Platelet Membrane Enzymes and Hemostasis

  • Peter G. Barton


Blood platelets or thrombocytes are small, enucleate but metabolically active cells that are intimately involved in the normal hemostatic responses to vascular injury. They also play a major, if ill-defined, role in the pathology of cardiovascular and cerebrovascular disease. In addition to the widespread problems of coronary thrombosis, stroke, and the like, several bleeding disorders have been identified that are due to defective platelet functions.


Platelet Aggregation Human Platelet Blood Platelet Adenosine Diphosphate Platelet Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, J., Malik, M. N., Stracher, A., and Detwiler, T. C., 1972, Studies on the contractile proteins from blood platelets, Cold Spring Harbor Symp. Quant. Biol. 37:595.Google Scholar
  2. Abramson, H. A., 1928, The electrophoresis of the blood platelets of the horse with reference to their origin and thrombus formation, J. Exp. Med. 47:677.PubMedGoogle Scholar
  3. Adelstein, R. S., and Conti, M. A., 1972, The characterization of contractile proteins from platelets and fibroblasts, Cold Spring Harbor Symp. Quant. Biol. 37:599.Google Scholar
  4. Adelstein, R. S., Pollard, T. D., and Kuehl, W. M., 1971, Isolation and characterization of myosin and two myosin fragments from human blood platelets, Proc. Natl. Acad. Sci. U.S.A. 68:2703.PubMedGoogle Scholar
  5. Adelstein, R. S., Conti, M. A., and Anderson, W., 1973, Phosphorylation of human platelet myosin, Proc. Natl. Acad. Sci. U.S.A. 70:3115.PubMedGoogle Scholar
  6. Ardlie, N. G., 1968; ADP-induced platelet aggregation without a plasma cofactor, Fed. Proc. Fed. Am. Soc. Exp. Biol 27:321.Google Scholar
  7. Baenziger, N. L., Brodie, G. N., and Majerus, P. W., 1971, A thrombin-sensitive protein of human platelet membranes, Proc. Natl. Acad. Sci. U.S.A. 68:240.PubMedGoogle Scholar
  8. Bangham, A. D., Pethiga, B. A., and Seaman, G. V. F., 1958, The charged groups at the interface of some blood cells, Biochem. J. 69:12.PubMedGoogle Scholar
  9. Barber, A. J., and Jamieson, G. A., 1970, Isolation and characterization of plasma membranes from human blood platelets, J. Biol. Chem. 245:6357.PubMedGoogle Scholar
  10. Barber, A. J., and Jamieson, G. A., 1971a, Platelet collagen adhesion: Characterization of collagen glucosyltransferase of plasma membranes, Biochim. Biophys. Acta 252:533.PubMedGoogle Scholar
  11. Barber, A. J., and Jamieson, G. A., 1971b, Characterization of membrane-bound collagen galactosyl-transferase of human blood platelets, Biochim. Biophys. Acta 252:546.PubMedGoogle Scholar
  12. Barber, A. J., Pepper, D. S., and Jamieson, G. A., 1971, A comparison of methods for platelet lysis and the isolation of platelet membranes, Thromb. Diath. Haemorrh. 26:38.PubMedGoogle Scholar
  13. Barton, P. G., 1967, Sequence theories of blood coagulation re-evaluated with reference to lipid-protein interactions, Nature (London) 215:1508.Google Scholar
  14. Barton, P. G., 1968, The effect of surface change density of phosphatides on the binding of cations, J. Biol. Chem. 243:3884.PubMedGoogle Scholar
  15. Barton, P. G., 1969, Lipoproteins of blood coagulation, in: Structural and Functional Aspects of Lipoproteins in Living Systems (A. Scanu and E. Tria, eds.), pp. 465–515, Academic Press, London.Google Scholar
  16. Barton, P. G., 1971, Molecular mechanisms of prothrombin activation, Proc. 2nd Congr. Int. Soc. Thromb. Haemostasis, Oslo, p. 4.Google Scholar
