Advertisement

Biosynthesis of Bacterial Cell Walls

  • H. Hussey
  • J. Baddiley

Abstract

Bacteria are surrounded by a rigid cell wall which is responsible for the shape and osmotic stability of the cell. When bacterial cells are examined in thin section under the electron microscope it can be seen that the cell walls of gram-positive bacteria consist of a single layer, in which little fine structure can be distinguished, lying outside the cytoplasmic membrane. Cell walls of gram-negative bacteria, on the other hand, appear more complex. At least three layers can be distinguished: (1) an outer membrane layer, (2) a middle structureless layer, and (3) an inner membrane layer corresponding to the cytoplasmic membrane.

Keywords

Glycerol Phosphate Bacterial Cell Wall Teichoic Acid Alanine Racemase Core Oligosaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams, A., and Baron, C., 1968, Reversible attachment of adenosine triphosphate to streptococcal membranes and the effect of magnesium ions, Biochemistry 7:501–507.PubMedCrossRefGoogle Scholar
  2. Adams, G. A., 1971, Structural investigations on a cell wall lipopolysaccharide from Neisseria sicca, Can. J. Biochem. 49:243–250.CrossRefGoogle Scholar
  3. Adams, G. A., and Singh, P. P., 1970, Structural features of lipid A preparations isolated from Escherichia coli and Shigella flexneri, Biochim. Biophys. Acta 202:553–555.PubMedGoogle Scholar
  4. Adams, G. A., Tornabene, T. G., and Yaguchi, M., 1969, Cell wall lipopolysaccharides from Neisseria catarrhalis, Can. J. Microbiol. 15:365–374.PubMedCrossRefGoogle Scholar
  5. Adams, G. A., Quadling, G., Yaguchi, M., and Tornabene, T. G., 1970, The chemical composition of cell wall lipopolysaccharides from Moraxella duplex and Micrococcus calco-aceticus, Can. J. Microbiol. 16:1–8.PubMedCrossRefGoogle Scholar
  6. Anderson, J. S., Matsuhashi, M., Haskin, M. A., and Strominger, J. L., 1965, Lipid-phosphoacetyl-muramyl-pentapeptide and lipid-phosphodisaccharide-pentapeptide: Presumed membrane transport intermediates in cell wall synthesis, Proc. Natl. Acad. Sci. U.S.A. 53:881–889.PubMedCrossRefGoogle Scholar
  7. Anderson, R. G., Hussey, H., and Baddiley, J., 1972, The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane, Biochem. J. 127:11–25.PubMedGoogle Scholar
  8. Anderson, R. G., Douglas, L. J., Hussey, H., and Baddiley, J., 1973, The control of synthesis of bacterial cell walls. Interaction in the synthesis of nucleotide precursors, Biochem. J. 136:871–876.PubMedGoogle Scholar
  9. Anwar, R. A., Sodek, J. E., and Zemell, R. I., 1971, Feedback inhibition and binding studies on pyruvate-uridine diphospho-JV-acetylglucosamine transferase, Fed. Proc. 30:1284.Google Scholar
  10. Araki, Y., Shirai, R., Shimada, A., Ishimoto, N., and Ito, E., 1966a, Enzymatic synthesis of cell wall mucopeptide in a particulate preparation of Escherichia coli, Biochem. Biophys. Res. Commun. 23:466–472.PubMedCrossRefGoogle Scholar
  11. Araki, Y., Shimada, A., and Ito, E., 1966b, Effect of penicillin on cell wall mucopeptide synthesis in an Eschericia coli particulate system, Biochem. Biophys. Res. Commun. 23:518–525.PubMedCrossRefGoogle Scholar
  12. Archibald, A. R., 1974, The structure, biosynthesis and function of teichoic acid, Adv. Microbiol. Physiol. 10:53–95.CrossRefGoogle Scholar
  13. Archibald, A. R., and Baddiley, J., 1966, The teichoic acids, Adv. Carbohydrate Chem. 21:323–375.Google Scholar
  14. Archibald, A. R., Baddiley, J., and Blumsom, N. L., 1968, The teichoic acids, Adv. Enzymol. 30:223–253.PubMedGoogle Scholar
  15. Baddiley, J., 1972, Teichoic acids in cell walls and membranes of bacteria, Essays Biochem. 8:35–77.PubMedGoogle Scholar
  16. Baddiley, J., and Neuhaus, F. C., 1960, The enzymic activation of D-alanine, Biochem. J. 75:579–587.PubMedGoogle Scholar
  17. Baddiley, J., Blumsom, N. L., and Douglas, L. J., 1968, The biosynthesis of the wall teichoic acid in Staphylococcus lactis I3, Biochem. J. 110:565–571.PubMedGoogle Scholar
  18. Barnett, H. J., 1973, D-Alanine carboxypeptidases of Bacillus stearothermophilus: Solubilisation of particulate enzymes and mechanism of action of penicillin, Biochim. Biophys. Acta 304:332–352.PubMedCrossRefGoogle Scholar
  19. Baron, C., and Abrams, A., 1971, Isolation of a bacterial membrane protein, nectin, essential for the attachment of adenosine triphosphatase, J. Biol. Chem. 246:1542–1544.PubMedGoogle Scholar
  20. Bayer, M. E., 1974, Ultrastructure and organization of the bacterial envelope, Ann. N.Y. Acad. Sci. 235:6–28.PubMedCrossRefGoogle Scholar
  21. Beacham, I. R., and Silbert, D. F., 1973, Studies on the uridine diphosphate-galactose : lipopoly-saccharide galactosyltransferase reaction using a fatty acid mutant of Escherichia coli, J. Biol. Chem. 248:5310–5318.Google Scholar
  22. Beadling, L. C., and Rothfield, L., 1974, Conformational changes associated with reassembly of a membrane glycosyl-transferase system, Fed. Proc. 33:1254.Google Scholar
  23. Beckmann, I., Subbaiah, T. V., and Stocker, B. A. D., 1964, Rough mutants of Salmonella typhimurium (1) Genetics (2) Serological and chemical investigations, Nature (London) 201:1298–1300.CrossRefGoogle Scholar
  24. Berberich, R., Kaback, M., and Freese, E., 1968, d-Amino acids as inducers of L-alanine dehydrogenase in Bacillus subtilis, J. Biol. Chem. 243:1006–1011.PubMedGoogle Scholar
  25. Blumberg, P. M., 1974, Penicillin binding components of bacterial cells and their relationship to the mechanism of penicillin action, Ann. N.Y. Acad. Sci. 235:310–325.PubMedCrossRefGoogle Scholar
  26. Blumberg, P. M., and Strominger, J. L., 1972, Isolation by covalent affinity chromatography of the penicillin-binding components from membranes of Bacillus subtilis, Proc. Natl. Acad. Sci. U.S.A. 69:3751–3755.CrossRefGoogle Scholar
  27. Bogdanovsky, D., Bricas, E., and Dezélée, P., 1969, Sur l’identité de la “mucoendopeptidase” et de la “ carboxypeptidase I” d’Escherichia coli, enzymes hydrolysant des liaisons de configuration d-d et inhibées par la pénicilline, C.R. Acad. Sci. Paris 1969:390–393.Google Scholar
  28. Bray, D., and Robbins, P. W., 1967a, The direction of chain growth in Salmonella anatum O-antigen biosynthesis, Biochem. Biophys. Res. Commun. 28:334–339.PubMedCrossRefGoogle Scholar
  29. Bray, D., and Robbins, P. W., 1967b, Mechanism of ε 15 conversion studied with bacteriophage mutants, J. Mol. Biol. 30:457–475.PubMedCrossRefGoogle Scholar
  30. Bricas, E., Ghuysen, J.-M., and Dezélée, P., 1967, The cell wall peptidoglycan of Bacillus megaterium KM.1. Studies on the stereochemistry of α,α′-diaminopimelic acid, Biochemistry 6:2598–2606.PubMedCrossRefGoogle Scholar
  31. Brooks, D., and Baddiley, J., 1969a, The mechanism of biosynthesis and direction of chain extension of a poly(N-acetylglucosamine 1-phosphate) from the walls of Staphylococcus lactis N.C.T.C. 2102, Biochem. J. 113:635–642.PubMedGoogle Scholar
  32. Brooks, D., and Baddiley, J., 1969b, A lipid intermediate in the synthesis of a poly(N-acetylglucosamine 1-phosphate) from the wall of Staphylococcus lactis N.C.T.C. 2102, Biochem. J. 115:307–314.Google Scholar
  33. Brooks, D., Mays, L. L., Hatefi, Y., and Young, F. E., 1971, Glucosylation of teichoic acid: Solubilization and partial characterisation of the uridine diphosphoglucose : polyglycerol teichoic acid glucosyl transferase from membranes of Bacillus subtilis, J. Bacteriol. 107:223–229.Google Scholar
  34. Bumsted, R. M., Dahl, J. L., Soll, D., and Strominger, J. L., 1968, Biosynthesis of the peptidoglycan of bacterial cell walls X. Further study of the glycyl transfer ribonucleic acids active in peptidoglycan synthesis in Staphylococcus aureus, J. Biol. Chem. 243:779–782.Google Scholar
  35. Burger, M. M., and Glaser, L., 1964, The synthesis of teichoic acids I. Polyglycerophosphate, J. Biol. Chem. 239:3168–3177.PubMedGoogle Scholar
  36. Burger, M. M., and Glaser, L., 1966, The synthesis of teichoic acids V. Polyglucosylglycerol phosphate and polygalactosylglycerol phosphate, J. Biol. Chem. 241:494–506.PubMedGoogle Scholar
  37. Cassidy, P. J., and Kahan, F. M., 1973, A stable enzyme-phosphoenolpyruvate intermediate in the synthesis of UDP-iV-acetyl-2-amino-2-deoxyglucose 3-O-enolpyruvyl ether, Biochemistry 12:1364–1373.PubMedCrossRefGoogle Scholar
