Membrane-Bound Enzymes of Sterol Metabolism

  • Richard E. Dugan
  • John W. Porter


This chapter will be limited to enzymes of animal origin, and it will not, therefore, include those that make plant steroids, such as ergosterol or the vitamin D family of compounds. Steroids of animal origin are either precursors of cholesterol or have cholesterol as a common progenitor. Hence we will be concerned with the membrane-bound enzymes that catalyze specific reaction steps in the biosynthesis of cholesterol or the transformation of cholesterol to bile acids or steroid hormones. Microsomal enzymes that participate in sterol esterification or the hydrolysis of sterol esters will not be reviewed. The subject of cholesterol esterification has been reviewed previously (Norum, 1974). Studies on esterases, transferases, and hydrolases of sterol ester metabolism are cited in recent publications by Stokke (1974) and Sakamoto et al. (1974).


Bile Acid Reductase Activity Cholesterol Synthesis Bile Acid Synthesis Farnesyl Pyrophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, M. E., Redd, W. L., and Scallen, T. J., 1974, Solubilization of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase from lyophilized rat liver microsomes: Lack of evidence for cold lability in this soluble enzyme preparation, Biochem. Biophys. Res. Commun. 56:29.PubMedCrossRefGoogle Scholar
  2. Altman, L. J., Kowerski, R. C., and Rilling, H. C., 1971, Synthesis and conversion of presqualene alcohol to squalene, J. Am. Chem. Soc. 93:1782.PubMedCrossRefGoogle Scholar
  3. Back, P., Hamprecht, B., and Lynen, F., 1969, Regulation of cholesterol biosynthesis in rat liver: diurnal changes of activity and influence of bile acids, Arch. Biochem. Biophys. 133:11.PubMedCrossRefGoogle Scholar
  4. Beeler, D. A., Anderson, D. G., and Porter, J. W., 1963, The biosynthesis of squalene from mevalonic acid-2-C14 and farnesyl pyrophosphate-4,8,12-C14 by carrot and tomato enzymes, Arch. Biochem. Biophys. 102:26.PubMedCrossRefGoogle Scholar
  5. Beg, Z. H., Allmann, D. W., and Gibson, D. M., 1973, Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and with protein fractions of rat liver cytosol, Biochem. Biophys. Res. Commun. 54:1362.PubMedCrossRefGoogle Scholar
  6. Bensch, W. R., and Rodwell, V. W., 1970, Purification and properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pseudomonas, J. Biol. Chem. 245:3755.PubMedGoogle Scholar
  7. Berndt, J., Boll, M., Löwel, M., and Gaumert, R., 1973, Regulation of sterol biosynthesis in yeast: Induction of 3-hydroxy-3-methylglutaryl-CoA reductase by glucose, Biochem. Biophys. Res. Commun. 51:843.PubMedCrossRefGoogle Scholar
  8. Berséus, O., 1967, Conversion of cholesterol to bile acids in rat: Purification and properties of a Δ4–3-ketosteroid 5β-reductase and a 3α-hydroxysteroid dehydrogenase. Bile acids and steroids 187, Eur. J. Biochem. 2:493.PubMedCrossRefGoogle Scholar
  9. Berséus, O., Danielsson, H., and Einarsson, K., 1967, Synthesis and metabolism of cholest-5-ene-3β,7α,12α-triol, J. Biol. Chem. 242:1211.PubMedGoogle Scholar
  10. Betz, G., Roper, M., and Tsai, P., 1974, Steroid 17, 20-lyase from testis microsomes: Participation of NADPH cytochrome c reductase, Arch. Biochem. Biophys. 163:318.PubMedCrossRefGoogle Scholar
  11. Beyer, K. F., and Samuels, L. T., 1956, Distribution of steroid-3β-ol-dehydrogenase in cellular structures of the adrenal gland, J. Biol. Chem. 219:69.PubMedGoogle Scholar
  12. Beytia, E., Qureshi, A. A., and Porter, J. W., 1973, Squalene synthetase. III. Mechanism of the reaction, J. Biol. Chem. 248:1856.PubMedGoogle Scholar
  13. Bhathena, S. J., Avigan, J., and Schreiner, M. E., 1974, Effect of insulin on sterol and fatty acid synthesis and hydroxymethylglutaryl GoA reductase activity in mammalian cells grown in culture, Proc. Natl. Acad. Sci. U.S.A. 71:2174.PubMedCrossRefGoogle Scholar
  14. Björkhem, I., and Danielsson, H., 1967, Formation and metabolism of some A4-cholesterols in the rat. Bile acids and steroids, 185, Eur. J. Biochem. 2:403.PubMedCrossRefGoogle Scholar
  15. Björkhem, I., and Danielsson, H., 1974, Hydroxylations in biosynthesis and metabolism of bile acids, Mol. Cell. Biochem. 4(2): 79.PubMedCrossRefGoogle Scholar
  16. Björkhem, I., and Gustafsson, J., 1974, Mitochondrial ω-hydroxylation of cholesterol side chain, J. Biol. Chem. 249:2528.PubMedGoogle Scholar
  17. Blattmann, P., and Rétey, J., 1971, Zur Wirkungsweise und Stereospezifität der Hydroxymethyl-glutaryl-CoA-reduktase, Hoppe-Seyler’s Z. Physiol. Chem. 352:369.CrossRefGoogle Scholar
  18. Block, K., 1965, The biological synthesis of cholesterol, Science 150:19.CrossRefGoogle Scholar
  19. Bloodworth, J. M. B., 1975, The adrenal, in: Endocrine Pathology Decennial 1966–1975 (S. C. Sommers, ed.), pp. 391–422, Appleton-Century-Crofts, New York.Google Scholar
  20. Booth, R., Gregory, K. W., and Smith, C. Z., 1972, Evidence that the diurnal variation in rat liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity is initiated by feeding, Biochem. J. 130:72p.Google Scholar
  21. Bortz, W. M., 1967, Fat feeding and cholesterol synthesis, Biochim. Biophys. Acta 137:533.PubMedGoogle Scholar
  22. Bortz, W. M., 1968, Noradrenalin-induced increase in hepatic cholesterol synthesis and its blockade by puromycin, Biochim. Biophys. Acta 152:619.PubMedGoogle Scholar
  23. Bortz, W. M., 1973, On the control of cholesterol synthesis, Metab. 22:1507.CrossRefGoogle Scholar
  24. Bortz, W. M., and Steele, L. A., 1973, Synchronization of hepatic cholesterol synthesis, cholesterol and bile acid content, fatty acid synthesis and plasma free fatty acid levels in the fed and fasted rat, Biochim. Biophys. Acta 306:85.PubMedGoogle Scholar
  25. Bortz, W. M., Steele, L., Arkens, L., and Grundhofer, B., 1973, Structure of the alteration of hepatic cholesterol synthesis in the rat, Biochim. Biophys. Acta 316:366.PubMedGoogle Scholar
  26. Boyd, G. S., and Percy-Robb, I. W., 1971, Enzymatic regulation of bile acid synthesis, Am. J. Med. 51:580.PubMedCrossRefGoogle Scholar
  27. Boyd, G. S., and Smellie, R. M. S. (eds.), 1972, Biological Hydroxylation Mechanisms, Biochemical Society Symposia: 34, Academic Press, London.Google Scholar
  28. Boyd, G. S., and Trzegiak, W. H., 1973, Cholesterol metabolism in the adrenal cortex: Studies on the mode of action of ACTH, Ann. N.Y. Acad. Sci. 212:361.PubMedCrossRefGoogle Scholar
