactose transport in E. coli, J. Biol. Chem. 249:724.Google Scholar
  61. Ordal, G. B., and Adler, J., 1974a, Isolation and complementation of mutants in galactose Taxis and transport, J. Bacteriol. 117:509.PubMedGoogle Scholar
  62. Ordal, G. B., and Adler, J., 1974b, Properties of mutants in galactose taxis and transport, J. Bacteriol. 117:517.PubMedGoogle Scholar
  63. Overath, P., Shairer, H. U., and Stoffel, W., 1970, Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 67:606.PubMedCrossRefGoogle Scholar
  64. Parnes, J. R., and Boos, W., 1973, Unidirectional transport activity mediated by the galactose binding protein of Escherichia coli, J. Biol. Chem. 248:4436.PubMedGoogle Scholar
  65. Reeves,. J. P., Hong, J. S., and Kaback, H. R., 1973a, Reconstitution of D-lactate-dependent transport in membrane vesicles from a D-lactate dehydrogenase mutant of Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 70:1917.PubMedCrossRefGoogle Scholar
  66. Reeves, J. P., Schechter, E., Weil, R., and Kaback, H. R., 1973b, Dansyl-galactoside, a fluorescent probe of active transport in bacterial membrane vesicles, Proc. Natl. Acad. Sci. U.S.A. 70:2722.PubMedCrossRefGoogle Scholar
  67. Richarme, G., and Kepes, A., 1974, Release of glucose from purified galactose binding protein of Escherichia coli upon addition of galactose, Eur. J. Biochem. 45:127.PubMedCrossRefGoogle Scholar
  68. Rickenberg, H. V., Cohen, G. N., Buttin, G., and Monod, J., 1956, La galactoside perméase d’Escherichia coli, Ann. Inst. Pasteur 91:829.Google Scholar
  69. Robin, A., and Kepes, A., 1973, The mechanism of maintenance of electroneutrality during the transport of gluconate by E. coli, FEBS Lett. 36:133.PubMedCrossRefGoogle Scholar
  70. Rosen, B. P., 1973, β-galactoside transport and proton movements in an adenosine triphosphatase deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 53:1289.PubMedCrossRefGoogle Scholar
  71. Ryter, A., Shuman, H., and Schwartz, M., 1975, Integration of the receptor for phage in the outer membrane of Escherichia coli. Coupling with cell division, J. Bacteriol. 122:295–301.PubMedGoogle Scholar
  72. Sackmann, E., Träuble, H., Galla, H. J., and Overath, P., 1973, Lateral diffusion, protein mobility and phase transitions in Escherichia coli membranes: A pin label study, Biochemistry 12:5360.PubMedCrossRefGoogle Scholar
  73. Schachter, D., and Mindlin, A. J., 1969, Dual influx model of thiogalactoside accumulation in E. coli, J. Biol. Chem. 244:1808.PubMedGoogle Scholar
  74. Schairer, H. U., and Gruber, D., 1973, Mutants of Escherichia coli K12 defective in oxidative phosphorylation, Eur. J. Biochem. 37:282.PubMedCrossRefGoogle Scholar
  75. Schechter, E., Letellier, L., and Gulik-Krzywicki, T., 1974, Relations between structure and function in cytoplasmic membrane vesicles isolated from an Escherichia coli fatty-acid auxotrophe. High-angle X-ray diffraction freeze-etch electron microscopy and transport studies, Eur. J. Biochem. 49:61.CrossRefGoogle Scholar
  76. Shen, B. H. P., and Boos, W., 1973, Regulation of the β-methyl galactoside transport system and the galactose-binding protein by the cell cycle of E, coli, Proc. Natl. Acad. Sci. U.S.A. 70:1481.PubMedCrossRefGoogle Scholar
  77. Short, S. A., and White, D. C., 1972, Active transport in isolated bacterial membrane vesicles. V The transport of amino acids by membrane vesicles prepared from Staphylococcus aureus, J. Biol. Chem. 247:298.PubMedGoogle Scholar
  78. Short, S. A., Kaback, H. R., and Kohn, L. D., 1974, D-lactate dehydrogenase binding in E. coli dld-membrane vesicles reconstituted for active transport, Proc. Natl. Acad. Sci. U.S.A. 71:1461.PubMedCrossRefGoogle Scholar
  79. Simoni, R. D., and Shallenberger, M. K., 1972, Coupling of energy to active transport of amino-acids in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A. 69:2663.PubMedCrossRefGoogle Scholar
  80. Träuble, H., and Overath, P., 1973, The structure of Escherichia coli membranes studied by fluorescence measurements of lipid phase transitions, Biochim. Biophys. Acta 307:491.PubMedCrossRefGoogle Scholar
  81. Tsukagoshi, N., and Fox, C. F., 1973a, Abortive assembly of the lactose transport system in Escherichia coli, Biochemistry 12:2816.PubMedCrossRefGoogle Scholar
  82. Tsukagoshi, N., and Fox, C. F., 1973b, Transport system assembly and the mobility of membrane lipids in Escherichia coli, Biochemistry 12:2822.PubMedCrossRefGoogle Scholar
  83. West, I. C., 1970, Lactose transport coupled to proton movements in Escherichia coli, Biochem. Biophys. Res. Commun. 41:655.PubMedCrossRefGoogle Scholar
  84. West, I. C., and Mitchell, P., 1972, Proton-coupled β-galactoside translocation in nonmetabolizing Escherichia coli, J. Bioenergetics 3:445.CrossRefGoogle Scholar
  85. West, I. C., and Mitchell, P., 1973, Stoichiometry of lactose-H+ symport across the plasma membrane of Escherichia coli, Biochem. J. 132:587.PubMedGoogle Scholar
  86. West, I. C., and Stein, W. D., 1973, The kinetics of induction of β-galactoside permease, Biochim. Biophys. Acta 308:161.PubMedGoogle Scholar
  87. Wilbrandt, W., 1972, Coupling between simultaneous movements of carrier substrates, J. Membr. Biol. 10:357.PubMedCrossRefGoogle Scholar
  88. Wilbrandt, W., and Rosenberg, T., 1961, The concept of carrier transport and its corollaries in pharmacology, Pharmacol. Rev. 13:109.PubMedGoogle Scholar
  89. Wilson, T. H., and Kusch, M., 1972, A mutant of Escherichia coli K12 energy-uncoupled for lactose transport, Biochim. Biophys. Acta 255:786.PubMedCrossRefGoogle Scholar
  90. Winkler, H. H., and Wilson, T. H., 1966, The role of energy coupling in the transport of β-galacto-side by Escherichia coli, J. Biol. Chem. 241:2200.PubMedGoogle Scholar
  91. Zipser, D., 1970, Polarity and translational punctuation, in: The Lactose Operon (J. R. Beckwith and D. Zipser, eds.), pp. 221-232. Cold Spring Harbor Lab.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Adam Kepes
    • 1
  1. 1.Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire, Laboratoire des BiomembranesUniversité Paris VIIParis cedex 05France

Personalised recommendations