  17. Barton, P. G., and Hanahan, D. J., 1969, Some lipid-protein interactions involved in prothrombin activation, Biochim. Biophys. Acta 187:319.PubMedGoogle Scholar
  18. Barton, P. G., and Jevons, S., 1970, Interactions of phosphatides with some paraffin chain salts, Chem. Phys. Lipids 4:289.Google Scholar
  19. Barton, P. G., Yin, E. T., and Wessler, S., 1970, Reactions of factor X-phosphatide mixtures in vitro and in vivo, J. Lipid Res. 11:87.PubMedGoogle Scholar
  20. Baumgartner, H. R., and Born, G. V. R., 1968, Effects of 5-hydroxytryptamine on platelet aggregation, Nature (London) 218:137.Google Scholar
  21. Becker, G. A., Chalos, M. K., Tucgelli, M., and Aster, R. H., 1972, Prostaglandin E1 in preparation and storage of platelet concentrates, Science 175:538.PubMedGoogle Scholar
  22. Bender, N., Fasold, H., and Rack, M., 1974, Interaction of rabbit muscle actin and chemically modified actin with ATP, ADP and protein reactive analogues; Role of the nucleotide, FEBS Lett. 44:209.PubMedGoogle Scholar
  23. Benson, B. J., Kisiel, W., and Hanahan, D. J., 1973, Calcium binding and other characteristics of bovine factor II and its activation intermediates, Biochim. Biophys. Acta 329:81.PubMedGoogle Scholar
  24. Bettex-Galland, M., and Lüscher, E. F., 1959, Extraction of an actomyosin-like protein from human thrombocytes, Nature (London) 184:276.Google Scholar
  25. Bettex-Galland, M., and Lüscher, E. F., 1965, Thrombosthenin, the contractile protein from blood platelets and its relation to other contractile proteins, Adv. Prot. Res. 20:1.Google Scholar
  26. Bettex-Galland, M., Portzehl, H., and Lüscher, E. F., 1963, Dissociation of thrombosthenin into two components. Investigation of ATPase activity, Helv. Chim. Acta 46:1595.Google Scholar
  27. Bettex-Galland, M., Lüscher, E. F., and Weibel, E. R., 1969, Thrombosthenin—electron microscopical studies on its localization in human blood platelets and some properties of its subunits, Thromb. Diath. Haemorrh. 22:431.PubMedGoogle Scholar
  28. Booyse, F. M., Hoveke, T. P., Zschocke, D., and Rafelson, M. E., 1971a, Human platelet myosin; Isolation and properties, J. Biol. Chem. 246:4291.PubMedGoogle Scholar
  29. Booyse, F. M., Sternberger, L. A., Zschocke, D., and Rafelson, M. E. Jr., 1971b, Ultrastructural localization of a contractile (thrombosthenin) system in human platelets using a labelled antibodyperoxidase staining technique, J. Histochem. Cytochem. 19:540.PubMedGoogle Scholar
  30. Booyse, F. M., Hoveke, T. P., and Rafelson, M. E., 1973a, Human platelet actin: Isolation and properties, J. Biol. Chem. 248:4083.PubMedGoogle Scholar
  31. Booyse, F. M., Giuliani, D., Marr, J. J., and Rafelson, M. E., 1973b, Cyclic adenosine 3′,5′-monophosphate dependent protein kinase of human platelets: Membrane phosphorylation and regulation of platelet function, Ser. Haematol. 6:351.PubMedGoogle Scholar
  32. Born, G. V. R., 1962, Aggregation of blood platelets by adenosine diphosphate and its reversal, Nature (London) 194:927.Google Scholar
  33. Born, G. V. R., 1964, Strong inhibition by 2-chloroadenosine of the aggregation of blood platelets by adenosine diphosphate, Nature (London) 202:95.Google Scholar
  34. Born, G. V. R., 1965, Uptake of adenosine and adenosine diphosphate by human blood platelets, Nature (London) 206:1121.Google Scholar