  29. Boyd, G. S., Brownie, A. C., Jefcoate, C. R., and Simpson, E. R., 1972, Cholesterol hydroxylation in the adrenal cortex and liver, in: Biological Hydroxylation Mechanisms, Biochemical Society Symposia: 34 (G. S. Boyd and R. M. S. Smellie, eds.), pp. 207–226, Academic Press, London.Google Scholar
  30. Boyd, G. S., Grimwade, A. M., and Lawson, M. E., 1973, Studies on rat-liver microsomal cholesterol 7α-hydroxylase, Eur. J. Biochem. 37:334.PubMedCrossRefGoogle Scholar
  31. Boyd, G. S., Brown, M. J. G., Hattersley, N. G., and Suckling,K. E., 1974, Studies on the specificity of the rat liver microsomal cholesterol 7α-hydroxylase, Biochim. Biophys. Acta 337:132.PubMedGoogle Scholar
  32. Brown,M. S., and Goldstein, J. L., 1974a, Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase activity, Proc. Natl. Acad. Sci. U.S.A. 71:788.CrossRefGoogle Scholar
  33. Brown, M. S., and Goldstein, J. L., 1974b, Expression of the familial hypercholesterolemia gene in heterozygotes: Mechanism for a dominant disorder in man, Science 185:61.CrossRefGoogle Scholar
  34. Brown, M. S., and Goldstein, J. L., 1974c, Suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and inhibition of growth of human fibroblasts by 7-ketocholesterol, J. Biol. Chem. 249:7306.Google Scholar
  35. Brown, M. S., Dana, S. E., Dietsghy, J. M., and Siperstein, M. D., 1973a, 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase. Solubilization and purification of a cold-sensitive microsomal enzyme, J. Biol. Chem. 248:4731.PubMedGoogle Scholar
  36. Brown, M. S., Dana, S. E., and Goldstein, J. L., 1973b, Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in human fibroblasts by lipoproteins, Proc. Natl. Acad. Sci. U.S.A. 70:2162.CrossRefGoogle Scholar
  37. Brown, M. S., Dana, S. E., and Goldstein,J. L., 1974a, Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia, J. Biol. Chem. 249:789.Google Scholar
  38. Brown, M. S., Dana,S. E., and Siperstein,M. D., 1974b, Properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase solubilized from rat liver and hepatoma, J. Biol. Chem. 249:6585.Google Scholar
  39. Bucher,N. L. R., Overath, P., and Lynen, F., 1960, Aβ-Hydroxy-β -methylglutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver, Biochim. Biophys. Acta 40:491.PubMedCrossRefGoogle Scholar
  40. Burstein, S., and Gut,M., 1969, A preliminary report on the intermediates in the conversion in vitro of cholesterol to pregnenolone in adrenal preparations, Steroids 14:207.PubMedCrossRefGoogle Scholar
  41. Burstein, S., and Gut,M., 1971, Biosynthesis of pregnenolone, in: Recent Progress in Hormone Research, Vol. 27 (E. B. Astwood, ed.), pp. 303–345, Academic Press, New York.Google Scholar
  42. Burstein, S., and Gut,M., 1973, Kinetic studies on the mechanism of conversion of cholesterol to pregnenolone, Ann. N.Y. Acad. Sci. 212:262.PubMedCrossRefGoogle Scholar
  43. Campbell, R. V. M., Crombie,L., and Pattenden,G., 1971, Synthesis of presqualene alcohol, J.Chem. Soc. 5:218.Google Scholar
  44. Gatt,K. J., 1971, An ABC of Endocrinology, p. 61, Little, Brown and Company, Boston.Google Scholar
  45. Chen, H. W., Kandutsch,A. A., Heiniger, H., and Meier, H., 1973, Elevated sterol synthesis in lymphocytic leukemia cells from two inbred strains of mice, Cancer Res. 33:2774.PubMedGoogle Scholar
  46. Chesterton, G. J., 1968, Distribution of cholesterol precursors and other lipids among rat liver intracellular structures. Evidence for the endoplasmic reticulum as the site of cholesterol and cholesterol ester synthesis, J. Biol. Chem. 243:1147.PubMedGoogle Scholar
  47. Clayton, R. B. (ed.), 1969, Steroids and terpenoids, in: Methods in Enzymology, Vol. 15, Academic Press, New York.Google Scholar
  48. Goates, R. M., and Robinson,W. H., 1971, Stereoselective total synthesis of (±)-presqualene alcohol, J. Am. Chem. Soc. 93:1785.CrossRefGoogle Scholar
  49. Constantopoulos, G., and Tchen, T. T., 1961, Cleavage of cholesterol side chain by adrenal cortex. I. Cofactor requirement and product of cleavage, J. Biol. Chem. 236:65.PubMedGoogle Scholar
  50. Cooper, D. Y., and Salhanigk, H. A. (eds.), 1973, Multienzyme Systems in Endocrinology: Progress in Purification and Methods of Investigation, Vol. 212, Annals of the New York Academy of Sciences, New York (June 1973).Google Scholar
  51. Cornforth, J. W., 1974, Enzymes and stereochemistry, Tetrahedron 30:1515.CrossRefGoogle Scholar
  52. Cornforth, J. W., Cornforth,R. H., Pelter,A., Horning,M. G., and PopjÅk, G., 1959, Studies on the biosynthesis of cholesterol-7. Rearrangement of methyl groups during enzymic cyclisation of squalene, Tetrahedron 5:311.CrossRefGoogle Scholar
  53. Cornforth, J. W., Cornforth, R. H., Donninger, G., and PopjÅk, G., 1966, Studies on the biosynthesis of cholesterol. XIX. Steric course of hydrogen eliminations and of C—C bond formations in squalene biosynthesis, Proc, R. Soc. (London), Ser. B 163:492.CrossRefGoogle Scholar
  54. Craig,M. C., Dugan, R. E., Muesing,R. A., Slakey,L. L., and Porter, J. W., 1972, Comparative effects of dietary regimens on the levels of enzymes regulating the synthesis of fatty acids and cholesterol in rat liver, Arch. Biochem. Biophys. 151:128.PubMedCrossRefGoogle Scholar
  55. Cronholm, T., and Johansson, G., 1970, Oxidation of 5β-cholestane-3α,7α,12α-triol by rat liver microsomes, Eur. J. Biochem. 16:373.PubMedCrossRefGoogle Scholar
  56. Danielsson, H., 1969, Mechanisms of bile acid formation, in: Bile Salt Metabolism (L. Schiff, J. B. Carey, and J. M. Dietschy, eds.), pp. 91–102, Charles G.Thomas, Springfield, Ill.Google Scholar
  57. Danielsson, H., 1972, Relationship between diurnal variations in biosynthesis of cholesterol and bile acids, Steroids 20:63.PubMedCrossRefGoogle Scholar
  58. Danielsson, H., 1973, Mechanisms of bile acid biosynthesis, in: The Bile Acids: Chemistry, Physiology and Metabolism, Vol. 2 (P. P. Nair and D. Kritchevsky, eds.), pp. 1–32, 305–306, Plenum Press, New York.Google Scholar
  59. Danielsson, H., and Einarsson, K., 1964, The enzymic formation of 7α-hydroxycholesterol from cholesterol in rat liver homogenates. Bile acids and steroids 149, Acta Chem. Scand. 18:831.CrossRefGoogle Scholar
  60. Danielsson, H., and Einarsson, K., 1969, Formation and metabolism of bile acids, in: The Biological Basis of Mediane, Vol. V (E. E. Bittar, and N. Bittar, eds.), pp. 279–315, Academic Press, London.Google Scholar