  38. Chatterjee, A. N., and Park, J. T., 1964, Biosynthesis of cell wall mucopeptide by a particulate fraction from Staphylococcus aureus, Proc. Natl. Acad. Sci. U.S.A. 51:9–16.PubMedCrossRefGoogle Scholar
  39. Chevion, M., Panos, C., Neuhaus, F. C., and Linzer, R., 1973, Incorporation of D-alanine into the membrane of Streptococcus pyogenes and its stabilized L-form, Abstracts of the Annual Meeting of the American Society for Microbiology, Miami, May 6–11, 1973, p. 65.Google Scholar
  40. Chin, T., Burger, M. M., and Glaser, L., 1966, Synthesis of teichoic acids. VI. The formation of multiple wall polymers in Bacillus subtilis W23, Arch. Biochem. Biophys. 116:358–367.PubMedCrossRefGoogle Scholar
  41. Cole, R. M., 1965, Symposium on the fine structure and replication of bacteria and their parts. III. Bacterial cell-wall replication followed by immunofluorescence, Bacteriol. Rev. 29:326–344.PubMedGoogle Scholar
  42. Coley, J., Duckworth, M., and Baddiley, J., 1972, The occurrence of lipoteichoic acids in the membranes of Gram-positive bacteria, J. Gen. Microbiol. 73:587–591.PubMedGoogle Scholar
  43. Coyette, J., Perkins, H. R., Polacheck, I., Shockman, G. D., and Ghuysen, J.-M., 1974, Membrane-bound DD-carboxypeptidase and LD-transpeptidase of Streptococcus faecalis A.T.C.C. 9790, Eur. J. Biochem. 44:459–468.PubMedCrossRefGoogle Scholar
  44. Cynkin, M. A., and Osborn, M. J., 1968, Enzymatic transfer of O-antigen to lipopolysaccharide, Fed. Proc. 27:293.Google Scholar
  45. Dankert, M., Wright, A., Kelley, W. S., and Robbins, P. W., 1966, Isolation, purification and properties of the lipid-linked intermediates of O-antigen biosynthesis, Arch. Biochem. Biophys. 116:425–435.PubMedCrossRefGoogle Scholar
  46. Diaz-Maurino, T., Nieto, M., and Perkins, H. R., 1974, Membrane-bound DD-carboxypeptidases from Bacillus megaterium KM. General properties, substrate specificity and sensitivity to penicillins, cephalosporins and peptide inhibitors of the activity at pH 5, Biochem. J. 143:391–402.Google Scholar
  47. Diven, W. F., 1969, Studies on amino acid racemases II. Purification and properties of the glutamate racemase from Lactobacillus fermenti, Biochim. Biophys. Acta 191:702–706.PubMedGoogle Scholar
  48. Douglas, L. J., 1968, Studies on the biosynthesis of the wall teichoic acid from Staphylococcus aureus 13, Ph.D. thesis, University of Newcastle upon Tyne, U.K.Google Scholar
  49. Douglas, L. J., and Baddiley, J., 1968, A lipid intermediate in the biosynthesis of a teichoic acid, FEBS Lett. 1:114–116.PubMedCrossRefGoogle Scholar
  50. Dröge, W., Lehmann, V., Lüderitz, O., and Westphal, O., 1970, Structural investigations on the 2-keto-3-deoxyoctonate region of lipopolysaccharides, Eur. J. Biochem. 14:175–184.PubMedCrossRefGoogle Scholar
  51. Dusart, J., Marquet, A., Ghuysen, J.-M., Frère, J.-M., Moreno, R., Leyh-Bouille, M., Johnson, K., Lugchi, C. H., Perkins, H. R., and Nieto, M., 1973, DD-Carboxypeptidase-transpeptidase and killing site of β-lactam antibiotics in Streptomyces R39, R61, K11, Antimicrob. Agents Chemother. 3:181–187.PubMedGoogle Scholar
  52. Edstrom, R. D., and Heath, E. C., 1964, Sugar nucleotide transferases in Escherichia coli lipopolysaccharide biosynthesis, Biochem. Biophys. Res. Commun. 16:576–581.PubMedCrossRefGoogle Scholar
  53. Edstrom, R. D., and Heath, E. C., 1967, The biosynthesis of cell wall lipopolysaccharide in Escherichia coli VI. Enzymatic transfer of galactose, glucose, N-acetylglucosamine and colitose into the polymer, J. Biol. Chem. 242:3581–3588.PubMedGoogle Scholar
  54. Eidels, L., and Osborn, M. J., 1971, Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium, Proc. Natl. Acad. Sci. U.S.A. 68:1673–1677.PubMedCrossRefGoogle Scholar
  55. Eidels, L., and Osborn, M. J., 1974, Phosphoheptose isomerase, first enzyme in the biosynthesis of aldoheptose in Salmonella typhimurium, J. Biol. Chem. 249:5642–5648.PubMedGoogle Scholar
  56. Ellwood, D. C., and Tempest, D. W., 1972, Effects of environment on bacterial wall content and composition, Adv. Microbial Physiol. 7:83–116.CrossRefGoogle Scholar
  57. Emdur, L. I., and Ghiu, T. H., 1974, Turnover of phosphatidylglycerol in Streptococcus sanguis, Biochem. Biophys. Res. Commun. 59:1137–1144.PubMedCrossRefGoogle Scholar
  58. Endo, A., and Rothfield, L., 1969a, Studies of a phospholipid-requiring bacterial enzyme. I. Purification and properties of uridine diphosphate galactose : lipopolysaccharide α-3-galactosyl transferase, Biochemistry 8:3500–3507.PubMedCrossRefGoogle Scholar
  59. Endo, A., and Rothfield, L., 1969b, Studies of a phospholipid-requiring bacterial enzyme. II. The role of phospholipid in the uridine diphosphate galactose : lipopolysaccharide α-3-galactosyl transferase reaction, Biochemistry 8:3508–3515.PubMedCrossRefGoogle Scholar
  60. Fensom, A. H., and Gray, G. W., 1969, The chemical composition of the lipopolysaccharide of Pseudomonas aeruginosa, Biochem. J. 164:185–196.Google Scholar
  61. Fiedler, F., and Glaser, L., 1973, Assembly of bacterial cell walls, Biochim. Biophys. Acta 300:467–485.Google Scholar
  62. Fiedler, F., and Glaser, L., 1974a, The synthesis of polyribitol phosphate. I. Purification of polyribitol phosphate polymerase and lipoteichoic acid carrier, J. Biol. Chem. 249:2684–2689.PubMedGoogle Scholar
  63. Fiedler, F., and Glaser, L., 1974b, The synthesis of polyribitol phosphate. II. On the mechanism of polyribitol phosphate polymerase, J. Biol. Chem. 249:2690–2695.PubMedGoogle Scholar
  64. Fiedler, F., and Glaser, L., 1974c, The attachment of poly(ribitol phosphate) to lipoteichoic acid carrier, Carbohydr. Res. 37:37–46.PubMedCrossRefGoogle Scholar
  65. Fiedler, F., Mauck, J., and Glaser, L., 1974, Problems in cell wall assembly, Ann. N.Y. Acad. Sci. 235:198–209.PubMedCrossRefGoogle Scholar
  66. Fordham, W. D., and Gilvarg, C., 1974, Kinetics of cross-linking of peptidoglycan in Bacillus megaterium, J. Biol. Chem. 249:2478–2482.PubMedGoogle Scholar
  67. Frère, J.-M., 1973, Enzyme mechanisms involving concomitant transfer and hydrolysis reactions, Biochem. J. 135:469–481.PubMedGoogle Scholar
  68. Frère, J.-M., Ghuysen, J.-M., Perkins, H. R., and Nieto, M., 1973a, Molecular weight and amino acid composition of the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61, Biochem. J. 135:463–468.PubMedGoogle Scholar
  69. Frère, J.-M., Ghuysen, J.-M., Perkins, H. R., and Nieto, M., 1973b, Kinetics of concomitant transfer and hydrolysis reactions catalysed by the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61, Biochem. J. 135:483–492.PubMedGoogle Scholar
  70. Frère, J.-M., Moreno, R., Ghuysen, J.-M., Perkins, H. R., Dierigkx, L., and Delcambe, L., 1974, Molecular weight, amino acid composition and physicochemical properties of the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R39, Biochem. J. 143:233–240.PubMedGoogle Scholar
  71. Fuller, N. A., Wu, M.-G., Wilkinson, R. G., and Heath, E. C., 1973, The biosynthesis of cell wall lipopolysaccharide in Excherichia coli. VII. Characterisation of heterogeneous “core” oligosaccharide structures, J. Biol. Chem. 248:7938–7950.PubMedGoogle Scholar
  72. Gale, E. G., Shepherd, G. J., and Folkes, J. P., 1958, Incorporation of amino-acids by disrupted staphylococcal cells, Nature (London) 182:592–595.CrossRefGoogle Scholar
  73. Ghalambor, M. A., and Heath, E. C., 1966a, The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. IV. Purification and properties of cytidine monophosphate 3-deoxy-D-manno-octulosonate synthetase, J. Biol. Chem. 241:3216–3221.PubMedGoogle Scholar
  74. Ghalambor, M. A., and Heath, E. G., 1966b, The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. V. Purification and properties of 3-deoxy-D-manno-octulosonate aldolase, J. Biol. Chem. 241:3222–3227.PubMedGoogle Scholar
  75. Ghalambor, M. A., Levine, E. M., and Heath, E. G., 1966, The biosynthesis of cell wall lipopolysaccharide in Escherichia coli. III. The isolation and characterisation of 3-deoxyoctulosonic acid, J. Biol. Chem. 241:3207–3215.PubMedGoogle Scholar
  76. Ghuysen, J.-M., 1968, Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism, Bacteriol. Rev. 32:425–464.PubMedGoogle Scholar
  77. Ghuysen, J.-M., and Shockman, G. D., 1973, Biosynthesis of peptidoglycan, in: Bacterial Membranes and Walls (L. Leive, ed.), pp. 37–130, Marcel Dekker, Inc., New York.Google Scholar