  35. Bosmann, H. G., 1970, Glycoprotein biosynthesis: Purification and properties of glycoprotein N-acetylglucosaminyl transferases from guinea pig liver utilizing endogenous and exogenous acceptors, Eur. J. Biochem. 14:33.PubMedGoogle Scholar
  36. Boullin, D. J., Green, A. R., and Price, K. S., 1972, The mechanism of adenosine diphosphate induced platelet aggregation: Binding to platelet receptors and inhibition of binding and aggregation by prostaglandin E 1, J. Physiol. 221:415.PubMedGoogle Scholar
  37. Brodie, G. N., Baenziger, N. L., Chase, L. R., and Majerus, P. W., 1972, The effects of thrombin on adenyl cyclase activity and a membrane protein from human platelets, J. Clin Invest. 51:81.PubMedGoogle Scholar
  38. Bull, R. K., Jevons, S., and Barton, P. G., 1972, Complexes of prothrombin with calcium ions and phospholipids, J. Biol. Chem. 247:2747.PubMedGoogle Scholar
  39. Bungenberg de Jong, H. G., 1949, Reversal of charge phenomena, equivalent weight and specific properties of ionized groups, in: Colloid Science, Vol. 2 (H. R. Kruyt, ed.), Chapter IX, Elsevier, Amsterdam.Google Scholar
  40. Castaldi, P. A., Firkin, B. G., Blagkwell, P. M., and Clifford, K. I., 1962, An electron microscopic study of the changes in platelets during viscous metamorphosis, Blood 20:566.PubMedGoogle Scholar
  41. Castaldi, P. A., Larrieu, M. J., and Caen, J., 1965, Availability of platelet factor 3 and activation of factor XII in thrombasthenia, Nature (London) 207:422.Google Scholar
  42. Cazenave, J.-P., Guccione, M. A., Mustard, J. F., and Pagkham, M. A., 1974a, Lack of effect of UDP, UDPG, and glucosamine on platelet reactions with collagen, Thromb. Diath. Haemorrh. 31:521.PubMedGoogle Scholar
  43. Cazenave, J.-P., Pagkham, M. A., and Mustard, J. F., 1974b, Adherence of platelets to a collagen-coated surface: development of a quantitative method, J. Lab. Clin. Med. 82:978.Google Scholar
  44. Chambers, D. A., Salzman, E. W., and Neri, L. L., 1967, Characterization of “Ecto-ATPase” of human platelets, Arch. Biochem. Biophys. 119:173.PubMedGoogle Scholar
  45. Chap, H., and Douste-Blazy, L., 1974, Phospholipase C-induced release reaction in platelets, Eur. J. Biochem. 48:351.PubMedGoogle Scholar
  46. Chesney, C., Harper, E., and Colman, R. W., 1972, Critical role of the carbohydrate side chain of collagen in platelet aggregation, Fed. Proc. Fed. Am. Soc. Exp. Biol. 31:242 (abstract).Google Scholar
  47. Chuang, T. F., Sargeant, R. B., and Hougie, C., 1972, The intrinsic activation of factor X in blood coagulation, Biochim. Biophys. Acta 273:287.PubMedGoogle Scholar
  48. Chuang, T. F., Sargeant, R. B., and Hougie, C., 1974, The effect of calcium ions on the properties of factor IX and its activated form, Br. J. Haematol. 27:281.PubMedGoogle Scholar
  49. Clayton, S., and Cross, M. J., 1963, The aggregation of blood platelets by catecholamines and by thrombin, J. Physiol. 169:82P.Google Scholar
  50. Cohen, I., and Cohen, C., 1972, A tropomyosin-like protein from human platelets, J. Mol. Biol. 68:383.PubMedGoogle Scholar
  51. Cohen, I., Bohak, Z., DeVries, A., and Katghalsky, E., 1969, Thrombosthenin M: Purification and interaction with thrombin, Eur. J. Biochem. 10:388.PubMedGoogle Scholar
  52. Cohen, P., Broekman, M. J., Verkley, A., Lisman, J. W. W., and Derksen, A., 1971, Quantification of human platelet inositides and the influence of ionic environment on their incorporation of orthophosphate-32P, J. Clin. Invest. 50:762.PubMedGoogle Scholar
