Advertisement

Membrane-Bound Enzymes in Plant Sterol Biosynthesis

  • Trevor W. Goodwin

Abstract

The basic pattern of sterol biosynthesis in plants is similar to that involved in cholesterol biosynthesis in mammals, but there are important differences of detail. There are also additional reactions in plants such as alkylation at C-24 and glucosylation at C-3. Cholesterol biosynthesis has been studied at the enzyme level to a much greater extent than plant sterol biosynthesis. Part of the reason is that plant enzymes, particularly those from higher plants, are notoriously difficult to deal with (Loomis, 1973); but reliable information is accumulating and in presenting the evidence for the involvement of membrane-bound enzymes in sterol synthesis in plants one realizes that the foundations for future developments, not only in enzymology but in studies on control of synthesis, are now reasonably well established.

Keywords

Plant Sterol Mevalonic Acid Sterol Biosynthesis Farnesyl Pyrophosphate Steryl Glucoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhtar, M., and Parvez, M. A., 1968, The mechanism of elaboration of ring B in ergosterol biosynthesis, Biochem. J. 108:527–531.PubMedGoogle Scholar
  2. Barton, D. H. R., Gosden, A. F., Mellows, G., and Widdowson, D. A., 1969, Biosynthesis of fern-9-one in Polypodium vulgare Linn., Chem. Commun., 184–186.Google Scholar
  3. Barton, D. H. R., Mellows, G., and Widdowson, D. A., 1971, Biosynthesis of terpenes and steroids III. Squalene cyclization in the biosynthesis of triterpenoids : the biosynthesis of fern-9-one in Polypodium vulgare Linn., J. Chem. Soc, C., 110–116.Google Scholar
  4. Barton, D. H. R., Jarman, T. R., Watson, K. G., Widdowson, D. A., Boar, R. B., and Damps, K., 1974, Assimilation of the antipodal forms of squalene 2,3-oxide by mammalian, yeast and plant systems, J. Chem. Soc, D 861–862.Google Scholar
  5. Beastall, G. H., Rees, H. H., and Goodwin, T. W., 1971, Properties of a 2,3-oxidosqualene-cycloartenol cyclase from Ochromonas malhamensis, FEBS Lett. 18:175–178.CrossRefGoogle Scholar
  6. Beastall, G. H., Rees, H. H., and Goodwin, T. W., 1972, The conversion of presqualene pyrophosphate into squalene by a cell-free preparation of Pisum sativum, FEBS Lett. 28:243–246.CrossRefGoogle Scholar
  7. Bensgh, W. R., and Rodwell, V. W., 1970, Purification and properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pseudomonas, J. Biol. Chem. 245:3755–3762.Google Scholar
  8. Berndt, J., Boll, M., Löwel, M., and Gaument, R., 1973, Regulation of sterol biosynthesis in yeast: Induction on 3-hydroxy-3-methylglutaryl-CoA reductase by glucose, Biochem. Biophys. Res. Commun. 51:843–848.PubMedCrossRefGoogle Scholar
  9. Beytia, E., Qureshi, A. A., and Porter, J. W., 1973, Squalene synthase III. Mechanism of the reaction, J. Biol. Chem. 248:1856–1867.PubMedGoogle Scholar
  10. Bush, P. B., and Grunwald, G., 1972, Sterol changes during germination of Nicotiana tabacum, Plant Physiol, 50:69–72.CrossRefGoogle Scholar
  11. Capstack, E., Rosin, N., Blondin, G. A., and Nes, W. R., 1965, Squalene in Pisum sativum, Its cyclization to β-amyrin and labelling pattern, J. Biol. Chem. 240:3258.Google Scholar
  12. Corey, E. J., and Ortiz de Montellano, P. R., 1967, Enzymic synthesis of β-amyrin from 2,3-oxidosqualene, J. Am. Chem. Soc. 89:3362–3363.PubMedCrossRefGoogle Scholar
  13. Cornforth, J. W., 1973, The logic of working with enzymes, Chem. Soc. Rev. 2:1–20.CrossRefGoogle Scholar
  14. Dempsey, M. E., 1974, Regulation of steroid biosynthesis, Ann. Rev. Biochem. 43:967–990.PubMedCrossRefGoogle Scholar
  15. Eighenberger, W., and Newman, D. W., 1968, Hexose transfer from UDP hexose in formation of sterol glycosides and esterified sterol glycosides in leaves, Biochem. Biophys. Res. Commun. 32.: 366–374.CrossRefGoogle Scholar