  78. Ghuysen, J.-M., Bricas, E., Lache, M., and Leyh-Bouille, M., 1968, Structure of the cell walls of Micrococcus lysodeikticus. III. Isolation of a new peptide dimer, N α-[L-alanyl-γ-(α-D-glutamyl-glycine)]-L-lysyl-D-alanyl-N α- [L-alanyl-γ- (α-D-glutamyl-glycine)]-L-lysyl-D-alanine, Biochemistry 7 : 1450–1460.PubMedCrossRefGoogle Scholar
  79. Ghuysen, J.-M., Leyh-Bouille, M., Bonaly, R., Nieto, M., Perkins, H. R., Schleifer, K. H., and Kandler, O., 1970, Isolation of dd carboxypeptidase from Streptomyces albus G culture filtrates, Biochemistry 9:2955–2960.PubMedCrossRefGoogle Scholar
  80. Ghuysen, J.-M., Leyh-Bouille, M., Frère, J.-M., Dusart, J., Johnson, K., Nakel, M., Goyette, J., Perkins, H. R., and Nieto, M., 1972, Streptomyces DD-carboxypeptidase-transpeptidases and mechanism of action of penicillin, in: Molecular Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes (E. Munoz, F. Garcia-Ferrandiz, and D. Vazquez, eds.), pp. 406–426, Elsevier, Amsterdam.Google Scholar
  81. Ghuysen, J.-M., Leyh-Bouille, M., Campbell, J. N., Moreno, R., Frère, J.-M., Duez, C., Nieto, M., and Perkins, H. R., 1973, Structure of the wall peptidoglycan of Streptomyces R39 and the specificity profile of its exocellular DD-carboxypeptidase-transpeptidase for peptide acceptors, Biochemistry 12:1243–1250.PubMedCrossRefGoogle Scholar
  82. Ghuysen, J.-M., Leyh-Bouille, M., Frère, J.-M., Dusart, J., and Marqjuet, A., 1974a, The penicillin receptor in Streptomyces, Ann. N.Y. Acad. Sci. 235:236–266.PubMedCrossRefGoogle Scholar
  83. Ghuysen, J.-M., Reynolds, P. E., Perkins, H. R., Frère, J.-M., and Moreno, R., 1974b, Effects of donor and acceptor peptides on concomitant hydrolysis and transfer reactions catalysed by the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R39, Biochemistry 13:2539–2547.PubMedCrossRefGoogle Scholar
  84. Ginsburg, V., O’Brien, P. J., and Hall, G. W., 1962, Guanosine diphosphate D-glycero-D-manno-heptose, J. Biol. Chem. 237:497–499.PubMedGoogle Scholar
  85. Glaser, L., 1960, Glutamic acid racemase from Lactobacillus arabinosus, J. Biol. Chem. 235:2095–2098.PubMedGoogle Scholar
  86. Glaser, L., 1963, Ribitol 5-phosphate dehydrogenase from Lactobacillus plantarum, Biochim. Biophys. Acta 67:525–530.PubMedCrossRefGoogle Scholar
  87. Glaser, L., 1964, The synthesis of teichoic acids. II. Polyribitol phosphate, J. Biol. Chem. 239:3178–3186.PubMedGoogle Scholar
  88. Glaser, L., 1965, The synthesis of teichoic acid. IV. On the regulation of cytidine 5-diphosphate-glycerol concentration, Biochim. Biophys. Acta 101:6–15.PubMedGoogle Scholar
  89. Glaser, L., 1973, Bacterial cell surface polysaccharides, Ann. Rev. Biochem. 42:91–112.PubMedCrossRefGoogle Scholar
  90. Glaser, L., and Burger, M. M., 1964, The synthesis of teichoic acids. III. Glucosylation of polyglycerophosphate, J. Biol. Chem. 239:3187–3191.PubMedGoogle Scholar
  91. Glaser, L., and Lindsay, B., 1974, The synthesis of lipo teichoic acid carrier, Biochem. Biophys. Res. Commun. 59:1131–1136.PubMedCrossRefGoogle Scholar
  92. Goldman, R., and Strominger, J. L., 1972, Purification and properties of C55-isoprenylpyrophosphate phosphatase from Micrococcus lysodeikticus, J. Biol. Chem. 247:5116–5122.PubMedGoogle Scholar
  93. Griffin, M., Kitgher, J. P., and Trudgill, P. W., 1971, Some studies on the purified 2-furoyl-coenzyme A hydroxylase from Pseudomonas putida F2, Biochem. J. 125:19p.Google Scholar
  94. Gunetileke, K. G., and Anwar, R. A., 1966, Biosynthesis of uridine diphospho-N-acetylmuramic acid, J. Biol. Chem. 241:5740–5743.PubMedGoogle Scholar
  95. Gunetileke, K. G., and Anwar, R. A., 1968, Biosynthesis of uridine diphospho-N-acetylmuramic acid. II. Purification and properties of pyruvate-uridine diphospho-N-acetylglucosamine transferase and characterisation of uridine diphospho-N-acetylenolpyruvylglucosamine, J. Biol. Chem. 243:5770–5778.PubMedGoogle Scholar
  96. Hämmerling, G., Lüderitz, O., Westphal, O., and Mäkelä, P. H., 1971, Structural investigations on the core polysaccharide of Escherichia coli 0100, Eur. J. Biochem. 22:331–344.PubMedCrossRefGoogle Scholar
  97. Hämmerling, G., Lehmann, V., and Lüderitz, O., 1973, Structural studies on the heptose region of Salmonella lipopolysaccharides, Eur. J. Biochem. 38:453–458.PubMedCrossRefGoogle Scholar
  98. Hammes, W. P., and Neuhaus, F. C., 1974a, On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase. The peptide subunit of uridine diphospho-N-acetylmuramyl-pentapeptide, J. Biol. Chem. 249:3140–3150.PubMedGoogle Scholar
  99. Hammes, W. P., and Neuhaus, F. C., 1974b, Biosynthesis of peptidoglycan in Gaffkya homari: role of the peptide subunit of uridine diphosphate-N-acetylmuramyl-pentapeptide, J. Bacteriol. 120:210–218.PubMedGoogle Scholar
  100. Hammes, W. P., Schleifer, K. H., and Kandler, O., 1973, Mode of action of glycine on the biosynthesis of peptidoglycan, J. Bacteriol. 116:1029–1053.PubMedGoogle Scholar
  101. Hancock, I. C., and Baddiley, J., 1972, Biosynthesis of the wall teichoic acid in Bacillus lichenformis, Biochem. J. 127:27–37.PubMedGoogle Scholar
  102. Hancock, I. C., and Baddiley, J., 1973, Solubilisation of a teichoic acid-synthesising system from the membrane of Bacillus licheniformis by freezing and thawing, FEBS Lett. 34:15–18.PubMedCrossRefGoogle Scholar
  103. Hancock, I. C., and Meadow, P. M., 1967, The distribution of lipids in Pseudomonas aeruginosa, J. Gen. Microbiol. 46 :x.Google Scholar
  104. Hartmann, R., Höltje, J.-V., and Schwarz, U., 1972, Targets of penicillin action in Escherichia coli, Nature (London) 235:426–429.CrossRefGoogle Scholar
  105. Heath, E. G., Mayer, R. M., Edstrom, R. D., and Beaudreau, C. A., 1966, Structure and biosynthesis of the cell wall lipopolysaccharide of Escherichia coli, Ann. N.Y. Acad. Sci. 133:315–333.PubMedCrossRefGoogle Scholar
  106. Heller, J., 1968, Structure of visual pigments. I. Purification, molecular weight, and composition of bovine visual pigment500, Biochemistry 7:2906–2913.PubMedCrossRefGoogle Scholar
  107. Hellerqvist, G. G., and Lindberg, A. A., 1971, Structural studies of the common-core polysaccharide of the cell-wall lipopolysaccharide from Salmonella typhimurium, Carbohydr. Res. 16:39–48.CrossRefGoogle Scholar
  108. Henning, U., Rehn, K., Braun, V., Höhn, B., and Schwarz, U., 1972, Cell envelope and shape of Escherichia coli K12. Properties of a temperature-sensitive rod mutant, Eur. J. Biochem. 26:570–586.PubMedCrossRefGoogle Scholar
  109. Heydanek, M. G., Struve, W. G., and Neuhaus, F. C., 1969, On the initial stage in peptidoglycan synthesis. III. Kinetics and uncoupling of phospho-N-acetylmuramyl-pentapeptide translocase (uridine 5’-phosphate), Biochemistry 8:1214–1221.PubMedCrossRefGoogle Scholar
  110. Heydanek, M. G., Linzer, R., Pless, D. D., and Neuhaus, F. C., 1970, Initial stage in peptidoglycan synthesis. Mechanism of activation of phospho-N-acetylmuramyl-pentapeptide translocase by potassium ions, Biochemistry 9:3618–3623.PubMedCrossRefGoogle Scholar
  111. Higashi, Y., Strominger, J. L., and Sweeley, C. C., 1967, Structure of a lipid intermediate in cell wall peptidoglycan synthesis: A derivative of a C55-isoprenoid alcohol, Proc. Natl. Acad. Sci. U.S.A. 57:1878–1884.PubMedCrossRefGoogle Scholar
  112. Higashi, Y., Siewert, G., and Strominger, J. L., 1970a, Biosynthesis of the peptidoglycan of bacterial cell walls. XIX. Isoprenoid alcohol Phosphokinase, J. Biol. Chem. 245:3683–3690.PubMedGoogle Scholar
  113. Higashi, Y., Strominger, J. L., and Sweeley, G. C., 1970b, Biosynthesis of the peptidoglycan of bacterial cell walls. XXI. Isolation of free-C55-isoprenoid alcohol and of lipid intermediates in peptidoglycan synthesis from Staphylococcus aureus, J. Biol. Chem. 245:3697–3702.PubMedGoogle Scholar
  114. Hinckley, A., Müller, E., and Rothfield, L., 1972, Reassembly of a membrane-bound multi-enzyme system. I. Formation of a particle containing phosphatidylethanolamine, lipopolysac-scharide and two glycosyltransferase enzymes, J. Biol. Chem. 247:2623–2628.PubMedGoogle Scholar
  115. Höltje, J.-V., and Schwarz, U., 1974, Penicillin and the murein-transglycosaminidase of Escherichia coli, Ann. N.Y. Acad. Sci. 235:294–299.PubMedCrossRefGoogle Scholar
  116. Huff, E., Cole, R. M., and Theodore, T. S., 1974, Lipoteichoic acid localisation in mesosomal vesicles of Staphylococcus aureus, J. Bacteriol. 120:273–281.PubMedGoogle Scholar