  53. Cole, E. R., Koppel, J. L., and Olwin, J. H., 1964, Interaction of bovine autoprothrombin C with phospholipids and divalent cations, Can. J. Biochem. 42:1595.PubMedGoogle Scholar
  54. Cole, E. R., Koppel, J. L., and Olwin, J. H., 1965, Phospholipid-protein interactions in the formation of prothrombin activator, Thromb. Diath. Haemorrh. 14:431.PubMedGoogle Scholar
  55. Davey, M. G., and Lüscher, E. F., 1967, Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets, Nature (London) 216:857.Google Scholar
  56. Deppert, W., Wenchau, H., Walter, G., 1974, Differentiation between intracellular and cell surface glycosyl transferases: Galactosyl transferase activity in intact cells and in cell homogenate, Proc. Natl. Acad. Sci. U.S.A. 71:3068.PubMedGoogle Scholar
  57. Deykin, D., and Dresser, R. K., 1968, The incorporation of acetate and palmitate into lipids by human platelets, J. Clin. Invest. 47:1590.PubMedGoogle Scholar
  58. Eika, C and Abilgaard, U., 1970, Inhibition of thrombin-induced aggregation of human platelets by antithrombin III, Scand. J. Haematol. 7:460.PubMedGoogle Scholar
  59. Elgjo, R. F., and Hovig, T., 1972, Ultrastructural studies of platelet “activation” and aggregation in normal spleen from different species, Scand. J. Haematol. 9:587.PubMedGoogle Scholar
  60. Elgsaeter, A., and Branton, D., 1974, Intramembrane particle aggregation in erythrocyte ghosts. I. The effect of protein removal, J. Cell Biol. 63:1018.PubMedGoogle Scholar
  61. Esnouf, M. P., and Jobin, F., 1965, Lipids in prothrombin conversion, Thromb. Diath. Haemorrh. Suppl. 17:103.PubMedGoogle Scholar
  62. Feinman, R. D., and Detwiler, T. C., 1974, Platelet secretion induced by divalent cation ionophores, Nature (London) 249:172.Google Scholar
  63. Fisher, D. B., and Mueller, G. C., 1968, Turnover of phosphatidyl inositol after phytohaemagglutinin stimulation of T-cells, Proc. Natl. Acad. Sci. U.S.A. 60:1396.PubMedGoogle Scholar
  64. Gaarder, A., and Laland, S., 1964, Hypothesis for the aggregation of platelets by nucleotides, Nature (London) 202:909.Google Scholar
  65. Gaarder, A., Jonsen, J., Laland, S., Hellem, A. J., and Owren, P. A., 1961, Adenosine diphosphate in red cells as a factor in the adhesiveness of human blood platelets, Nature (London) 192:531.Google Scholar
  66. Ganguly, P., 1974, Binding of thrombin to human platelets, Nature (London) 247:306.Google Scholar
  67. Girardot, J.-M., Delaney, R., and Connor Johnson, B., 1974, Carboxylation, the completion step in prothrombin biosynthesis, Biochim. Biophys. Acta 59:1197.Google Scholar
  68. Gitel, S. N., Owen, W. G., Esmon, C. T., and Jackson, C. M., 1973, A polypeptide region of bovine prothrombin specific for binding to phospholipids, Proc. Natl. Acad. Sci. U.S.A. 7:1344.Google Scholar
  69. Gold, M., Evensen, S. A., Belamarich, F. A., and Shepro, D., 1973, Platelet factor 3 made available from human platelets by ADP: Inhibition by colchicine, Thromb. Diath. Haemorrh. 30:155.PubMedGoogle Scholar
  70. Gough, G., Maguire, M. H., and Penglis, F., 1972, Analogues of adenosine-5′-diphosphate-new platelet aggregators: Influence of purine ring and phosphate chain substitutions on the platelet-aggregating potency of adenosine-5′-diphosphate, Mol. Pharmacol. 8:170.PubMedGoogle Scholar
  71. Gross, R. W., Schneider, W., Kaulen, D. H., and Reuter, H., 1972, Platelet metabolism with special reference to compartments and membranes, Ann. N. Y. Acad. Sci. 201:84.Google Scholar