  61. Danielsson, H., and Johansson, G., 1972, 2-Hydroxylation of pregnenolone by rat liver microsomes, FEBS Lett. 25:329.PubMedCrossRefGoogle Scholar
  62. Danielsson, H., and Tchen, T. T., 1968, Steroid metabolism, in: Metabolic Pathways, third edition, Vol. II (D. M. Greenberg, ed.), pp. 117–168, Academic Press, New York.Google Scholar
  63. Danielsson, H., Einarsson, K., and Johansson, G., 1967, Effect of biliary drainage on individual reactions in the conversion of cholesterol to taurocholic acid. Bile acids and steroids 180, Eur. J. Biochem. 2:44.PubMedCrossRefGoogle Scholar
  64. Decker, K., and Barth, C., 1973, Compartmentation of the early steps of cholesterol biosynthesis in mammalian liver, Mol. Cell. Biochem. 2:179.PubMedCrossRefGoogle Scholar
  65. Dempsey, M. E., 1974, Regulation of steroid biosynthesis, Ann. Rev. Biochem. 43:967.PubMedCrossRefGoogle Scholar
  66. Dietschy, J. M., and Wilson, J. D., 1970, Regulation of cholesterol metabolism, N. Engl. J. Med. 282:1128.PubMedCrossRefGoogle Scholar
  67. Dorfman, R. I., and Ungar, F., 1965, The Metabolism of Steroid Hormones, Academic Press, New York.Google Scholar
  68. Dowling, R. H., Mack, E., and Small, D. M., 1970, Effects of controlled interruption of the enterohepatic circulation of bile salts by biliary diversion and by ileal resection on bile salt secretion, synthesis, and pool size in the rhesus monkey, J. Clin. Invest. 49:232.PubMedCrossRefGoogle Scholar
  69. Dugan, R. E., and Porter, J. W., 1971, Stereospecificity of the transfer of hydrogen from reduced nicotinamide adenine dinucleotide phosphate in each of the two reductive steps catalyzed by β-hydroxy-β-methylglutaryl coenzyme A reductase, J. Biol. Chem. 246:5361.PubMedGoogle Scholar
  70. Dugan, R. E., and Porter, J. W., 1972, Hog liver squalene synthetase: The partial purification of the particulate enzyme and kinetic analysis of the reaction, Arch. Biochem. Biophys. 152:28.PubMedCrossRefGoogle Scholar
  71. Dugan, R. E., Slakey, L. L., Briedis, A. V., and Porter, J. W., 1972, Factors affecting the diurnal variation in the level of β-hydroxy- β -methylglutaryl coenzyme A reductase and cholesterol-synthesizing activity in rat liver, Arch. Biochem. Biophys. 152:21.PubMedCrossRefGoogle Scholar
  72. Dugan, R. E., Ness, G. C., Lakshmanan, M. R., Nepokroeff,C. M., and Porter,J. W., 1974, Regulation of hepatic β-hydroxy-β -methylglutaryl coenzyme A reductase by the interplay of hormones, Arch. Biochem. Biophys. 161:499.PubMedCrossRefGoogle Scholar
  73. Durr,I. F., and Rudney,H., 1960, The reduction of β-hydroxy-β-methylglutaryl coenzyme A to mevalonic acid, J. Biol. Chem. 235:2572.PubMedGoogle Scholar
  74. Edmond, J., PopjÁk, G., Wong, S., and Williams, V. P., 1971, Presqualene alcohol. Further evidence on the structure of a C30 precursor of squalene, J. Biol. Chem. 246:6254.PubMedGoogle Scholar
  75. Edwards, P. A., 1973, Effect of adrenalectomy and hypophysectomy on the circadian rhythm of β-hydroxy-β-methylglutaryl coenzyme A reductase activity in rat liver, J. Biol. Chem. 248:2912.PubMedGoogle Scholar
  76. Edwards,P. A., and Gould,R. G., 1972, Turnover rate of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase as determined by use of cycloheximide, J. Biol. Chem. 247:1520.PubMedGoogle Scholar
  77. Edwards, P. A., and Gould,R. G., 1974, Dependence of the circadian rhythm of hepatic β -hydroxy-β-methylglutaryl coenzyme A reductase on ribonucleic acid synthesis. A possible second site of inhibition by dietary cholesterol, J. Biol. Chem. 249:2891.PubMedGoogle Scholar
  78. Edwards, P. A., Muroya,H., and Gould,R. G., 1972, In vivo demonstration of the circadian rhythm of cholesterol biosynthesis in the liver and intestine of the rat, J. Lipid Res. 13:396.PubMedGoogle Scholar
  79. Einarsson, K., 1968, On the properties of the 12α-hydroxylase in cholic acid biosynthesis. Bile acids and steroids 198, Eur. J. Biochem. 5:101.PubMedCrossRefGoogle Scholar
  80. Einarsson,K., and Johansson, G., 1968, Effect of actinomycin D and puromycin on the conversion of cholesterol into bile acids in bile fistula rats. Bile acids and steroids 206, FEBS Lett. 1(4):219.PubMedCrossRefGoogle Scholar
  81. Elliott, W. H., and Hyde,P. M., 1971, Metabolic pathways of bile acid synthesis, Am. J. Med. 51:568.PubMedCrossRefGoogle Scholar
  82. Epstein,W. W., and Rilling,H. C., 1970, Studies on the mechanism of squalene biosynthesis. The structure of presqualene pyrophosphate, J. Biol. Chem. 245:4597.PubMedGoogle Scholar
  83. Erickson, S. K., and Gould,R. G., 1974, Correlation of chromatin bound free and esterified cholesterol with HMG GoA reductase activity in rat liver, Fed. Proc. 33(5): 1549.Google Scholar
  84. Eschenmoser,A., Ruzigka, L., Jeger,O., and Arigoni, D., 1955, Zur Kenntnis der Triterpene: Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen, Helv. Chim. Acta 38:1890.CrossRefGoogle Scholar
  85. Ewald, W., Werbin, H., and Chaikoff, I. L., 1965, Evidence for the presence of 17-hydroxypregnene-dione isomerase in beef adrenal cortex, Biochim. Biophys. Acta 111:306.PubMedCrossRefGoogle Scholar
  86. Ford, H. C., and Engel,L. L., 1974, Purification and properties of the A5–3 β -hydroxysteroid de-hydrogenase-isomerase system of sheep adrenal cortical microsomes, J. Biol. Chem. 249:1363.PubMedGoogle Scholar
  87. Gallo, D. G., Harkins, R. W., Sheffner, A. L., Sarett, H. P., and Cox, W. M., 1966, The species specificity of cholestyramine in its effect on synthesis of liver lipids and level of serum cholesterol, Proc. Soc. Exp. Biol. Med. 125:328.Google Scholar
  88. Garren, L. D., Gill,G. N., Masui, H., and Walton,G. M., 1971, On the mechanism of action of ACTH, in: Recent Progress in Hormone Research, Vol. 27 (E. G. Astwood, ed.), pp. 433–474, Academic Press, N.Y.Google Scholar
  89. Gaylor,J. L., 1972, Microsomal enzymes of sterol biosynthesis, Adv. Lipid Res. 10:89.PubMedGoogle Scholar
  90. Gaylor, J. L., 1974, Enzymes of sterol biosynthesis, in: Int. Rev. Sci. Biochem. Sec. Lipids (T. W. Goodwin, ed.), series one, Vol. 4, pp. 1–37, Med. Tech. Publ., Oxford, Butterworth & Co. Ltd., London, and University Park Press, Baltimore.Google Scholar
  91. Gaylor,J. L., and Delwighe,C. V., 1973, Investigation of the multienzymic system of microsomal cholesterol biosynthesis, Ann. N.Y. Acad. Sci. 212:122.PubMedCrossRefGoogle Scholar