  117. Humphreys, G. O., Hancock, I. G., and Meadow, P. M., 1972, Synthesis of the hydroxyacids in lipid A of Pseudomonas aeruginosa, J. Gen. Microbiol. 71:221–230.PubMedGoogle Scholar
  118. Hussey, H., and Baddiley, J., 1972, Lipid intermediates in the biosynthesis of the wall teichoic acid in Staphylococcus lactis 13, Biochem. J. 127:39–50.PubMedGoogle Scholar
  119. Hussey, H., Brooks, D., and Baddiley, J., 1969, Direction of chain extension during the biosynthesis of teichoic acids in bacterial cell walls, Nature (London) 221:665–666.CrossRefGoogle Scholar
  120. Ishimoto, N., and Strominger, J. L., 1966, Polyribitol phosphate synthetase of Staphylococcus aureus, J. Biol. Chem. 241:639–650.PubMedGoogle Scholar
  121. Ito, E., and Strominger, J. L., 1962, Enzymatic synthesis of the peptide in bacterial uridine nucleotides, II. Enzymatic synthesis and addition of D-alanyl-D-alanine, J. Biol. Chem. 237:2696–2703.Google Scholar
  122. Ito, E., and Strominger, J. L., 1973, Enzymatic synthesis of the peptide in bacterial uridine nucleotides. VII. Comparative biochemistry, J. Biol. Chem. 248:3131–3136.PubMedGoogle Scholar
  123. Izaki, K., and Strominger, J. L., 1968, Biosynthesis of the peptidoglycan of bacterial cell walls, XIV. Purification and properties of two carboxypeptidases from Escherichia coli, J. Biol. Chem. 243:3193–3201.Google Scholar
  124. Izaki, K., Matsuhashi, M., and Strominger, J. L., 1966, Glycopeptide transpeptidase and D-alanine carboxypeptidase : Penicillin-sensitive enzymatic reactions, Proc. Natl. Acad. Sci. U.S.A. 55:656–663.PubMedCrossRefGoogle Scholar
  125. Izaki, K., Matsuhashi, M., and Strominger, J. L., 1968, Biosynthesis of the peptidoglycan of bacterial cell walls. XIII. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: Penicillin-sensitive enzymatic reactions in strains of Escherichia coli, J. Biol. Chem. 243:3180–3192.Google Scholar
  126. Johnson, R. B., Scholz, J. J., Diven, W. F., and Shepard, S., 1966, in:Pyridoxal Catalysis: Enzymes and Model Systems (E. E. Snell, A. E. Braunstein, E. S. Severin, and Y. M. Torshinsky, eds.), p. 537, Interscience Publishers, New York.Google Scholar
  127. Kahan, F. M., Kahan, J. S., Gassidy, P. J., and Kropp, H., 1974, The mechanism of action of fosfo-mycin (phosphonomycin), Ann. N. Y. Acad. Sci. 235:364–386.PubMedCrossRefGoogle Scholar
  128. Kamiryo, T., and Matsuhashi, M., 1969, Sequential addition of glycine from glycyl-tRNA to the lipid-linked precursors of cell wall peptidoglycan in Staphylococcus aureus, Biochem. Biophys. Res. Commun. 36:215–222.PubMedCrossRefGoogle Scholar
  129. Kamiryo, T., and Matsuhashi, M., 1972, The biosynthesis of the cross-linking peptides in the cell wall peptidoglycan of Staphylococcus aureus, J. Biol. Chem. 247:6306–6311.PubMedGoogle Scholar
  130. Kanegasaki, S., and Wright, A., 1970, Mechanism of polymerization of the Salmonella O-antigen: Utilization of lipid-linked intermediates, Proc. Natl. Acad. Sci. U.S.A. 67:951–958.PubMedCrossRefGoogle Scholar
  131. Katz, W., Matsuhashi, M., Dietrich, C. P., and Strominger, J. L., 1967, Biosynthesis of the peptidoglycan of bacterial cell walls. IV. Incorporation of glycine in Micrococcus lysodeikticus, J. Biol. Chem. 242:3207–3217.PubMedGoogle Scholar
  132. Kennedy, L. D., 1974, Teichoic acid synthesis in Bacillus stearothermophilus, Biochem. J. 138:525–535.PubMedGoogle Scholar
  133. Kennedy, L. D., and Shaw, D. R. D., 1968, Direction of polyglycerolphosphate chain growth in Bacillus subtilis, Biochem. Biophys. Res. Commun. 32:861–865.CrossRefGoogle Scholar
  134. Kent, J. L., and Osborn, M. J., 1968, Further studies on enzymatic synthesis of O-antigen in Salmonella typhimurium, Biochemistry 7:4409–4419.PubMedCrossRefGoogle Scholar
  135. Kuramitsu, H. K., and Snoke, J. E., 1962, The biosynthesis of D-amino acids in Bacillus licheniformis, Biochim. Biophys. Acta 62:114–121.PubMedCrossRefGoogle Scholar
  136. Lambert, M. P., and Neuhaus, F. C., 1972, Mechanism of D-cycloserine action: Alanine racemase from Escherichia coli W, J. Bacteriol. 110:978–987.PubMedGoogle Scholar
  137. Lamont, H. C., Staudenbauer, W. L., and Strominger, J. L., 1972, Partial purification and characterisation of an aspartate racemase from Streptococcus faecalis, J. Biol. Chem. 247:5103–5106.PubMedGoogle Scholar
  138. Lawrence, P. J., and Strominger, J. L., 1970, Biosynthesis of the peptidoglycan of bacterial cell walls. XVI. The reversible fixation of radioactive penicillin G to the D-alanine carboxypeptidase of Bacillus subtilis, J. Biol. Chem. 245:3660–3666.PubMedGoogle Scholar
  139. Lehmann, V., Lüderitz, O., and Westphal, O., 1971, The linkage of pyrophosphorylethanolamine to heptose in the core of Salmonella minnesota lipopolysaccharide, Eur. J. Biochem. 21:339–347.PubMedCrossRefGoogle Scholar
  140. Lehmann, V., Hämmerling, G., Nurminen, M., Minner, L., Ruschmann, E., Lüderitz, O., Kuo, T.-T., and Stocker, B. A. D., 1973, A new class of heptose-defective mutant of Salmonella typhimurium, Eur. J. Biochem. 32:268–275.PubMedCrossRefGoogle Scholar
  141. Leive, L., 1965, Release of lipopolysaccharide by EDTA treatment of Escherichia coli, Biochem. Biophys. Res. Commun. 21:290–296.PubMedCrossRefGoogle Scholar
  142. Leive, L., 1974, The barrier function of the gram-negative envelope, Ann. N.Y. Acad. Sci. 235:109–129.PubMedCrossRefGoogle Scholar
  143. Leive, L., Shovlin, V. K., and Mergenhagen, S. E., 1968, Physical, chemical and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediaminotetraacetate, J. Biol. Chem. 243:6384–6391.PubMedGoogle Scholar
  144. Lennarz, W. J., and Scher, M. G., 1972, Metabolism and function of polyisoprenol sugar intermediates in membrane-associated reactions, Biochim. Biophys. Acta 265:417–441.PubMedGoogle Scholar
  145. Levin, D. H., and Racker, E., 1959, Condensation of arabinose 5-phosphate and phosphorylenol-pyruvate by 2-keto-3-deoxy-8-phosphooctonic acid synthetase, J. Biol. Chem. 234:2532–2539.PubMedGoogle Scholar
  146. Levy, S. B., and Leive, L., 1970, Release from Escherichia coli of a galactosyl-transferase complex active in lipopolysaccharide synthesis, J. Biol. Chem. 245:585–590.PubMedGoogle Scholar
  147. Leyh-Bouille, M., Bonaly, R., Ghuysen, J.-M., Tinelli, R., and Tipper, D. J., 1970a, LL-Diamino-pimelic acid containing peptidoglycan in walls of Streptomyces sp. and of Clostridium perfringens (Type A), Biochemistry 9:2944–2952.PubMedCrossRefGoogle Scholar
  148. Leyh-Bouille, M., Ghuysen, J.-M., Bonaly, R., Nieto, M., Perkins, H. R., Schleifer, K. H., and Kandler, O., 1970b, Substrate requirements of the Streptomyces albus G DD-carboxypeptidase, Biochemistry 9:2962–2970.Google Scholar
  149. Leyh-Bouille, M., Ghuysen, J.-M., Nieto, M., Perkins, H. R., Schleifer, K. H., and Kandler, O., 1970c, On the Streptomyces albus G DD-carboxypeptidase. Mechanism of action of penicillin, vancomycin and ristocetin, Biochemistry 9:2971–2975.PubMedCrossRefGoogle Scholar
  150. Leyh-Bouille, M., Coyette, J., Ghuysen, J.-M., Idczak, J., Perkins, H. R., and Nieto, M., 1971, Penicillin-sensitive DD-carboxypeptidase from Streptomyces strain R61, Biochemistry 10:2163–2170.PubMedCrossRefGoogle Scholar
  151. Leyh-Bouille, M., Nakel, M., Frère, J.-M., Johnson, K., Ghuysen, J.-M., Nieto, M., and Perkins, H. R., 1972, Penicillin-sensitive DD-carboxypeptidase from Streptomyces strains R39 and K11, Biochemistry 11:1290–1298.PubMedCrossRefGoogle Scholar
  152. Linnett, P. E., and Strominger, J. L., 1974, Amidation and cross-linking of the enzymatically synthesized peptidoglycan of Bacillus stearothermophilus, J. Biol. Chem. 249:2489–2496.PubMedGoogle Scholar
  153. Linnett, P. E., and Tipper, D. J., 1974, Cell wall polymers of Bacillus sphaericus: Activities of enzymes involved in peptidoglycan precursor synthesis during sporulation, J. Bacteriol. 120:342–354.PubMedGoogle Scholar
  154. Linnett, P. E., Roberts, R. J., and Strominger, J. L., 1974, Biosynthesis and cross-linking of the y-glutamylglycine-containing peptidoglycan of vegetative cells of Sporosarcina ureae, J. Biol. Chem. 249:2497–2506.PubMedGoogle Scholar
  155. Lomax, J. A., Poxton, I. R., and Sutherland, I. W., 1973, Butanol-soluble glycosyl transferases in Klebsiella aerogenes, FEBS Lett. 34:232–234.PubMedCrossRefGoogle Scholar