  72. Guccione, M. A., Packham, M. A., Kinlough-Rathbone, R. L., and Mustard, J. F., 1971, Reactions of 14C-ADP and 14C-ATP with washed platelets from rabbits, Blood 37:542.PubMedGoogle Scholar
  73. Hamberg, M., and Samuelsson, B., 1974, Prostaglandin endoperoxides. Novel transformations of arachi-donic acid in human platelets, Proc. Natl. Acad. Sci. U.S.A. 71:3400.PubMedGoogle Scholar
  74. Hamberg, M., Svensson, J., Wakabayashi, T., and Samuelsson, B., 1974, Isolation and structure of two prostaglandin endoperoxides that cause platelet aggregation, Proc. Natl. Acad. Sci. U.S.A. 71:345.PubMedGoogle Scholar
  75. Hampton, J. R., and Mitchell, J. R. A., 1966, Modification of the platelet electrokinetic response to aggregating agents, Nature (London) 210:1000.Google Scholar
  76. Hampton, J. R., and Mitchell, J. R. A., 1974, Platelet electrophoresis: The present position, Thromb. Diath. Haemorrh. 31:204.PubMedGoogle Scholar
  77. Hanahan, D. J., and Papahadjopoulos, D., 1965, Interactions of phospholipids with coagulation factors, Thromb. Diath. Haemorrh. Suppl. 17:72.Google Scholar
  78. Han, P., and Ardlie, N. G., 1974, Platelet aggregation and release by ADP and thrombin: Evidence for two separate effects of ADP on platelets, involvement of fibrinogen in release, and mechanism of inhibitory action of acetylsalicyclic acid, Br. J. Haematol. 26:357.PubMedGoogle Scholar
  79. Hanson, J., Repke, D., Katz, A. M., and Aledort, L. M., 1973, Calcium ion control of platelet thrombosthenin ATPase activity, Biochim. Biophys. Acta 314:382.PubMedGoogle Scholar
  80. Hardisty, R. M., and Hutton, R. A., 1966, Platelet aggregation and availability of platelet factor 3, Br. J. Haematol. 12:764.PubMedGoogle Scholar
  81. Hardisty, R. M., and Hutton, R. A., 1967, Bleeding tendency associated with a new abnormality of platelet behaviour, Lancet 1:983.PubMedGoogle Scholar
  82. Hardisty, R. M., Hutton, R. A., Montgomery, D., Richard, S., and Trebilcock, 1970, Secondary platelet aggregation: A quantitative study, Br. J. Haematol. 19:307.PubMedGoogle Scholar
  83. Harris, G. L. A., and Crawford, N., 1973, Isolation of pig platelet membranes and granules. Distribution and validity of marker enzymes, Biochim. Biophys. Acta 291:701.PubMedGoogle Scholar
  84. Haslam, R. J., 1964, Role of adenosine diphosphate in the aggregation of human blood platelets by thrombin and by fatty acids, Nature (London) 202:765.Google Scholar
  85. Haslam, R. J., 1967, Mechanisms of blood platelet aggregation, in: Physiology of Hemostasis and Thrombosis (S. A. Johnson and W. H. Seegers, eds.), pp. 88–112, Charles C Thomas, Springfield, Illinois.Google Scholar
  86. Haslam, R. J., and Lynham, J. A., 1973, Activation and inhibition of blood platelet adenylate cyclase by adenosine or 2-chloroadenosine, Life Sci. 11:1143.Google Scholar
  87. Heldebrant, C. M., and Mann, K. G., 1973, The activation of prothrombin I. Isolation and preliminary characterization of intermediates, J. Biol. Chem. 248:3642PubMedGoogle Scholar
  88. Hellem, A. J., 1960, The adhesiveness of human blood platelets in vitro, Scand. J. Clin. Invest. 12(Suppl. 51):1.PubMedGoogle Scholar
  89. Hemker, H. C., and Kahn, M. J. P., 1967, Reaction sequence of blood coagulation, Nature (London) 215:1201.Google Scholar
  90. Hemker, H. C., Esnouf, M. P., Hemker, P. W., Swart, A. C. W., and MacFarlane, R. G., 1967, Formation of prothrombin converting activity, Nature (London) 215:248.Google Scholar