  92. Gaylor,J. L., and Mason,H. S., 1968, Investigation of the component reactions of oxidative sterol demethylation. Evidence against participation of cytochrome P-450, J. Biol. Chem. 243: 4966.PubMedGoogle Scholar
  93. Gaylor, J. L., Hsu, S.-T., Delwighe, C. V., Comai, K., and Scifried, H. E., 1973, III. Microsomes and cytochrome P-450. Noncytochrome P-450-dependent oxidase of liver microsomes; oxidations of methyl sterols and stearyl coenzyme A, in: Oxidases and Related Redox Systems (T. E. King, H. S. Mason, and M. Morrison, eds.), pp. 431–444, University Park, Baltimore.Google Scholar
  94. Gielen, J., van Cantfort, J., and Renson,J., 1968, Etude biochimique de la cholestérol-7a-hydrox-ylase du foie de rat, Arch. Int. Physiol. Biochem. 76:930.Google Scholar
  95. Gielen, J., van Cantfort,J., Robaye,B., and Renson,J., 1969, Rhythme circadien de la cholestérol-7α-hydroxylase chez le rat, C.R. Acad. Sci., Ser. D 269:731.Google Scholar
  96. Gielen, J., Robaye,B., van Cantfort,J., and Renson, J., 1970, Facteurs endocriniens contrôlant le rhythme circadien de la biosynthèse des acides biliaires, Arch. Int. Pharmacodyn. 183:403.PubMedGoogle Scholar
  97. Goldfarb,S., 1972, Submicrosomal localization of hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, FEBS Lett. 24:153.PubMedCrossRefGoogle Scholar
  98. Goldfarb,S., and Pitot, H. C., 1971, The regulation of β-hydroxy-β-methylglutaryl coenzyme A reductase in Morris hepatomas 5123C., 7800 and 9618A, Cancer Res. 31:1879.PubMedGoogle Scholar
  99. Goldfarb,S., and Pitot,H. C., 1972, Stimulatory effect of dietary lipid and cholestyramine on hepatic HMG-CoA reductase, J. Lipid Res. 13:797.PubMedGoogle Scholar
  100. Goldstein, J. L., and Brown,M. S., 1973, Familial hypercholesterolemia: Identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol, Proc. Natl. Acad. Sci. U.S.A. 70:2804.PubMedCrossRefGoogle Scholar
  101. Goldstein,J. L., and Brown,M. S., 1974, Binding and degradation of low density lipoproteins by cultured human fibroblasts, J. Biol. Chem. 249:5153.PubMedGoogle Scholar
  102. Goldstein, J. L., Harrod,M.J. E., and Brown,M. S., 1974a, Homozygous familial hypercholesterolemia: Specificity of the biochemical defect in cultured cells and feasibility of prenatal detection, Am. J. Hum. Genet. 26:199.Google Scholar
  103. Goldstein,J. L., Dana,S. E., and Brown,M. S., 1974b, Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia, Proc. Natl. Acad. Sci. U.S.A. 71:4288.CrossRefGoogle Scholar
  104. Goodman,DeW. S., and PopjÁk, G., 1960, Studies on the biosynthesis of cholesterol: XII. Synthesis of allyl pyrophosphates from mevalonate and their conversion into squalene with liver enzymes, J. Lipid Res. 1:286.PubMedGoogle Scholar
  105. Goodwin,C. D., and Margolis,S., 1973, Specific activation of in vitro cholesterol biosynthesis by preincubation of rat liver homogenates, J. Biol. Chem. 248:7610.PubMedGoogle Scholar
  106. Gould, R. G., 1951, Lipid metabolism and atherosclerosis, Am. J. Med. 11:209.PubMedCrossRefGoogle Scholar
  107. Gould,R. G., and PopjÁk, G., 1957, Biosynthesis of cholesterol in vivo and in vitro from DL- β -hydroxy-β-methyl-δ-[2–14C]-valerolactone, Biochem. J. 66:51p.Google Scholar
  108. Gregory,K. W., Smith, C. Z., and Booth, R., 1972, Diurnal variations in rat liver 3-hydroxy-3-methylglutaryl-coenzyme A, Biochem. J. 130:1163.PubMedGoogle Scholar
  109. Guder, W., Nolte, I., and Wieland,O., 1968, The influence of thyroid hormones on β-hydroxy-β-methylglutaryl-coenzyme A reductase of rat liver, Eur. J. Biochem. 4:273.PubMedCrossRefGoogle Scholar
  110. Halkerston, I. D. K., Eichhorn,J., and Hechter,O., 1961, A requirement for reduced triphospho-pyridine nucleotide for cholesterol side-chain cleavage by mitochondrial fractions of bovine adrenal cortex, J. Biol. Chem. 236:374.PubMedGoogle Scholar
  111. Hall, P. F., and Koritz,S. B., 1964, Inhibition of the biosynthesis of pregnenolone by 20a-hydroxy-cholesterol, Biochim. Biophys. Acta 93:441.PubMedCrossRefGoogle Scholar
  112. Hampreght, B., Nüssler,C., and Lynen,F., 1969, Rhythmic changes of hydroxymethylglutaryl coenzyme A reductase activity in livers of fed and fasted rats, FEBS Lett. 4:117.CrossRefGoogle Scholar
  113. Hamprecht,B., Roscher, R., Waltinger,G., and Nüssler, C., 1971a, Influence of bile acids on the activity of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. 2. Effect of cholic acid in lymph fistula rats, Eur. J. Biochem. 18:15.CrossRefGoogle Scholar
  114. Hamprecht,B., Nüssler, C., Waltinger,G., and Lynen, F., 1971b, Influence of bile acids on the activity of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. 1. Effect of bile acids in vitro and in vivo, Eur. J. Biochem. 18:10.CrossRefGoogle Scholar
  115. Hamprecht,B., Bruckdorfer, K. R., Nüssler, C., and Lynen,F., 1971c, Membrane-bound hydroxy-methylglutaryl coenzyme A reductase, in: International Conference on Membrane-Bound Enzymes, Pavia, 1970 (G. Porcellati, éd.), pp. 135–146, Plenum Press, New York.Google Scholar
  116. Harry,D. S., Morris,H. P., MgIntyre,N., 1971, Cholesterol biosynthesis in transplantable hepatomas: Evidence for impairment of uptake and storage of dietary cholesterol, J. Lipid Res. 12:313.PubMedGoogle Scholar
  117. Harry, D. S., Dini,M., and MgIntyre,N., 1973, Effect of cholesterol feeding and biliary obstruction on hepatic cholesterol biosynthesis in the rat, Biochim. Biophys. Acta 296:209.PubMedGoogle Scholar
  118. Heller, R. A., and Gould, R. G., 1973, Solubilization and partial purification of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase, Biochem. Biophys. Res. Commun. 50:859.PubMedCrossRefGoogle Scholar
  119. Heller, R. A., and Gould, R. G., 1974, Reversible cold inactivation of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from rat liver, J. Biol. Chem. 249:5254.PubMedGoogle Scholar
  120. Hickman, P. E., Horton, B. J., and Sabine, J. R., 1972, Effect of adrenalectomy on the diurnal variation of hepatic cholesterogenesis in the rat, J. Lipid Res. 13:17.PubMedGoogle Scholar
  121. Higgins, M., and Rudney,H., 1973, Regulation of rat liver β -hydroxy- β -methylglutaryl-CoA reductase activity by cholesterol, Nature (London), New Biol. 246:60.CrossRefGoogle Scholar
  122. Higgins, M., Kawachi, T., and Rudney,H., 1971, The mechanism of the diurnal variation of hepatic HMG-CoA reductase activity in the rat, Biochem. Biophys. Res. Commun. 45:138.PubMedCrossRefGoogle Scholar