  16. Esdens, T. W., and Light, R. J., 1972, Occurrence of Uridine diphosphate glucose-sterol glycosyl transferase in Candida bogoriensis, J. Biol. Chem. 247:7494–7497.Google Scholar
  17. Ghisalberti, E. L., de Souza, N. J., Rees, H. H., and Goodwin, T. W., 1970, Biosynthesis of the triterpene hydrocarbons of Polypodium vulgare, Phytochemistry 9:1817–1823.Google Scholar
  18. Goad, L. J., and Goodwin, T. W., 1972, The biosynthesis of plant sterols, Prog. Phytochem. 3:113–298.Google Scholar
  19. Goad, L. J., Lenton, J. R., Knapp, F. F., and Goodwin, T. W., 1974, Phytosterol side chain biosynthesis, Lipids 9:582–595.PubMedCrossRefGoogle Scholar
  20. Hartmann, M. A., Ferne, M., Gigot, G., Brandt, R., and Benveniste, P., 1973, Isolement, carac-térisation et composition en stérols de fractions subcellularies de feuilles étoilées de Haricot, Physiol. Veg. 11:209–230.Google Scholar
  21. Heintz, R., 1973, Utilisation de fractions subcellulaires pour l’étude de la biosynthèse des sterols de végetaux supérieurs. Thesis, University of Strasbourg, 118 pp.Google Scholar
  22. Heintz, R., and Benveniste, P., 1970, Cyclization de l’époxide-2,3 de squalene par des microsomes extraits de tissus de tabac cultivés in vitro, Phytochemistry 9:1499–1503.CrossRefGoogle Scholar
  23. Heintz, R., Sghaefer, P. C., and Benveniste, P., 1970, Cyclization of squalene 2,3,22,23-diepoxide by microsomes from bramble (Rubusfruticosa) tissues grown in vitro, Chem. Commun., 946–947.Google Scholar
  24. Heintz, R., Benveniste, P., and Bimpson, T., 1972a, Plant sterol metabolism. Evidence for the presence of an enzyme capable of opening the cyclopropane ring of cycloeucalenol, Biochem. Biophys. Res. Commun. 46:766–772.PubMedCrossRefGoogle Scholar
  25. Heintz, R., Bimpson, T., and Benveniste, P., 1972b, Plant sterol metabolism. Studies on the substrate specificity of an enzyme capable of opening the cyclopropane ring of cycloeucalenol. Biochem. Biophys. Res. Commun. 49:820–826.PubMedCrossRefGoogle Scholar
  26. Horan, H., McCormick, J. P., and Arigoni, D., 1973, Enzyme-catalysed formation of β-amyrin from a bicyclic isomer of 2,3-epoxy-squalene, J. Chem. Soc. D, 73–74.Google Scholar
  27. Hou, G. T., Umemura, Y., Nakamura, M., and Funahashi, S., 1968, Enzymic synthesis of steryl glucosides by a particulate preparation from immature soyabean seeds, J. Biochem. 63:351–360.PubMedGoogle Scholar
  28. Kauss, H., 1968, Enzymatische glucosylierung von pflanzlichen Sterinen, Z. Naturforsch. 23b:1522–1526.Google Scholar
  29. Kawaguchi, A., Kobayashi, H., and Okuda, S., 1973a, Cyclization of 2,3-oxidosqualene with microsomal fraction of Cephalosporium caerulens, Chem. Pharm. Bull. 21:577–583.CrossRefGoogle Scholar
  30. Kawaguchi, A., Nozoe, S., and Okuda, S., 1973a, Subcellular distribution of sesterterpene- and sterol-biosynthesizing activities in Cochliobolus heterostrophus, Biochim. Biophys. Acta 296:615–623.Google Scholar
  31. Kiribughi, T., Mizumaga, T., and Funahashi, S., 1966, Separation of soyabean sterols by florisil chromatography and characterization of acylated sterol glycosides, Agric. Biol. Chem. 30: 770–778.CrossRefGoogle Scholar
  32. Kirtley, M. E., and Rudney, H., 1967, Some properties and mechanism of action of the β-hydroxy-β-methylglutaryl coenzyme A reductase of yeast, Biochemistry 6:230–238.PubMedCrossRefGoogle Scholar
  33. Laine, R. A., and Elbein, A. D., 1971, Sterol glucosides in Phaseolus aureus. Use of GLG and MS for structural identification, Biochemistry 10:2547–2553.PubMedCrossRefGoogle Scholar
  34. Lepage, M., 1964, Isolation and characterization of an esterified form of sterol glucoside, J. Lipid Res. 5:587–592.PubMedGoogle Scholar
  35. Loomis, W. D., 1973, Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles, in: Methods in Enzymology, Vol. 31, pp. 528–544, Academic Press, New York.Google Scholar