  91. Hemker, H. C., Kahn, M.J. P., and Devilee, P. P., 1970, The adsorption of coagulation factors onto phospholipids: Its role in the reaction mechanism of blood coagulation, Thromb. Diath. Haemorrh. 24:214.PubMedGoogle Scholar
  92. Heppel, L. A., 1971, The concept of periplasmic enzymes, in: Structure and Function of Biological Membranes (L. I. Rothfield, ed.), pp. 223–247, Academic Press, New York.Google Scholar
  93. Hoak, J. C., 1972, Freeze-etching studies of human platelets, Blood 40:514.PubMedGoogle Scholar
  94. Holmsen, H., Day, H. J., and Setkowsky, C. A.4, 1972, Secretory mechanisms: Behaviour of adenine nucleotides during the platelet release reaction induced by adenosine diphosphate and adrenaline, Biochem. J. 129:67.PubMedGoogle Scholar
  95. Horák, H., and Barton, P. G., 1974, Effects of α,β -methylene-adenosine-5′-diphosphate on blood platelet aggregation, Biochim. Biophys. Acta 373:471.PubMedGoogle Scholar
  96. Horowitz, H. I., and Papayoanou, M. F., 1969, Activation of platelet factor 3 by adenosine 5′-diphosphate, Thromb. Diath. Haemorrh. 19:18.Google Scholar
  97. Hougie, C., Denson, K. W. E., and Biggs, R., 1967, A study of the reaction product of factor VIII and factor IX by gel filtration, Thromb. Diath. Haemorrh. 18:211.PubMedGoogle Scholar
  98. Hovig, T., 1970, Blood platelet surface and shape. A scanning electron microscopic study, Scand. J. Haematol. 7:420.PubMedGoogle Scholar
  99. Hugues, J., and Mahieu, P., 1970, Platelet aggregation induced by basement membranes, Thromb. Diath. Haemorrh. 24:395.PubMedGoogle Scholar
  100. Jackson, C. M., Owen, W. G., Gitel, S. N., and Esmon, C. T., 1974, The chemical role of lipids in prothrombin conversion, Thromb. Diath. Haemorrh. Suppl. 57:273.Google Scholar
  101. Jamieson, G. A., 1973, Role of glycoproteins in platelet function, in:Erythrocytes, Thrombocytes and Leukocytes (E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), pp. 209–210, Georg Thieme, Stuttgart.Google Scholar
  102. Jamieson, G. A., and Barber, A. J., 1973, Biochemistry of platelet membranes, Thromb. Diath. Haemorrh. Suppl. 54:239.Google Scholar
  103. Jamieson, G. A., Urban, C. L., and Barber, A. J., 1971, Enzymatic basis for platelet: collagen adhesion as a primary step in haemostasis, Nature (London) New Biol. 234:5.Google Scholar
  104. Jevons, S., and Barton, P. G., 1971, Biochemistry of blood platelets. Interaction of activated factor X with platelets, Biochemistry 10:428.PubMedGoogle Scholar
  105. Jobin, F., and Esnouf, M. P., 1967, Studies on the formation of the prothrombin-converting complex, Biochem. J. 102:666.PubMedGoogle Scholar
  106. Joist, J. H., Dolezel, G., Lloyd, J. V., and Mustard, J. F., 1974, Phospholipid transfer between plasma and platelets in vitro Thromb. Res., 4 (suppl. 1):81.Google Scholar
  107. Karpatkin, S., 1967, Studies on human platelet glycolysis. Effect of glucose, cyanide, insulin, citrate and agglutination and contraction on platelet glycolysis, J. Clin. Invest. 46:409.PubMedGoogle Scholar
  108. Kaulen, H. D., and Gross, R., 1973, Metabolic properties of human platelet membranes. I. Characterization of platelet membranes prepared by sucrose and Ficoll density gradients, Thromb. Diath. Haemorrh. 30:199.PubMedGoogle Scholar
  109. Lapetina, E. G., and Mitchell, R. H., 1973, Phosphatidyl inositol metabolism in cells receiving extracellular stimulation, FEBS Lett. 31:1.PubMedGoogle Scholar