  123. Higgins, M.J. P., Brady,D., and Rudney, H., 1974, Rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase: A comparison and immunological study of purified solubilized preparations, and alteration of enzyme levels by cholestyramine feeding, Arch. Biochem. Biophys. 163:271.PubMedCrossRefGoogle Scholar
  124. Hill, R., Webster,W. W., Linazasoro,J. M., and Chaikoff,I. L., 1960, Time of occurrence of changes in the liver’s capacity to utilize acetate for fatty acid and cholesterol synthesis after fat feeding, J. Lipid Res. 1:150.Google Scholar
  125. Hoghberg, R. B., McDonald,P. D., Feldman,M., and Lieberman,S., 1974, Studies on the bio-synthetic conversion of cholesterol into pregnenolone. Side chain cleavage of some 20-/o-tolyl analogs of cholesterol and 20α-hydroxycholesterol, J. Biol. Chem. 249:1277.Google Scholar
  126. Horton,B. J., and Sabine,J. R., 1971, Metabolic controls in precancerous liver: Defective control of cholesterol synthesis in rats fed N-2-fluorenylacetamide, Eur. J. Cancer 7:459.PubMedGoogle Scholar
  127. Horton, B. J., Horton, J. D., and Sabine, J. R., 1972, Metabolic controls in precancerous liver—II. Loss of feedback control of cholesterol synthesis, measured repeatedly in vivo, during treatment with the carcinogens N-2-fluorenylacetamide and aflatoxin, Eur. J. Cancer 8:437.PubMedGoogle Scholar
  128. Horton,B. J., Mott,G. E., Pitot,H. C., and Goldfarb,S., 1973, Rapid uptake of dietary cholesterol by hyperplastic liver nodules and primary hepatomas, Proc. AACR 1973:78.Google Scholar
  129. Huber,J., Hamprecht,B., Müller, O. A., and Guder,W., 1972, Tagezeitlicher Rhythmus der Hy-droxymethylglutaryl-CoA Reduktase in der Rattenleber, IL Rhythmus bei adrenalektomierten Tieren, Hoppe-Sey1er’s Z. Physiol. Chem. 353:313.CrossRefGoogle Scholar
  130. Huber,J., Guder,W., Latzin,S., and Hamprecht,B., 1973a, The influence of insulin and glucagon on hydroxymethylglutaryl coenzyme A reductase activity in rat liver, Hoppe-Seyler’s Z. Physiol. Chem. 354:795.Google Scholar
  131. Huber, J., Latzin,S., Langguth,O., Brauser,B., Gabel,V. P., and Hamprecht,B., 1937b, The influence of bilateral superior cervical ganglionectomy, continuous light and continuous darkness on the diurnal rhythm of hydroxymethylglutaryl-coenzyme A reductase in rat liver, FEB S Lett. 31:261.CrossRefGoogle Scholar
  132. Huber, J., Guder,W., Müller, O. A., Latzin, S.,Ganser,H., and Hamprecht,B., 1974, Influence of hypophysectomy, thyroid hormone and insulin on the activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in rat liver, Hoppe-Seyler’s Physiol. Chem. 355:669.CrossRefGoogle Scholar
  133. Hulcher,F. H., and Oleson,W. H., 1973, Simplified spectrophotometric assay for microsomal 3-hydroxy-3-methylglutaryl CoA reductase by measurement of coenzyme A, J. Lipid Res. 14:625.PubMedGoogle Scholar
  134. Hulcher,F. H., Oleson,W. H., and Lofland,H. B., 1974, Cholesterol-7α-hydroxylase of pigeon liver microsomes, Arch. Biochem. Biophys. 165:313.PubMedCrossRefGoogle Scholar
  135. Jarabak,J., Adams,J. A., Williams-Ashman,H. G., and Talalay,P., 1962, Purification of a 17 β -hydroxysteroid dehydrogenase of human placenta and studies on its transhydrogenase function, J. Biol. Chem. 237:345.PubMedGoogle Scholar
  136. Johansson,G., 1970, Effect of cholestyramine and diet on hydroxylations in the biosynthesis and metabolism of bile acids, Eur. J. Biochem. 17:292.PubMedCrossRefGoogle Scholar
  137. Johansson, G., 1971, Oxidation of cholesterol 3β-hydroxy-5-pregnen-20-one and 3j3-hydroxy-5-androsten-17-one by rat liver microsomes, Eur. J. Biochem. 21:68.PubMedCrossRefGoogle Scholar
  138. Johnson, R. C., and Shah, S. N., 1974, Microsomal synthesis of cholesterol from squalene, lanosterol, and desmosterol. Evidence for the presence of two noncatalytic activator proteins in the 105,000 g supernatant fraction from brain, heart, and kidney, Arch. Biochem. Biophys. 164:502.PubMedCrossRefGoogle Scholar
  139. Kandutsch, A. A., and Chen,H. W., 1973, Inhibition of sterol synthesis in cultured mouse cells by 7a-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, J. Biol. Chem. 248:8408.PubMedGoogle Scholar
  140. Kandutsch,A. A., and Hancock,R. L., 1971, Regulation of the rate of sterol synthesis and the level of β-hydroxy-β-methylglutaryl coenzyme A reductase activity in mouse liver and hepatomas, Cancer Res. 31:1396.PubMedGoogle Scholar
  141. Kandutsch,A. A., and Packie,R. M., 1970, Comparison of the effects of some C27-, G21-, and C19-steroids upon hepatic sterol synthesis and hydroxymethylglutaryl-GoA reductase activity, Arch. Biochem. Biophys. 140:122.PubMedCrossRefGoogle Scholar
  142. Kandutsch, A. A., and Saucier, S. E., 1969, Prevention of cyclic and tri ton-induced increases in hydroxymethylglutaryl coenzyme A reductase and sterol synthesis by puromycin, J. Biol. Chem. 244:2299.PubMedGoogle Scholar
  143. Kawachi,T., and Rudney,H., 1970, Solubilization and purification of β-hydroxy-β-methylglutaryl coenzyme A reductase from rat liver, Biochemistry 9:1700.PubMedCrossRefGoogle Scholar
  144. Kirtley, M. E., and Rudney,H., 1967, Some properties and mechanism of action of the β-hydroxy-β-methylglutaryl coenzyme A reductase of yeast, Biochemistry 6:230.PubMedCrossRefGoogle Scholar
  145. Krishna, G., Whitlock,H. W., Feldbruegge, D. H., and Porter,J. W., 1966, Enzymic conversion of farnesyl pyrophosphate to squalene, Arch. Biochem. Biophys. 114:200.PubMedCrossRefGoogle Scholar
  146. Lakshmanan, M. R., Nepokroeff,C. M., Ness,G. C., Dugan,R. E., and Porter, J. W., 1973, Stimulation by insulin of rat liver β-hydroxy-β-methylglutaryl coenzyme A reductase and cholesterol-synthesizing activities, Biochem. Biophys. Res. Commun. 50:704.PubMedCrossRefGoogle Scholar
  147. Lakshmanan, M. R., Dugan,R. E., Nepokroeff,C. M., Ness,G. C., and Porter,J. W., 1975, Regulation of rat liver β-hydroxy-β-methylglutaryl coenzyme A reductase activity and serum and liver cholesterol levels in various dietary and hormonal states, Arch. Biochem. Biophys. 168:89.PubMedCrossRefGoogle Scholar
  148. Linn,T. C., 1967a, The demonstration and solubilization of β-hydroxy-β-methylglutaryl coenzyme A reductase from rat liver microsomes, J. Biol. Chem. 242:984.Google Scholar
  149. Linn,T. C., 1967b, The effect of cholesterol feeding and fasting on β-hydroxy-β-methylglutaryl coenzyme A reductase, J. Biol. Chem. 242:990.Google Scholar