  36. Merger, E. I., and Johnson, M. W., 1969, Cyclization of squalene-2,3-oxide to lanosterol in a cell-free system from Phycornyces blakesleeanus, Phytochemistry 8:2329–2331.Google Scholar
  37. Moore, J. T., Jr., and Gaylor, J. L., 1969, Isolation and purification of an S-adenosylmethionine: A24-sterol methyltransferase from yeast, J. Biol. Chem. 233:6334–6340.Google Scholar
  38. Moore, J. T., Jr., and Gaylor, J. L., 1970, Investigation of an S-adenosylmethionine:A24-sterol methyltransferase in ergosterol biosynthesis in yeast, J. Biol. Chem. 245:4684–4688.PubMedGoogle Scholar
  39. Ongun, A., and Mudd, J. B., 1970, The biosynthesis of steryl glucosides in plants, Plant Physiol. 45:255–262.PubMedCrossRefGoogle Scholar
  40. Peaud-Lenoël, C., and Axelos, M., 1972, D-Glucosylation des phytosterols et acylation des steryl-D-glucosides en presence d’enzymes de plantes, Carbohydr. Res. 24:247–262.PubMedCrossRefGoogle Scholar
  41. Quresh, A. A., Beytia, E., and Porter, J. W., 1973, Squalene synthase II. Purification and properties of bakers’ yeast enzyme, J. Biol. Chem. 248:1848–1853.Google Scholar
  42. Rees, H. H., and Goodwin, T. W., 1975, Biosynthesis of triterpenes, steroids and carotenoids, in: Biosynthesis, Vol. 3 (Specialist Periodical Reports) (T. A. Geissman, ed.), The Chemical Society, London, 14–88.CrossRefGoogle Scholar
  43. Rees, H. H., Britton, G., and Goodwin, T. W., 1968a, The biosynthesis of β-amyrin: Mechanism of squalene cyclization, Biochem. J. 106:659–665.PubMedGoogle Scholar
  44. Rees, H. H., Goad, L. J., and Goodwin, T. W., 1968b, Cyclization of 2,3-oxidosqualene to cycloartenol in a cell-free system from higher plants, Tetrahedron Lett. 6:723–725.PubMedCrossRefGoogle Scholar
  45. Rees, H. H., Goad, L. J., and Goodwin, T. W., 1969, 2,3-Oxidosqualene cycloartenol cyclase from Ochromonas malhamensis, Biochim. Biophys. Acta 176:892–894.PubMedGoogle Scholar
  46. Rowan, M. G., Dean, P. D. G., and Goodwin, T. W., 1971, The enzymic conversion of squalene 2,(3),22,(23)-diepoxide to a α-onocerin by a cell-free extract of Ononis spinosa, FEBS Lett. 12:229–232.PubMedCrossRefGoogle Scholar
  47. Rowan, M. G., and Dean, P. D. G., 1972, Properties of squalene-2,(3),22,(23)-diepoxide-α-onocerin cyclase from Ononis spinosa root, Phytochemistry 11:3111–3118.CrossRefGoogle Scholar
  48. Sheghter, I., Sweet, F. W., and Bloch, K., 1970, Comparative properties of 2,3-oxidosqualene-lanosterol cyclase from yeast and liver, Biochim. Biophys. Acta 220:463–468.Google Scholar
  49. Shimizu, I., Nagai, J., Hatanoka, H., and Katsuki, H., 1973, Mevalonate synthesis in the mitochondria of yeast, Biochim. Biophys. Acta 296:310–320.PubMedGoogle Scholar
  50. Topham, R. W., and Gaylor, J. L., 1970, Isolation and purification of a 5α-hydroxysterol dehydrase of yeast, J. Biol. Chem. 245:2319–2327.PubMedGoogle Scholar
  51. Topham, R. W., and Gaylor, J. L., 1972, Further characterization of the 5α-hydroxysterol dehydrase of yeast, Biochem. Biophys. Res. Commun. 47:180–185.PubMedCrossRefGoogle Scholar
  52. Wojchieghowski, Z. A., 1974, Changes in UDPG-sterol glucosyl transferase activity in Calendula officinalis, Phytochemistry 13:2091–2094.CrossRefGoogle Scholar
  53. Wojghiechowski, Z. A., Goad, L. J., and Goodwin, T. W., 1973, S-Adenosyl-L-methionine-cyclo-artenol methyltransferase activity in cell-free systems from Trebouxia sp. and Scenedesmus obliquus, Biochem. J. 136:405–412.Google Scholar
  54. Yamamoto, S., and Bloch, K., 1970, Enzymic studies on the oxidative cyclization of squalene, Biochem. Soc. Symp. 29:35–43.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Trevor W. Goodwin
    • 1
  1. 1.Department of BiochemistryThe University of LiverpoolLiverpoolUK

Personalised recommendations