  110. Legrand, Y., and Pignaud, G., 1971, Some factors influencing the aggregating property of collagen, Acta Medica Scand. Suppl. 525:127.Google Scholar
  111. Lloyd, J. V., and Mustard, J. F., 1974, Changes in 32P-content of phosphatidic acid and phosphatidyl inositol of rabbit platelets during aggregation induced by collagen or thrombin, Br. J. Haematol. 26:243.PubMedGoogle Scholar
  112. Lloyd, J. V., Nishizawa, E. E., Haldar, J., and Mustard, J. F., 1972, Changes in 32P-labelling of platelet phospholipids in response to ADP, Br. J. Haematol. 23:571.PubMedGoogle Scholar
  113. MacMillan, D. C., 1966, Secondary clumping effect in human citrated platelet-rich plasma produced by adenosine diphosphate and adrenaline, Nature (London) 211:140.Google Scholar
  114. Maeda, T., and Ohnishi, S.-L., 1974, Membrane fusion: Transfer of phospholipid bilayer membranes, Biochem. Biophys. Res. Commun. 60:1509.PubMedGoogle Scholar
  115. Magnusson, S., Sottnup-Jensen, L., and Petersen, T. E., 1974, Primary structure of the vitamin K-dependent part of prothrombin, FEBS Lett. 44:189.PubMedGoogle Scholar
  116. Maguire, M. H., and Michal, F., 1968, Powerful new aggregator of blood platelets—2-chloro-adenosine-5′-diphosphate, Nature (London) 217:571.Google Scholar
  117. Majerus, P. W., Smith, M. B., and Clamon, G. H., 1969, Lipid metabolism in human platelets. I. Evidence for a complete fatty acid synthesizing system, J. Clin. Invest. 48:156.PubMedGoogle Scholar
  118. Malhotra, O. P., 1972, Atypical prothrombins induced by dicoumarol, Nature (London) 239:59.Google Scholar
  119. Malik, M. N., Detwiler, T. C., and Stracher, A., 1973, Allosteric regulation of platelet actomyosin, Biochem. Biophys. Res. Commun. 55:912.PubMedGoogle Scholar
  120. Malik, M. N., Rosenberg, S., Detwiler, T. C., and Stracher, A., 1974, Role of Ca2+ ions in the allosteric regulation of platelet actomyosin, Biochem. Biophys. Res. Commun. 61:1071.PubMedGoogle Scholar
  121. Mannherz, H. G., Schenck, H., and Goody, R. S., 1974, Synthesis of ATP from ADP and Pi at the myosin-subfragment-1 active site, Eur. J. Biochem. 48:287.PubMedGoogle Scholar
  122. Marcus, A. J., 1972, Recent advances in platelet lipid metabolism research, Ann. N.Y. Acad. Sci. 201:102.PubMedGoogle Scholar
  123. Marcus, A. J., 1973, Observations on the structure and function of human platelet membranes, in: Erythrocytes, Thrombocytes and Leukocytes (E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), pp. 206–208, Georg Thieme, Stuttgart.Google Scholar
  124. Marcus, A. J., Zucker-Franklin, D., Safier, L. B., and Ullman, H. L., 1966, Studies on human platelet granules and membranes, J. Clin. Invest. 45:14.PubMedGoogle Scholar
  125. Marcus, A. J., Ullman, H. L., and Safier, L. B., 1969, Lipid composition of subcellular particles of human blood platelets, J. Lipid Res. 10:108.PubMedGoogle Scholar
  126. Marcus, A. J., Safier, L. B., and Ullman, H. L., 1971, Functions of platelet membranes, in: The Circulating Platelet (S. A. Johnson, ed.), pp. 241–258, Academic Press, New York.Google Scholar
  127. Marston, S., and Lehman, W., 1974, ADP-binding to relaxed scallop myofibrils, Nature (London) 252:38.Google Scholar
  128. McDonald, J. W. D., and Stuart, R. K., 1974, Interaction of prostaglandins E1 and E2 in regulation of cyclic AMP and aggregation in human platelets: evidence for a common prostaglandin receptor, J. Lab. Clin. Med. 84:111.PubMedGoogle Scholar