  150. Lofland, H. B., Glarkson,T. B., St. Clair,R. W., and Lehner,N. D. M., 1972, Studies on the regulation of plasma cholesterol levels in squirrel monkeys of two genotypes, J. Lipid Res. 13:39.PubMedGoogle Scholar
  151. Lynen, F., Eggerer,H., Henning,U., and Kessel,I., 1958, Farnesyl-pyrophosphat und 3-methyl-A3-butenyl-l-pyrophosphat, die biologischen Vorstufen des Squalens. Zur Qiosynthese der Terpene, III, Angew. Chem. 70:738.CrossRefGoogle Scholar
  152. Masui, T., and Staple,E., 1966, The formation of bile acids from cholesterol. The conversion of 5β-cholestane-3α,7α,12α-triol-26-oic acid to cholic acid via 5β-cholestane-3α,7α,12α,24ξ-tetraol-26-oic acid I by rat liver, J. Biol. Chem. 241:3889.PubMedGoogle Scholar
  153. Maudgal,R. K., Tchen,T. T., and Bloch,K., 1958, 1,2-Methyl shifts in the cyclization of squalene to lanosterol, J. Am. Chem. Soc. 80(11): 2589.Google Scholar
  154. Mayer,D., and Voges,A., 1972, The role of the pituitary in control of cholesterol 7α-hydroxylase activity in rat liver, Hoppe-Seyler’s Z. Physiol. Chem. 353:1187.PubMedCrossRefGoogle Scholar
  155. Mayes,P. A., and Topping,D. L., 1974, Regulation of hepatic lipogenesis by plasma free fatty acids: Simultaneous studies on lipoprotein secretion, cholesterol synthesis, ketogenesis and gluconeo-genesis, Biochem. J. 140:111.PubMedGoogle Scholar
  156. McNamara,D. J., and Rodwell,V. W., 1972, Regulation of “active isoprene” biosynthesis, in:Biochemical Regulatory Mechanisms in Eukaryotic Cells (E. Kun and S. Grisolia, eds.), pp. 205–243, John Wiley & Sons, Inc., New York.Google Scholar
  157. McNamara,D. J., Quackenbush,F. W., and Rodwell,V. W., 1972, Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase, J. Biol. Chem. 247:5805.PubMedGoogle Scholar
  158. Mendelsohn,D., Mendelsohn,L., Staple,E., 1966, The in vitro catabolism of cholesterol: A comparison of the formation of cholest-4-en-7α-ol-3-one and 5β-cholestan-7α-ol-3-one from cholesterol in rat liver, Biochemistry 5:1286.PubMedCrossRefGoogle Scholar
  159. Miller,W. L., and Gaylor,J. L., 1970a, Investigation of the component reactions of oxidative sterol demethylation. Oxidation of a 4,4-dimethyl sterol to a 4β-methyl-4α-carboxylic acid during cholesterol biosynthesis, J. Biol. Chem. 245:5375.Google Scholar
  160. Miller, W. L., and Gaylor,J. L., 1970b, Investigation of the component reactions of oxidative sterol demethylation. Oxidation of a 4α-methyl sterol to a 4α-carboxylic acid during cholesterol biosynthesis, J. Biol. Chem. 245:5369.Google Scholar
  161. Miller, W. L., Brady,D. R., and Gaylor,J. L., 1971, Investigation of the component reactions of oxidative demethylation of sterols. Metabolism of 4α-hydroxymethyl steroids, J. Biol. Chem. 246:5147.PubMedGoogle Scholar
  162. Mitropoulos,K. A., Balasubramaniam, S., Gibbons, G. F., and Reeves, B. E. A., 1972, Diurnal variation in the activity of cholesterol 7α-hydroxylase in the livers of fed and fasted rats, FEBS Lett. 27:203.PubMedCrossRefGoogle Scholar
  163. Mitton, J. R., Scholan,N. A., and Boyd,G. S., 1971, The oxidation of cholesterol in rat liver subcellular particles. The cholesterol-7α-hydroxylase enzyme system, Eur. J. Biochem. 20:569.PubMedCrossRefGoogle Scholar
  164. Mosbach,E. H., 1972, Hepatic synthesis of bile acids. Biochemical steps and mechanisms of rate control, Arch. Intern. Med. 130:478.PubMedCrossRefGoogle Scholar
  165. Mott, G. E., Pitot, H. G., and Goldfarb, S., 1974, Evidence for bile acid synthesis by transplantable hepatomas, Cancer Res. 34:1688.PubMedGoogle Scholar
  166. Muscio, F., Carlson,J. P., Kuehl,L., and Rilling, H. C., 1974, Presqualene pyrophosphate. A normal intermediate in squalene biosynthesis, J. Biol. Chem. 249:3746.PubMedGoogle Scholar
  167. Nepokroeff,C. M., Lakshmanan,M. R., Ness, G. C., Dugan,R. E., and Porter,J. W., 1974, Regulation of the diurnal rhythm of rat liver β -hydroxy- β -methylglutaryl coenzyme A reductase activity by insulin, glucagon, cyclic AMP and hydrocortisone, Arch. Biochem. Biophys. 160:387.PubMedCrossRefGoogle Scholar
  168. Ness,G. C., Dugan,R. E., Lakshmanan,M. R., Nepokroeff,C. M., and Porter,J. W., 1973, Stimulation of hepatic β -hydroxy-β -methylglutaryl coenzyme A reductase activity in hypo-physectomized rats by L-triiodothyronine, Proc. Natl. Acad. Sci. U.S.A. 70:3839.PubMedCrossRefGoogle Scholar
  169. Nicolau, G., Shefer,S., Salen,G., and Mosbach, E. H., 1974a, Determination of hepatic 3-hydroxy-3-methylglutaryl CoA reductase activity in man, J. Lipid Res. 15:94.Google Scholar
  170. Nicolau, G., Shefer,S., Salen,G., and Mosbach,E. H., 1974b, Determination of hepatic cholesterol 7α-hydroxylase activity in man, J. Lipid Res. 15:146.Google Scholar
  171. Nilsson, Å., Sundler, R., and Åkesson,B., 1973, Biosynthesis of fatty acids and cholesterol in isolated rat liver parenchymal cells. Effect of albumin-bound fatty acids, Eur. J. Biochem. 39:613.PubMedCrossRefGoogle Scholar
  172. Norum, K. R., 1974, Enzymology of cholesterol esterification, Scand. J. Clin. Lab. Invest., Suppl. 33:7–13.Google Scholar
  173. Okuda, K., and Hoshita,N., 1968, Oxidation of 5β-cholestane-3α,7α, 12α-triol by rat liver mitochondria, Biochim. Biophys. Acta 164:381.PubMedGoogle Scholar
  174. Okuda, K., and Takigawa,N., 1970, Rat liver 5β-cholestane-3α,7α,12α-26-tetrol dehydrogenase as a liver alcohol dehydrogenase, Biochim. Biophys. Acta 220:141.PubMedGoogle Scholar
  175. PopjÁk, G., and Cornforth,J. W., 1966, Substrate stereochemistry in squalene biosynthesis, Biochem. J. 101:553.PubMedGoogle Scholar
  176. PopjÁk,G., Cornforth,J. W., Cornforth,R. H., Ryhage,R., and Goodman,DeW. S., 1962a, Studies on the biosynthesis of cholesterol. XVI. Chemical synthesis of l-H2 3–2-C14 and l-D2–2-C14-trans-trans-farnesyl pyrophosphate and their utilization in squalene biosynthesis, J. Biol. Chem. 237:56.Google Scholar
  177. PopjÁk, G., Schroepfer,G., and Cornforth,J. W., 1962b, Stereospecificity of hydrogen transfer from reduced triphosphopyridine nucleotide to squalene during its synthesis from farnesyl pyrophosphate, Biochem. Biophys. Res. Commun. 6:438.CrossRefGoogle Scholar
  178. PopjÁk,G., Edmond,J., Clifford,K., and Williams, V., 1969, Biosynthesis and structure of a new intermediate between farnesyl pyrophosphate and squalene, J. Biol. Chem. 244:1897.PubMedGoogle Scholar