  156. Losick, R., 1969, Isolation of a trypsin-sensitive inhibitor of O-antigen synthesis involved in lysogenic conversion by bacteriophage ε 15, J. Mol. Biol. 42:237–246.PubMedCrossRefGoogle Scholar
  157. Lüderitz, O., Jann, K., and Wheat, R., 1968, Somatic and capsular antigens of gram-negative bacteria, in:Comprehensive Biochemistry, Vol. 26A (M. Florkin, and E. H. Stotz, eds.), pp. 105–228, Elsevier, Amsterdam.Google Scholar
  158. Lüderitz, O., Westphal, O., Staub, A.-M., and Nikaido, H., 1971, Isolation and chemical and immunological characterisation of bacterial lipopolysaccharides, in: Microbial Toxins, Vol. IV (G. Weinbaum, S. Kadis, and S.J. Ajl, eds.), pp. 145–233, Academic Press, New York.Google Scholar
  159. Lugtenberg, E. J. J., de Haas-Menger, L., and Ruyters, W. H. M., 1972, Murein synthesis and identification of cell wall precursors of temperature sensitive lysis mutants of Escherichia coli, J. Bacteriol. 109:326–335.Google Scholar
  160. Lynch, J. L., and Neuhaus, F. C., 1966, On the mechanism of action of the antibiotic O-carbamyl-D-serine in Streptococcus faecalis, J. Bacteriol. 91:449–460.Google Scholar
  161. Maino, V. C., and Young, F. E., 1974a, Regulation of glucosylation of teichoic acid. I. Isolation of phosphoglucomutase in Bacillus subtilis 168, J. Biol. Chem. 249:5169–5175.PubMedGoogle Scholar
  162. Maino, V. C., and Young, F. E., 1974b, Regulation of glucosylation of teichoic acid. II. Partial characterization of phosphoglucomutase in Bacillus subtilis 168, J. Biol. Chem. 249:5176–5181.PubMedGoogle Scholar
  163. Mäkelä, P. H., 1966, Genetic determination of the O antigens of Salmonella groups B (4, 5, 12) and G (6, 7), J. Bacteriol. 91:1115–1125.PubMedGoogle Scholar
  164. Mäkelä, P. H., and Mäkelä, O., 1966, Salmonella antigen 122: Genetics of form variation, Ann. Med. Exp. Biol. Fenniae 44:310–317.Google Scholar
  165. Mäkelä, P. H., and Stocker, B. A. D., 1969, Genetics of polysaccharide biosynthesis, Ann. Rev. Genet. 3:291–322.CrossRefGoogle Scholar
  166. Marquet, A., Dusart, J., Ghuysen, J.-M., and Perkins, H. R., 1974, Membrane-bound transpeptidase and penicillin binding sites in Streptomyces strain R61, Eur. J. Biochem. 46:515–523.PubMedCrossRefGoogle Scholar
  167. Marshall, V. P., and Sokatch, J. R., 1968, Oxidation of D-amino acids by a particulate enzyme from Pseudomonas aeruginosa, J. Bacteriol. 95:1419–1424.PubMedGoogle Scholar
  168. Martinez-Carrion, M., and Jenkins, W. T., 1965, D-Alanine-D-glutamate transaminase. I. Purification and characterisation, J. Biol. Chem. 240:3538–3546.PubMedGoogle Scholar
  169. Matsuhashi, M., Dietrich, C. P., and Strominger, J. L., 1967, Biosynthesis of the peptidoglycan of bacterial cell walls. III. The role of soluble ribonucleic acid and of lipid intermediates in glycine incorporation in Staphylococcus aureus, J. Biol. Chem. 242:3191–3206.Google Scholar
  170. Mauck, J., and Glaser, L., 1972a, An acceptor-dependent polyglycerolphosphate polymerase, Proc. Natl. Acad. Sci. U.S.A. 69:2386–2390.PubMedCrossRefGoogle Scholar
  171. Mauck, J., and Glaser, L., 1972b, On the mode of in vivo assembly of the cell wall of Bacillus subtilis, J. Biol. Chem. 247:1180–1187.PubMedGoogle Scholar
  172. Meadow, P. M., Anderson, J. S., and Strominger, J. L., 1964, Enzymatic polymerisation of UDP- acetylmuramyl L-Ala.D-Glu.L-Lys.D-Ala.D-Ala and UDP-N-acetylglucosamine by a particulate enzyme from Staphylococcus aureus and its inhibition by antibiotics, Biochem. Biophys. Res. Commun. 14:382–387.PubMedCrossRefGoogle Scholar
  173. Mirelman, D., and Bracha, R., 1974, Effect of penicillin in the in vivo formation of the D-alanyl-L-alanine peptide cross-linkage in cell walls of Micrococcus luteus, Antimicrob. Agents Chemother. 5:663–666.PubMedGoogle Scholar
  174. Mirelman, D., and Sharon, N., 1972, Biosynthesis of peptidoglycan by a cell wall preparation of Staphylococcus aureus and its inhibition by penicillin, Biochem. Biophys. Res. Commun. 46:1909–1917.PubMedCrossRefGoogle Scholar
  175. Mirelman, D., Bracha, R., and Sharon, N., 1972, Role of the penicillin-sensitive transpeptidation reaction in attachment of newly synthesized peptidoglycan to cell walls of Micrococcus luteus, Proc. Natl. Acad. Sci. U.S.A. 69:3355–3359.PubMedCrossRefGoogle Scholar
  176. Mirelman, D., Bracha, R., and Sharon, N., 1974a, Studies on the elongation of bacterial cell wall peptidoglycan and its inhibition by penicillin, Ann. N.Y. Acad. Sci. 235:326–344.PubMedCrossRefGoogle Scholar
  177. Mirelman, D., Bracha, R., and Sharon, N., 1974b, Inhibition by penicillin of the incorporation and cross-linking of L-lysine in intact cells of Micrococcus luteus, FEBS Lett. 39:105–110.PubMedCrossRefGoogle Scholar
  178. MÜhlradt, P., 1969, Biosynthesis of Salmonella lipopolysaccharide. The in vitro transfer of phosphate to the heptose moiety of the core, Eur. J. Biochem. 11:241–248.PubMedCrossRefGoogle Scholar
  179. Mühlradt, P., 1971, Biosynthesis of Salmonella lipopolysaccharide. Studies on the transfer of glucose, galactose and phosphate to the core in a cell free system, Eur. J. Biochem. 18:20–27.PubMedCrossRefGoogle Scholar
  180. Mühlradt, P., Risse, H. J., Lüderitz, O., and Westphal, O., 1968, Biochemical studies on lipopolysaccharides of Salmonella R mutants. 5. Evidence for a phosphorylating enzyme in lipopolysaccharide biosynthesis, Eur. J. Biochem. 4:139–145.PubMedCrossRefGoogle Scholar
  181. Mühlradt, P. F., Menzel, J., Golecki, J. R., and Speth, V., 1973, Outer membrane of Salmonella. Sites of export of newly synthesised lipopolysaccharide on the bacterial surface, Eur. J. Biochem. 35:471–481.PubMedCrossRefGoogle Scholar
  182. Müller, E., Hinckley, A., and Rothfield, L., 1972, Studies of phospholipid-requiring bacterial enzymes. III. Purification and properties of uridine diphosphate glucose : lipopolysaccharide glucosyltransferase I, J. Biol. Chem. 247:2614–2622.PubMedGoogle Scholar
  183. Nathenson, S. G., and Strominger, J. L., 1963, Enzymatic synthesis of 7V-acetylglucosaminylribitol linkages in teichoic acid from Staphylococcus aureus, strain Copenhagen, J. Biol. Chem. 238:3161–3169.PubMedGoogle Scholar
  184. Nathenson, S. G., Ishimoto, N., Anderson, J. S., and Strominger, J. L., 1966, Enzymatic synthesis and immunochemistry of α- and β-N-acetylglucosaminylribitol linkages in teichoic acids from several strains of Staphylococcus aureus, J. Biol. Chem. 241:651–658.PubMedGoogle Scholar
  185. Neuhaus, F. C., 1962a, The enzymatic synthesis of D-alanyl-D-alanine. I. Purification and properties of D-alanyl-D-alanine synthetase, J. Biol. Chem. 237:778–786.PubMedGoogle Scholar
  186. Neuhaus, F. C., 1962b, The enzymatic synthesis of D-alanyl-D-alanine. II. Kinetic studies on D-alanyl-D-alanine synthetase, J. Biol. Chem. 237:3128–3135.PubMedGoogle Scholar
  187. Neuhaus, F. C., and Struve, W. G., 1965, Enzymatic synthesis of analogs of the cell wall precursor. I. Kinetics and specificity of UDP-N-acetylmuramyl-L-alanyl-D-glutamyl-L-lysine: D-alanyl-D-alanine ligase (adenosine diphosphate) from Streptococcus faecalis R, Biochemistry 4:120–131.PubMedCrossRefGoogle Scholar
  188. Neuhaus, F. C., Carpenter, C. V., Lambert, M. P., and Wargel, R. J., 1972, in: Proc. Symp. Mol. Mechanisms of Antibiotic Action on Protein Biosynthesis and Membranes (E. Munoz, F. Ferrandiz, and D. Vasques, eds.), pp. 339–362, Elsevier, Amsterdam.Google Scholar
  189. Neuhaus, F. C., Linzer, R., and Reusch, V. M., 1974, Biosynthesis of membrane teichoic acid: Role of the D-alanine : membrane acceptor ligase, Ann. N.Y. Acad. Sci. 235:502–518.PubMedCrossRefGoogle Scholar
  190. Nguyen-Distèghe, M., Ghuysen, J.-M., Pollock, J. J., Reynolds, P., Perkins, H. R., Coyette, J., and Salton, M. R. J., 1974a, Enzymes involved in wall peptide cross-linking in Escherichia coli K12 strain 44, Eur. J. Biochem. 41:447–455.CrossRefGoogle Scholar
  191. Nguyen-Distèche, M., Pollock, J. J., Ghuysen, J.-M., Puig, J., Reynolds, P., Perkins, H. R., Coyette, J., and Salton, M. R. J., 1974b, Sensitivity to ampicillin and cephalothin of enzymes involved in wall peptide cross-linking in Escherichia coli K12 strain 44, Eur. J. Biochem. 41:457–463.PubMedCrossRefGoogle Scholar
  192. Nieto, M., Perkins, H. R., Leyh-Bouille, M., Frère, J.-M., and Ghuysen, J.-M., 1973, Peptide inhibitors of Streptomyces DD-carboxypeptidases, Biochem. J. 131:163–171.PubMedGoogle Scholar