  179. PopjÁk, G., Edmond, J., and Wong, S., 1973, Absolute configuration of presqualene alcohol, J. Am. Chem. Soc. 95:2713.CrossRefGoogle Scholar
  180. Qureshi, A. A., Beytia, E. D., and Porter,J. W., 1972, Squalene synthetase I. Dissociation and reassociation of enzyme complex, Biochem. Biophys. Res. Commun. 48:1123.PubMedCrossRefGoogle Scholar
  181. Qureshi,A. A., Beytia, E., and Porter,J. W., 1973, Squalene synthetase II. Purification and properties of baker’s yeast enzyme, J. Biol. Chem. 248:1848.PubMedGoogle Scholar
  182. Qureshi, N., Dugan,R. E., Porter,J. W., 1974, Kinetics of each reductive reaction catalyzed by yeast HMG-CoA reductase, in: Abstracts of Papers (Am. Chem. Soc), Biol. #57, Port City Press, Inc., Baltimore.Google Scholar
  183. Rahimtula, A. D., and Gaylor, J. L., 1972, Investigation of the component reactions of oxidative sterol demethylation. Partial purification of a microsomal sterol 4a-carboxylic acid decarboxylase, J. Biol. Chem. 247:9.PubMedGoogle Scholar
  184. Rahman,R., Sharpless,K. B., Spencer,T. A., and Clayton,R. B., 1970, Removal of the 4,4-dimethyl carbons in the enzymic conversion of lanosterol to cholesterol. Initial loss of the 4a-methyl group, J. Biol. Chem. 245:2667.PubMedGoogle Scholar
  185. Regen, D., Riepertinger, G., Hamprecht, B., and Lynen, F., 1966, The measurement of j8-hydroxy-β-methylglutaryl-CoA reductase in rat liver; effect of fasting and refeeding, Biochem. Z. 346:78.Google Scholar
  186. Rétey, J., von Stetten,E., Coy,U., and Lynen, F., 1970, 3-Hydroxy-3-methylglutaryl coenzyme A reductase, Eur. J. Biochem. 15:72.PubMedCrossRefGoogle Scholar
  187. Rilling,H. G, 1966, A new intermediate in the biosynthesis of squalene, J. Biol. Chem. 241:3233.PubMedGoogle Scholar
  188. Rilling, H. G, 1970, Biosynthesis of presqualene pyrophosphate by liver microsomes, J. Lipid Res. 11:480.PubMedGoogle Scholar
  189. Rilling, H. G, 1972, The effect of sterol carrier protein on squalene synthesis, Biochem. Biophys. Res. Commun. 46:470.PubMedCrossRefGoogle Scholar
  190. Rilling,H. G, and Epstein,W. W., 1969, Studies on the mechanism of squalene biosynthesis. Presqualene, a pyrophosphorylated precursor to squalene, J. Am. Chem. Soc. 91:1041.CrossRefGoogle Scholar
  191. Rilling, H. G, Poulter,G D., Epstein,W. W., and Larsen,B., 1971, Studies on the mechanism of squalene biosynthesis. Presqualene pyrophosphate stereochemistry and a mechanism for its conversion to squalene, J. Am. Chem. Soc, 93:1783,PubMedCrossRefGoogle Scholar
  192. Ritter, M. G. and Dempsey,M. E., 1971, Specificity and role in cholesterol biosynthesis of a squalene and sterol carrier protein, J. Biol. Chem. 246:1536.PubMedGoogle Scholar
  193. Rodwell, V. W., 1972, Cholesterol regulation of hepatic HMG-CoA reductase, in: Current Trends in the Biochemistry of Lipids, Biochemical Society Symposium: #35 (J. Ganguly, and R. M. S. Smellie, eds.), pp. 295–301, Academic Press, London.Google Scholar
  194. Rodwell, V. W., McNamara,D. J., and Shapiro,D. J., 1973, Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase, in: Advances in Enzymology, Vol. 38 (A. Meister, ed.), pp. 373–412, John Wiley & Sons, Inc., New York.Google Scholar
  195. Rothblat,G. H., and Buchko,M. K., 1971, Effect of exogenous steroids on sterol synthesis in L-cell mouse fibroblasts, J. Lipid Res. 12:647.PubMedGoogle Scholar
  196. Sabine,J. R., Horton,B. J., and Hickman,P. E., 1972, Control of cholesterol synthesis in hepatomas: Absence of diurnal rhythm in hepatomas 7794A and 9618A, Eur. J. Cancer 8:29.PubMedGoogle Scholar
  197. Sakamoto, T., Okuda,H., and FujII,S., 1974, Studies on sterol-ester hydrolase in rat liver homogen-ates, J. Biochem. (Tokyo) 75:1073.Google Scholar
  198. Samuels,L. T., and Eik-Nes,K. B., 1968, Metabolism of steroid hormones, in: Metabolic Pathways, third edition, Vol. II (D. M. Greenberg, ed.), pp. 169–220, Academic Press, New York.Google Scholar
  199. Samuelsson,B., and Goodman,D. S., 1964, Stereochemistry at the center of squalene during its biosynthesis from farnesyl pyrophosphate and subsequent conversion to cholesterol, J. Biol. Chem. 239:98.PubMedGoogle Scholar
  200. Schroepfer,G. J., Lutsky,B. N., Martin,J. A., Huntoon,S., Fourcans, B., Lee,W.-H., and Vermilion,J., 1972, Recent investigations on the nature of sterol intermediates in the biosynthesis of cholesterol, Proc. R. Soc. (London), Ser. B. 180:125.CrossRefGoogle Scholar
  201. Shapiro, D. J., and Rodwell,V. W., 1969, Diurnal variation and cholesterol regulation of hepatic HMG-CoA reductase activity, Biochem. Biophys. Res. Commun. 37:867.PubMedCrossRefGoogle Scholar
  202. Shapiro, D. J., and Rodwell, V. W., 1971, Regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol synthesis, J. Biol. Chem. 246:3210.PubMedGoogle Scholar
  203. Shapiro,D. J., and Rodwell, V. W., 1972, Fine structure of the cyclic rhythm of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Differential effects of cholesterol feeding and fasting, Biochemistry 11:1042.PubMedCrossRefGoogle Scholar
  204. Sheghter, I., and Bloch,K., 1971, Solubilization and purification of trans-farnesyl pyrophosphate-squalene synthetase, J. Biol. Chem. 216:7690.Google Scholar
  205. Shefer, S., Hauser,S., and Mosbach, E. H., 1968, 7α-Hydroxylation of cholestanol by rat liver microsomes, J. Lipid Res. 9:328.PubMedGoogle Scholar
  206. Shefer, S., Hauser,S., Bekersky, I., and Mosbach, E. H., 1969, Feedback regulation of bile acid synthesis in the rat, J. Lipid Res. 10:646.PubMedGoogle Scholar
  207. Shefer, S., Hauser,S., Lapar,V., and Mosbach, E. H., 1972, HMG-CoA reductase of intestinal mucosa and liver of the rat, J. Lipid Res. 13:402.PubMedGoogle Scholar
  208. Shefer,S., Hauser,S., Lapar,V., and Mosbach, E. H., 1973a, Regulatory effects of sterols and bile acids on hepatic 3-hydroxy-3-methylglutaryl CoA reductase and cholesterol 7α-hydroxylase in the rat, J. Lipid Res. 14:573.Google Scholar
  209. Shefer, S., Hauser,S., Lapar,V., and Mosbach, E. H., 1973b, Regulatory effects of dietary sterols and bile acids on rat intestinal HMG CoA reductase, J. Lipid Res. 14:400.Google Scholar
  210. Shimizu, K.,Dorfman,R. I., and Gut, M., 1960, Isocaproic acid, a metabolite of 20α-hydroxy-cholesterol, J. Biol. Chem. 235: PC25.PubMedGoogle Scholar
  211. Shimizu, I., Nagai, J., Hatanaka, H., and Katsuki, H., 1973, Mevalonate synthesis in the mitochondria of yeast, Biochim. Biophys. Acta 296:310.PubMedGoogle Scholar