  193. Nikaido, H., 1965, Biosynthesis of cell wall polysaccharide in mutant strains of Salmonella. III. Transfer of L-rhamnose and D-galactose, Biochemistry 4:1550–1561.PubMedCrossRefGoogle Scholar
  194. Nikaido, H., 1970, Lipopolysaccharide in the taxonomy of Enterobacteriaceae, Int. J. Syst. Bacteriol. 20:383–406.CrossRefGoogle Scholar
  195. Nikaido, H., 1973, Biosynthesis and assembly of lipopolysaccharide and the outer membrane layer of Gram-negative cell wall, in: Bacterial Membranes and Walls (L. Leive, ed.), pp. 131–208, Marcel Dekker, New York.Google Scholar
  196. Nikaido, K., and Nikaido, H., 1971, Glucosylation of lipopolysaccharide in Salmonella: Biosynthesis of 0 antigen factor 122. IL Structure of the lipid intermediate, J. Biol. Chem. 246:3912–3919.PubMedGoogle Scholar
  197. Nikaido, H., Nikaido, K., Nakae, T., and Mäkelä, P. H., 1971, Glucosylation of lipopolysaccharide in Salmonella: Biosynthesis of 0 antigen factor 122. I. Over-all reaction, J. Biol. Chem. 246:3902–3911.PubMedGoogle Scholar
  198. Niyomporn, B., Dahl, J. L., and Strominger, J. L., 1968, Biosynthesis of the peptidoglycan of bacterial cell walls. IX. Purification and properties of glycyl transfer ribonucleic acid synthetase from Staphylococcus aureus, J. Biol. Chem. 243:773–778.PubMedGoogle Scholar
  199. Osborn, M. J., 1966, Biosynthesis and structure of the core region of the lipopolysaccharide in Salmonella typhimurium, Ann. N.Y. Acad. Sci. 133:375–383.PubMedCrossRefGoogle Scholar
  200. Osborn, M. J., 1969, Structure and biosynthesis of the bacterial cell wall, Ann. Rev. Biochem. 38:501–538.PubMedCrossRefGoogle Scholar
  201. Osborn, M. J., and Tze-Yuen, R. Y., 1968, Biosynthesis of bacterial lipopolysaccharide. VII. Enzymatic formation of the first intermediate in biosynthesis of the O-antigen of Salmonella typhimurium, J. Biol. Chem. 243:5145–5152.PubMedGoogle Scholar
  202. Osborn, M. J., and Weiner, I. M., 1967, Mechanism of biosynthesis of the lipopolysaccharide of Salmonella, Fed. Proc. 26:70–76.Google Scholar
  203. Osborn, M. J., and Weiner, I. M., 1968, Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium, J. Biol. Chem. 243:2631–2639.PubMedGoogle Scholar
  204. Osborn, M. J., Gander, J. E., Parisi, E., and Carson, J., 1972a, Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterisation of cytoplasmic and outer membrane, J. Biol. Chem. 247:3962–3972.PubMedGoogle Scholar
  205. Osborn, M. J., Gander, J. E., and Parisi, E., 1972b, Mechanism of assembly of the outer membrane of Salmonella typhimurium. Site of synthesis of lipopolysaccharide, J. Biol. Chem. 247:3973–3986.PubMedGoogle Scholar
  206. Osborn, M. J., Rick, P. D., Lehmann, V., Rupprecht, E., and Singh, M., 1974, Structure and biogenesis of the cell envelope of Gram-negative bacteria, Ann. N.Y. Acad. Sci. 235:52–65.PubMedCrossRefGoogle Scholar
  207. Park, J. T., and Chatterjee, A. N., 1966, Membrane associated reactions involved in bacterial cell wall mucopeptide synthesis, in: Methods in Enzymology, Vol. VIII (S. P. Colowick, and N. O. Kaplan, eds.), pp. 466–472, Academic Press, New York.Google Scholar
  208. Perkins, H. R., Nieto, M., Frère, J.-M., Leyh-Bouille, M., and Ghuysen, J.-M., 1973, Streptomyces DD-carboxypeptidases as transpeptidases. The specificity for amino compounds acting as car boxy 1 acceptors, Biochem. J. 131:707–718.PubMedGoogle Scholar
  209. Petit, J.-F., Strominger, J. L., and Soll, D., 1968, Biosynthesis of the peptidoglycan of bacterial cell walls. VII. Incorporation of serine and glycine into interpeptide bridges in Staphylococcus epidermidis, J. Biol. Chem. 243:757–767.PubMedGoogle Scholar
  210. Plapp, R., and Strominger, J. L., 1970a, Biosynthesis of the peptidoglycan of bacterial cell walls. XVII. Biosynthesis of peptidoglycan and of interpeptide bridges in Lactobacillus viridescens, J. Biol. Chem. 245:3667–3674.Google Scholar
  211. Plapp, R., and Strominger, J. L., 1970b, Biosynthesis of the peptidoglycan of bacterial cell walls. XVIII. Purification and properties of L-alanyl transfer ribonucleic acid-uridine diphosphate-N-acetylmuramyl-pentapeptide transferase from Lactobacillus viridescens, J. Biol. Chem. 245:3675–3682.PubMedGoogle Scholar
  212. Pless, D. D., and Neuhaus, F. C., 1973, Initial membrane reaction in peptidoglycan synthesis. Lipid dependence of phospho-iV-acetylmuramyl-pentapeptide translocase (exchange reaction), J. Biol. Chem. 248:1568–1576.PubMedGoogle Scholar
  213. Pollock, J. J., Ghuysen, J.-M., Linder, R., Salton, M. R. J., Perkins, H. R., Nieto, M., Leyh-Bouille, M., Frère, J.-M., and Johnson, K., 1972, Transpeptidase activity of Streptomyces D-alanyl-D-carboxypeptidases, Proc. Natl. Acad. Sci. U.S.A. 69:662–666.PubMedCrossRefGoogle Scholar
  214. Pollock, J. J., Nguyen-Distèche, M., Ghuysen, J.-M., Linder, R., and Salton, M. R. J., 1974a, The DD-carboxypeptidase-transpeptidase system in Escherichia coli mutant strain 44, Ann. N.Y. Acad. Sci. 235:225–235.PubMedCrossRefGoogle Scholar
  215. Pollock, J. J., Nguyen-Distèche, M., Ghuysen, J.-M., Coyette, J., Linder, R., Salton, M. R. J., Kim, K. S., Perkins, H. R., and Reynolds, P., 1974b,Fractionation of the DD-carboxypeptidase-transpeptidase activities solubilised from membranes of Escherichia coli K12 strain 44, Eur. J. Biochem. 41:439–446.PubMedCrossRefGoogle Scholar
  216. Primosigh, J., Pelzer, H., Maass, D., and Weidel, W., 1961, Chemical characterization of muco-peptides released from the E. coli B cell wall by enzymic action, Biochim. Biophys. Acta 46:68–80.PubMedCrossRefGoogle Scholar
  217. Rahmanian, M., Waller, G. R., and Grady Smith, W., 1971, Biosynthesis of D-aspartic acid by Streptococcus faecalis, J. Biol. Chem. 246:823–830.PubMedGoogle Scholar
  218. Reusch, V. M., and Neuhaus, F. G., 1971, D-Alanine : membrane acceptor ligase from Lactobacillus casa, J. Biol. Chem. 246:6136–6143.PubMedGoogle Scholar
  219. Reynolds, P. E., and Barnett, H. J., 1974, Transpeptidases and DD-carboxypeptidases in Bacilli, Ann. N.Y. Acad. Sci. 235:269–282.PubMedCrossRefGoogle Scholar
  220. Rick, P. D., and Osborn, M. J., 1972, Isolation of a mutant of Salmonella typhimurium dependent on D-arabinose 5-phosphate for growth and synthesis of 3-deoxy-D-manno-octulosonate (ketodeoxy-octonate), Proc. Natl. Acad. Sci. U.S.A. 69:3756–3760.PubMedCrossRefGoogle Scholar
  221. Rick, P. D., and Osborn, M. J., 1974, Characterization of a lipid-A precursor from a conditional mutant of Salmonella typhimurium, Fed. Proc. 33:1273.Google Scholar
  222. Rietschel, E. Th., Gottert, H., Lüderitz, O., and Westphal, O., 1972, Nature and linkages of the fatty acids present in the lipid-A component of Salmonella lipopolysaccharides, Eur. J. Biochem. 28:166–173.PubMedCrossRefGoogle Scholar
  223. Robbins, P. W., Keller, J. M., Wright, A., and Bernstein, R. L., 1965, Enzymatic and kinetic studies on the mechanism of O-antigen conversion by bacteriophage ε 15, J. Biol. Chem. 240:384–390.PubMedGoogle Scholar
  224. Robbins, P. W., Bray, D., Dankert, M., and Wright, A., 1967, Direction of chain growth in polysaccharide synthesis, Science 158:1536–1542.PubMedCrossRefGoogle Scholar
  225. Roberts, R. J., 1972, Structures of two glycyl-tRNAs from Staphylococcus epidermidis, Nature (London), New Biol. 237:44–45.CrossRefGoogle Scholar
  226. Roberts, R. J., 1974, Staphylococcal transfer ribonucleic acids. II. Sequence analysis of isoaccepting glycine transfer ribonucleic acids IA and IB from Staphylococcus epidermidis Texas 26, J. Biol. Chem. 249:4787–4796.PubMedGoogle Scholar
  227. Roberts, N. A., Gray, G. W., and Wilkinson, S. G., 1970, The bactericidal action of ethylene-diaminetetra-acetic acid on Pseudomonas aeruginosa, Microbios 2:189–208.Google Scholar
  228. Roberts, W. S. L., Strominger, J. L., and Soll, D., 1968a, Biosynthesis of peptidoglycan of bacterial cell walls. VI. Incorporation of L-threonine into interpeptide bridges in Micrococcus roseus, J. Biol. Chem. 243:749–756.PubMedGoogle Scholar
  229. Roberts, W. S. L., Petit, J.-F., and Strominger, J. L., 1968b, Biosynthesis of the peptidoglycan of bacterial cell walls. VIII. Specificity in the utilisation of L-alanyl transfer ribonucleic acid for interpeptide bridge synthesis in Arthrobacter crystallopoietes, J. Biol. Chem. 243:768–772.PubMedGoogle Scholar
  230. Rogers, H. J., and Perkins, H. R., 1960, 5-Fluorouracil and mucopeptide biosynthesis by Staphylococcus aureus, Biochem. J. 77:448–459.PubMedGoogle Scholar
  231. Rogers, H. J., and Perkins, H. R., 1968, Cell Walls and Membranes, Spon Ltd., London.Google Scholar
  232. Romeo, D., Girard, A., and Rothfield, L., 1970a, Reconstruction of a functional membrane enzyme system in a monomolecular film. I. Formation of a mixed monolayer of lipopolysaccharide and phospholipid, J. Mol. Biol. 53:475–490.PubMedCrossRefGoogle Scholar
  233. Romeo, D., Hinckley, A., and Rothfield, L., 1970b, Reconstitution of a functional membrane enzyme system in a monomolecular film. II. Formation of a functional ternary film of lipopolysaccharide, phospholipid and transferase enzyme, J. Mol. Biol. 53:491–501.PubMedCrossRefGoogle Scholar
  234. Rosenfelder, G., Lüderitz, O., and Westphal, O., 1974, Composition of lipopolysaccharide from Myxococcus fluvus and other fruiting and non-fruiting Myxobacter, Eur. J. Biochem. 44:411–420.CrossRefGoogle Scholar
  235. Rothfield, L., and Horecker, B. L., 1964, The role of cell-wall lipid in the biosynthesis of bacterial lipopolysaccharide, Proc. Natl. Acad. Sci. U.S.A. 52:939–946.PubMedCrossRefGoogle Scholar
  236. Rothfield, L., and Takeshita, M., 1966, The role of phospholipid in the biosynthesis of cell wall lipopolysaccharide in Salmonella typhimurium, Ann. N. Y. Acad. Sci. 133:384–390.PubMedCrossRefGoogle Scholar
  237. Rothfield, L., and Pearlman, M., 1966, The role of cell envelope phospholipid in the enzymatic synthesis of bacterial lipopolysaccharide. Structural requirements of the phospholipid molecule, J. Biol. Chem. 241:1386–1392.PubMedGoogle Scholar
  238. Rothfield, L., and Romeo, D., 1971, Role of lipids in the biosynthesis of the bacterial cell envelope, Bacteriol. Rev. 35:14–38.PubMedGoogle Scholar
  239. Rothfield, L., Osborn, M. J., and Horecker, B. L., 1964, Biosynthesis of bacterial lipopolysaccharide. II. Incorporation of glucose and galactose catalysed by particulate and soluble enzymes in Salmonella, J. Biol. Chem. 239:2788–2795.PubMedGoogle Scholar
  240. Roze, U., and Strominger, J. L., 1966, Alanine racemase from Staphylococcus aureus: Conformation of its substrates and its inhibitor, D-cycloserine, Mol. Pharmacol. 2:92–94.Google Scholar
  241. Rundell, K., and Shuster, C. W., 1973, Membrane-associated nucleotide sugar reactions. I. Properties of the first enzyme of O-antigen synthesis, J. Biol. Chem. 248:5436–5442.PubMedGoogle Scholar
  242. Rundell, K., and Shuster, C. W., 1974, Phospho-JV-acetylmuramyl-pentapeptide translocase function in membranes from Salmonella typhimurium, Fed. Proc. 33:1274.Google Scholar
  243. Ryter, A., Hirota, Y., and Schwarz, U., 1973, Process of cellular division in Escherichia coli. Growth pattern of E. coli murein, J. Mol. Biol. 78:185–195.PubMedCrossRefGoogle Scholar
  244. Salton, M. R. J., 1964, The Bacterial Cell Wall, Elsevier, Amsterdam.Google Scholar
  245. Sandermann, H., and Strominger, J. L., 1971, C55-Isoprenoid alcohol Phosphokinase: An extremely hydrophobic protein from the bacterial membrane, Proc. Natl. Acad. Sci. U.S.A. 68:2441–2443.PubMedCrossRefGoogle Scholar
  246. Sandermann, H., and Strominger, J. L., 1972, Purification and properties of C55-isoprenoid alcohol Phosphokinase from Staphylococcus aureus, J. Biol. Chem. 247:5123–5131.PubMedGoogle Scholar
  247. Sanderson, A. R., Strominger, J. L., and Nathenson, S. G., 1962, Chemical structure of teichoic acid from Staphylococcus aureus strain Copenhagen, J. Biol. Chem. 237:3603–3613.PubMedGoogle Scholar
  248. Sasaki, T., and Uchida, T., 1974, Mutants of group D, Salmonella carrying the somatic antigen of group A organisms: Evidence for the lack of cytidine diphosphate paratose-2-epimerase activity, J. Bacteriol. 117:13–18.PubMedGoogle Scholar
  249. Sasaki, T., Uchida, T., and Kurahashi, K., 1974, Glucosylation of O-antigen in Salmonella carrying c15 and ±34 phages, J. Biol. Chem. 249:761–772.PubMedGoogle Scholar
  250. Scher, M., Lennarz, W. J., and Sweeley, C. C., 1968, The biosynthesis of mannosyl-1-phosphoryl-polyisoprenol in Micrococcus lysodeikticus and its role in mannan synthesis, Proc. Natl. Acad. Sci. U.S.A. 59:1313–1320.PubMedCrossRefGoogle Scholar
  251. Schleifer, K. H., and Kandler, O., 1972, Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev. 36:407–477.PubMedGoogle Scholar
  252. Sharpe, A., Blumberg, P. M., and Strominger, J. L., 1974, D-Alanine carboxypeptidase and cell wall cross-linking in Bacillus subtilis, J. Bacteriol. 117:926–927.PubMedGoogle Scholar
  253. Shaw, D. R. D., 1962, Pyrophosphorolysis and enzymic synthesis of cytidine diphosphate glycerol and cytidine diphosphate ribitol, Biochem. J. 82:297–312.PubMedGoogle Scholar
  254. Shaw, D. R. D., 1971, Studies on the enzymic synthesis of ribitol teichoic acid in Staphylococcus aureus H, Bacteriol. Proc. G155:49.Google Scholar
  255. Siewert, G., and Strominger, J. L., 1968, Biosynthesis of the peptidoglycan of bacterial cell walls. XI. Formation of the isoglutamine amide group in the cell walls of Staphylococcus aureus, J. Biol. Chem. 243:783–790.PubMedGoogle Scholar
  256. Simmons, D. A. R., 1971, Immunochemistry of Shigella flexneri O-antigens: A study of structural and genetic aspects of the biosynthesis of cell-surface antigens, Bacteriol. Rev. 35:117–148.PubMedGoogle Scholar
  257. Staudenbauer, W., and Strominger, J. L., 1972, Activation of D-aspartic acid for incorporation into peptidoglycan, J. Biol. Chem. 247:5095–5102.PubMedGoogle Scholar
  258. Staudenbauer, W., Willoughby, E., and Strominger, J. L., 1972, Further studies of the D-aspartic acid-activating enzyme of Streptococcus faecalis and its attachment to the membrane, J. Biol. Chem. 247:5289–5296.PubMedGoogle Scholar
  259. Stewart, T. S., Roberts, R. J., and Strominger, J. L., 1971, Novel species of tRNA, Nature (London) 230:36–38.CrossRefGoogle Scholar
  260. Stickgold, R. A., and Neuhaus, F. C., 1967, On the initial stage in peptidoglycan synthesis effect of 5-fluorouracil substitution on phospho-iV-acetylmuramyl-pentapeptide translocase (uridine 5′-phosphate), J. Biol. Chem. 242:1331–1337.PubMedGoogle Scholar
  261. Stocker, B. A. D., and Mäkelä, P. H., 1971, Genetic aspects of biosynthesis and structure of Salmonella lipopolysaccharide, in: Microbial Toxins, Vol. IV (G. Weinbaum, S. Kadis, and S. J. Ajl, eds.), pp. 369–438, Academic Press, New York.Google Scholar
  262. Storm, D. R., Blumberg, P. M., and Strominger, J. L., 1974, Inhibition of the Bacillus subtilis membrane-bound D-alanine carboxypeptidase by 6-aminopenicillanic acid covalently coupled to Sepharose, J. Bacteriol. 117:783–785.PubMedGoogle Scholar
  263. Strominger, J. L., 1958, Enzymic transfer of pyruvate to uridine diphosphoacetylglucosamine, Biochim. Biophys. Acta 30:645–646.PubMedCrossRefGoogle Scholar
  264. Strominger, J. L., Willoughby, E., Kamiryo, T., Blumberg, P. M., and Yocum, R. R., 1974, Penicillin-sensitive enzymes and penicilling-binding components in bacterial cells, Ann. N.Y. Acad. Sci. 235:210–224.PubMedCrossRefGoogle Scholar
  265. Struve, W. G., Sinha, R. K., and Neuhaus, F. G., 1966, On the initial stage in peptidoglycan synthesis. Phospho-N-acetylmuramyl-pentapeptide translocase (uridine monophosphate), Biochemistry 5:82–93.PubMedCrossRefGoogle Scholar
  266. Takeshita, M., and Mäkelä, P. H., 1971, Glucosylation of lipopolysaccharide in Salmonella: Biosynthesis of O antigen factor 122- III. The presence of 122 determinants in haptenic polysaccharides, J. Biol. Chem. 246:3920–3927.PubMedGoogle Scholar
  267. Taku, A., and Anwar, R. A., 1973, Biosynthesis of uridine diphospho-N-acetylmuramic acid. IV. Activation of uridine diphospho-N-acetylenolpyruvylglucosamine reductase by monovalent cations, J. Biol. Chem. 248:4971–4976.PubMedGoogle Scholar
  268. Taku, A., Gunetileke, K. G., and Anwar, R. A., 1970, Biosynthesis of uridine diphospho-N-acetyl-muramic acid. III. Purification and properties of uridine diphospho-N-acetylenolpyruvylglucos-amine reductase, J. Biol. Chem. 245:5012–5016.PubMedGoogle Scholar
  269. Tamaki, S., Sato, T., and Matsuhashi, M., 1971, Role of lipopolysaccharides in antibiotic resistance and bacteriophage adsorption of Escherichia coli K12, J. Bacteriol. 105:968–975.PubMedGoogle Scholar