  212. Simpson,E. R., and Boyd, G. S., 1967, The cholesterol side-chain cleavage system of bovine adrenal cortex, Eur. J. Biochem. 2:275.PubMedCrossRefGoogle Scholar
  213. Siperstein, M. D., 1970, Regulation of cholesterol biosynthesis in normal and malignant tissues, Curr. Top. Cell Reg. 2:65.Google Scholar
  214. Siperstein,M. D., and Fagan, V. M., 1964, Studies on the feedback regulation of cholesterol synthesis in: Advances in Enzyme Regulation, Vol. 2 (G. Weber, ed.), pp. 249–264, Pergamon, New York.Google Scholar
  215. Siperstein,M. D., and Fagan,V. M., 1966, Feedback control of mevalonate synthesis by dietary cholesterol, J. Biol. Chem. 241:602.PubMedGoogle Scholar
  216. Siperstein,M. D., Gyde, A. M., and Morris,H. P., 1971, Loss of feedback control of hydroxymethyl-glutaryl coenzyme A reductase in hepatomas, Proc. Natl. Acad. Sci. U.S.A. 68:315.PubMedCrossRefGoogle Scholar
  217. Slakey,L. L., Craig, M. C., Beytia,E., Briedis, A., Feldbruegge,D. H., Dugan,R. E., Qureshi,A. A., Subbarayan,C., and Porter,J. W., 1972, The effects of fasting, refeeding, and time of day on the levels of enzymes effecting the conversion of β-hydroxy-β-methylglutaryl-coenzyme A to squalene, J. Biol. Chem. 247:3014.PubMedGoogle Scholar
  218. Staple, E., 1969, Mechanism of cleavage of the cholestane side chain in bile acid formation, in: Bile Salt Metabolism (L. Schiff, J. B. Carey, and J. Dietschy, eds.), pp. 127–139, Charles C.Thomas, Springfield, Illinois.Google Scholar
  219. Stokke, K. T., 1974, Cholesteryl ester metabolism in liver and blood plasma of various animal species, Atherosclerosis 19:393.PubMedCrossRefGoogle Scholar
  220. Swindell,A. C., and Gaylor,J. L., 1968, Investigation of the component reactions of oxidative sterol demethylation. Formation and metabolism of 3-ketosteroid intermediates, J. Biol. Chem. 243:5546.PubMedGoogle Scholar
  221. Tai, H. H., and Bloch,K., 1972, Squalene epoxidase of rat liver, J. Biol. Chem. 247:3767.PubMedGoogle Scholar
  222. Taylor, C. B., and Gould,R. G., 1950, Effect of dietary cholesterol on rate of cholesterol synthesis in the intact animal measured by means of radioactive carbon, Circulation 2:467.Google Scholar
  223. Tchen, T. T., and Bloch,K., 1957a, On the conversion of squalene to lanosterol in vitro, J. Biol. Chem. 226:921.Google Scholar
  224. Tchen,T. T., and Bloch,K., 1957b, On the mechanism of enzymatic cyclization of squalene, J. Biol. Chem. 226:931.Google Scholar
  225. Ungar, F., Kan,K. W., and McCoy, K. E., 1973, Activator and inhibitor factors in cholesterol side-chain cleavage, Ann. N.Y. Acad. Sci. 212:276.PubMedCrossRefGoogle Scholar
  226. van Cantfort,J., Gielen,J., and Renson, J., 1968, Mise au point au dosage de la cholestérol-7α-hydroxylase, Arch. Int. Physiol. Biochim. 76:956.PubMedGoogle Scholar
  227. van Cantfort, J., 1973, Contrôle par les Glucocorticostéroïdes de l’activité circadienne de la cholestérol-7α-hydroxylase, Biochimie 55:1171.PubMedCrossRefGoogle Scholar
  228. Van Lier, J. E., Kan, G., Langlois,R., and Smith, L. L., 1972, On the role of sterol hydroperoxides in steroid metabolism, in: Biological Hydroxylation Mechanisms, Biochemical Society Symposia: #34 (G. S. Boyd, and R. M. S. Smellie, eds.), pp. 21–43, Academic Press, London.Google Scholar
  229. Van Tamelen, E. E., and Schwartz,M. A., 1971, Mechanism of presqualene pyrophosphate-squalene biosynthesis, J. Am. Chem. Soc. 93:1780.PubMedCrossRefGoogle Scholar
  230. Wada, F., Hirata,K., Nakao,K., and Sakamoto,Y., 1969, Participation of the microsomal electron transport system involving cytochrome P-450 in 7α-hydroxylation of cholesterol, J. Biochem. 66:699.PubMedGoogle Scholar
  231. Watson, J. A., Kirsten, E. S., and Quint, J. B., 1974, Steroid specificity for the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured hepatoma cells, Fed. Proc. 33:1573.Google Scholar
  232. Weis,H. J., and Dietschy,J. M., 1969, Failure of bile acids to control hepatic cholesterogenesis: Evidence for endogenous cholesterol feedback, J. Clin. Invest. 48:2398.PubMedCrossRefGoogle Scholar
  233. Weis, H. J., and Dietschy,J. M., 1971, Presence of an intact cholesterol feedback mechanism in the liver in biliary stasis, Gastroenterology 61:77.PubMedGoogle Scholar
  234. White, L. W., 1972, Stimulation of 3-hydroxy-3-methylglutaryl GoA reductase by insulin, Circulation 46:11–253.Google Scholar
  235. White, L. W., and Rudney, H., 1970, Regulation of 3-hydroxy-3-methylglutarate and mevalonate biosynthesis by rat liver homogenates. Effects of fasting, cholesterol feeding and Triton administration, Biochemistry 9:2725.PubMedCrossRefGoogle Scholar
  236. Wiest,W. G., and Wilcox,R. B., 1961, Purification and properties of rat ovarian 20a-hydroxysteroid dehydrogenase, J. Biol. Chem. 236:2425.PubMedGoogle Scholar
  237. Williams, G. D., and Avigan,J., 1972, In vitro effects of serum proteins and lipids on lipid synthesis in human skin fibroblasts and leukocytes grown in culture, Biochim. Biophys. Acta 260:413.PubMedGoogle Scholar
  238. Williams,W. R., Hill,R., and Ghaikoff,I. L., 1960, Portal venous injection of insulin in the diabetic rat: Time of induction of changes in hepatic lipogenesis, cholesterogenesis, and glycogenesis, J. Lipid Res. 1:236.PubMedGoogle Scholar
  239. Willmer, J. S., and Foster,T. S., 1960, The influence of adrenalectomy and individual steroid hormones upon the metabolism of acetate-1-C14 by the rat liver slices, Can. J. Biochem. Physiol. 38:1393.PubMedCrossRefGoogle Scholar
  240. Woodward, R. B., and Bloch,K., 1953, The cyclization of squalene in cholesterol synthesis, J. Am. Chem. soc. 75(11): 2023.CrossRefGoogle Scholar
  241. Yamamoto, S., and Bloch, K., 1970a, Enzymatic studies on the oxidative cyclizations of squalene, Biochem. Soc. Symp. 29:35.PubMedGoogle Scholar
  242. Yamamoto,S., and Bloch,K., 1970b, Studies on squalene epoxidase of rat liver, J. Biol. Chem. 245: 1670.PubMedGoogle Scholar
  243. Yamamoto, S., Lin, K., and Bloch,K., 1969, Some properties of the microsomal 2,3-oxidosqualene sterol cyclase, Proc. Natl. Acad. Sci. U.S.A. 63:110.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Richard E. Dugan
    • 1
  • John W. Porter
    • 1
  1. 1.Lipid Metabolism Laboratory, Veterans Administration Hospital, and Department of Physiological ChemistryUniversity of WisconsinMadisonUSA

Personalised recommendations