  270. Tanaka, M., Kato, Y., and Kinoshita, S., 1961, Glutamic acid racemase from Lactobacillus fermenti purification and properties, Biochem. Biophys. Res. Commun. 4:114–117.PubMedCrossRefGoogle Scholar
  271. Thorndike, J., and Park, J. T., 1969, A method for demonstrating the stepwise addition of glycine from transfer RNA into the murein precursor of Staphylococcus aureus, Biochem. Biophys. Res. Commun. 35:642–647.PubMedCrossRefGoogle Scholar
  272. Thorne, C. B., and Molnar, D. M., 1955, D-Amino acid transamination in Bacillus anthracis, J. Bacteriol. 70:420–426.PubMedGoogle Scholar
  273. Thorne, G. B., Gomez, C. G., and Housewright, R. D., 1955, Transamination of D-amino acids by Bacillus subtilis, J. Bacteriol. 69:357–362.PubMedGoogle Scholar
  274. Thorne, K.J. I., Thornley, M. J., and Glauert, A. M., 1973, Chemical analysis of the outer membrane and other layers of the cell envelope of Acinetobacter sp., J. Bacteriol. 116:410–417.PubMedGoogle Scholar
  275. Tipper, D. J., 1972, Bacterial cell walls, in: Subunits in Biological Systems, Biological Macromolecules Series, Vol. VI B (G. D. Fasman, and S. N. Timasheff, eds.), pp. 121–205, 331–345, Marcel Dekker, New York.Google Scholar
  276. Tipper, D. J., and Pratt, I., 1970, Cell wall polymers of Bacillus sphaericus 9602. II. Synthesis of the first enzyme unique to cortex synthesis during sporulation, J. Bacteriol. 103:305–317.PubMedGoogle Scholar
  277. Tipper, D. J., and Strominger, J. L., 1965, Mechanism of action of penicillins : A proposal based on their structural similarity to acyl-D-alanyl-D-alanine, Proc. Natl. Acad. Sci. U.S.A. 54:1133–1141.PubMedCrossRefGoogle Scholar
  278. Tipper, D. J., and Strominger, J. L., 1968, Biosynthesis of the peptidoglycan of bacterial cell walls. XII. Inhibition of cross-linking by penicillins and cephalosporins: Studies in Staphylococcus aureus in vivo, J. Biol. Chem. 243:3169–3179.PubMedGoogle Scholar
  279. Tomasz, A., and Borek, E., 1959, An early phase in the bactericidal action of 5’-fluorouracil on Escherichia coli K12: Osmotic imbalance, Proc. Natl. Acad. Sci. U.S.A. 45:929–932.PubMedCrossRefGoogle Scholar
  280. Tomasz, A., and Borek, E., 1960, The mechanism of bacterial fragility produced by 5-fluorouracil: The accumulation of cell wall precursors, Proc. Natl. Acad. Sci. U.S.A. 46:324–327.PubMedCrossRefGoogle Scholar
  281. Tomasz, A., and Borek, E., 1962, The mechanism of an osmotic instability induced in Escherichia coli K12 by 5-fluorouracil, Biochemistry 1:543–552.PubMedCrossRefGoogle Scholar
  282. Toon, P., Brown, P. E., and Baddiley, J., 1972, The lipid-teichoic acid complex in the cytoplasmic membrane of Streptococcus faecalis N.C.I.B. 8191, Biochem. J. 127:399–409.PubMedGoogle Scholar
  283. Trudgill, P. W., 1969, The metabolism of 2-fluoroic acid by Pseudomonas F2, Biochem. J. 113:577–587.PubMedGoogle Scholar
  284. Umbreit, J. N., and Strominger, J. L., 1972a, Isolation of the lipid intermediate in peptidoglycan biosynthesis from Escherichia coli, J. Bacteriol. 112:1306–1309.PubMedGoogle Scholar
  285. Umbreit, J. N., and Strominger, J. L., 1972b, Complex lipid requirements for detergent-solubilized phosphoacetylmuramyl-pentapeptide translocase from Micrococcus luteus, Proc. Natl. Acad. Sci. U.S.A. 69:1972–1974.PubMedCrossRefGoogle Scholar
  286. Umbreit, J. N., and Strominger, J. L., 1973a, D-Alanine carboxy peptidase from Bacillus subtilis membranes. I. Purification and characterisation, J. Biol. Chem. 248:6759–6766.PubMedGoogle Scholar
  287. Umbreit, J. N., and Strominger, J. L., 1973b, D-Alanine carboxypeptidase from Bacillus subtilis membranes. II. Interaction with penicillins and cephalosporins, J. Biol. Chem. 248:6767–6771.PubMedGoogle Scholar
  288. van Heijenoort, J., Elbaz, L., Dezélée, P., Petit, J.-F., Bricas, E., and Ghuysen, J.-M., 1969, Structure of the meso-diaminopimelic acid-containing peptidoglycans in Escherichia coli B and Bacillus megaterium KM, Biochemistry 8:207–213.PubMedCrossRefGoogle Scholar
  289. Venkateswaran, P. S., Lugtenberg, E. J. J., and Wu, H. C., 1973, Inhibition of phosphoenolpyruvate: uridine diphosphate N-acetylglucosamine enolpyruvyltransferase by uridine diphosphate N-acetylmuramyl peptides, Biochim. Biophys. Acta 293:570–574.PubMedGoogle Scholar
  290. Ward, J. B., 1973, The chain length of the glycans in bacterial cell walls, Biochem. J. 133:395–398.PubMedGoogle Scholar
  291. Ward, J. B., 1974, The synthesis of peptidoglycan in an autolysin-deficient mutant of Bacillus licheniformis N.C.T.C. 6346 and the effect of /3-lactam antibiotics, bacitracin and vancomycin, Biochem. J. 141:227–241.PubMedGoogle Scholar
  292. Ward, J. B., and Perkins, H. R., 1973, The direction of glycan synthesis in a bacterial peptidoglycan, Biochem. J. 135:721–728.PubMedGoogle Scholar
  293. Wargel, R. J., Shadur, C. A., and Neuhaus, F. C., 1971, Mechanism of D-cycloserine action: Transport mutants for D-alanine, D-cycloserine and glycine, J. Bacteriol. 105:1028–1035.PubMedGoogle Scholar
  294. Watkinson, R. J., Hussey, H., and Baddiley, J., 1971, Shared lipid phosphate carrier in the biosynthesis of teichoic acid and peptidoglycan, Nature (London), New Biol. 229:57–59.Google Scholar
  295. Weiner, I. M., Higuchi, T., Osborn, M. J., and Horecker, B. L., 1966, Biosynthesis of O-antigen in Salmonella typhimurium, Ann. N.Y. Acad. Sci. 133:391–404.PubMedCrossRefGoogle Scholar
  296. Weiser, M. M., and Rothfield, L., 1968, The reassociation of lipopolysaccharide, phospholipid and transferase enzymes of the bacterial cell envelope. Isolation of binary and ternary complexes, J. Biol. Chem. 243:1320–1328.PubMedGoogle Scholar
  297. Wicken, A. J., and Knox, K. W., 1970, Studies on the group F antigen of lactobacilli: Isolation of a teichoic acid-lipid complex from Lactobacillus fermenti N.G.T.C. 6991, J. Gen. Microbiol. 60:293–301.PubMedGoogle Scholar
  298. Wickus, G. G., and Strominger, J. L., 1972, Penicillin-sensitive transpeptidation during peptidoglycan biosynthesis in cell-free preparations from Bacillus megaterium I. Incorporation of free diamino-pimelic acid into peptidoglycan, J. Biol. Chem. 247:5297–5306.PubMedGoogle Scholar
  299. Wickus, G. G., Rubenstein, P. A., Warth, A. D., and Strominger, J. L., 1973, Partial purification and some properties of uridine diphospho-iV-acetylglucosamine-enolpyruvate reductase from Staphylococcus epidermidis, J. Bacteriol. 113:291–294.Google Scholar
  300. Wise, E. M., and Park, J. T., 1965, Penicillin: Its basic site of action as an inhibitor of a peptide cross-linking reaction in the cell wall mucopeptide synthesis, Proc. Natl. Acad. Sci. U.S.A. 54:75–81.PubMedCrossRefGoogle Scholar
  301. Wright, A., 1971, Mechanism of conversion of the Salmonella O antigen by bacteriophage ε 34, J. Bacteriol. 105:927–936.PubMedGoogle Scholar
  302. Wright, A., and Barzilai, N., 1971, Isolation and characterization of nonconverting mutants of bacteriophage ε 34, J. Bacteriol. 105:937–939.PubMedGoogle Scholar
  303. Wright, A., and Kanegasaki, S., 1971, Molecular aspects of lipopolysaccharides, Physiol. Rev. 51: 748–784.PubMedGoogle Scholar
  304. Wright, A., Dankert, M., and Robbins, P. W., 1965, Evidence for an intermediate stage in the biosynthesis of the Salmonella O-antigen, Proc. Natl. Acad. Sci. U.S.A. 54:235–241.PubMedCrossRefGoogle Scholar
  305. Wright, A., Dankert, M., Fennessey, P., and Robbins, P. W., 1967, Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis, Proc. Natl. Acad. Sci. U.S.A. 57:1798–1803.PubMedCrossRefGoogle Scholar
  306. Wu, M. C., and Heath, E. G., 1973, Properties of a lipopolysaccharide-protein complex of Escherichia coli cell envelope, Fed. Proc. 32:481.Google Scholar
  307. Yocum, R. R., Blumberg, P. M., and Strominger, J. L., 1974, Purification and characterization of the thermophilic D-alanine carboxypeptidase from membranes of Bacillus stearothermophilus, J. Biol. Chem. 249:4863–4871.PubMedGoogle Scholar
  308. Yuasa, R., Levinthal, M., and Nikaido, H., 1969, Biosynthesis of cell wall lipopolysaccharide in mutants of Salmonella. V. A mutant of Salmonella typhimurium defective in the synthesis of cytidine diphosphoabequose, J. Bacteriol. 100:433–444.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • H. Hussey
    • 1
  • J. Baddiley
    • 1
  1. 1.Microbiological Chemistry Research LaboratoryThe UniversityNewcastle upon TyneUK

Personalised recommendations