  129. McElroy, R. A., Kinlough-Rathbone, R. L., Ardlie, N. G., Packham, M. A., and Mustard, J. F., 1971, The effect of aggregating agents on oxidative metabolism of rabbit platelets, Biochim. Biophys. Acta 253:64.PubMedGoogle Scholar
  130. McLean, J. R., and Veloso, H., 1967, Change of shape without aggregation caused by ADP in rabbit platelets at low pH, Life Sci. 6:1983.PubMedGoogle Scholar
  131. Mehrishi, J. N., 1970, Phosphate groups (receptors?) on the surface of human blood platelets, Nature (London) 226:452.Google Scholar
  132. Mehrishi, J. N., and Grassetti, D. R., 1969, Sulfhydryl groups on the surface of intact Ehrlich ascites tumor cells, human blood platelets and lymphocytes, Nature (London) 224:563.Google Scholar
  133. Mills, D. C. B., and MacFarlane, D. E., 1974, Stimulation of human platelet adenylate cyclase by PGE D2, Thromb. Res. 5:401.PubMedGoogle Scholar
  134. Mills, D. G. B., and Roberts, G. G. K., 1967a, Membrane-active drugs and the aggregation of human platelets, Nature (London) 193:443.Google Scholar
  135. Mills, D. C. B., and Roberts, G. G. K., 1967b, Effects of adrenaline on human platelets, J. Physiol. 193:443.PubMedGoogle Scholar
  136. Mills, D. C. B., and Smith, J. B., 1971, The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3’:5’-cyclic monophosphate in platelets, Biochem. J. 121:185.PubMedGoogle Scholar
  137. Mills, D. G. B., Robb, I. A., and Roberts, G. C. K., 1968, The release of nucleotides, 5-hydroxy-tryptamine and enzymes from human blood platelets during aggregation, J. Physiol. 195:715.PubMedGoogle Scholar
  138. Mitchell, J. R. A., and Sharp, A. A., 1964, Platelet clumping in vitro, Br. J. Haematol. 10:78.PubMedGoogle Scholar
  139. Muggli, R., and Baumgartner, H. R., 1973, Collagen-induced platelet aggregation: Requirement for tropocollagen multimers, Thromb. Res. 3:715.Google Scholar
  140. Mürer, E. H., 1968, Release reaction and energy metabolism in blood platelets with special reference to the burst in oxygen uptake, Biochim. Biophys. Acta 162:320.PubMedGoogle Scholar
  141. Murphy, M. J., 1972, The shape of blood platelets. An implication of lyophilization and scanning electron microscopy, Thromb. Diath. Haemorrh. 28:237.PubMedGoogle Scholar
  142. Mustard, J. F., and Packham, M. A., 1970, Factors influencing platelet function: Adhesion, release and aggregation, Pharmacol. Rev. 22:97.PubMedGoogle Scholar
  143. Mustard, J. F., Hegardt, B., Rowsell, H. C., and MagMillan, R. L., 1964, Effect of adenosine nucleotides on platelet aggregation and clotting time, J. Lab. Clin. Med. 64:548.PubMedGoogle Scholar
  144. Muszbek, L., and Laki, K., 1974, Cleavage of actin by thrombin, Proc. Natl. Acad. Sci. U.S.A. 71:2208.PubMedGoogle Scholar
  145. Naghman, R. L., and Ferris, B., 1970, Human platelet membrane protein, Biochemistry 9:200.Google Scholar
  146. Nachman, R. L., and Ferris, B., 1972, Studies on the proteins of human platelet membranes, J. Biol. Chem. 247:4468.PubMedGoogle Scholar
  147. Nachman, R. L., and Ferris, B., 1973, Iodination of the human platelet membrane. Studies on the major surface glycoprotein, J. Biol. Chem. 248:2928.PubMedGoogle Scholar
  148. Nachman, R. L., and Ferris, B., 1974, Binding of adenosine diphosphate by isolated membranes from human platelets, J. Biol. Chem. 249:704.PubMedGoogle Scholar
  149. Nachman, R. L., Marcus, A. J., and Zucker-Franklin, D., 1967a, Immunologic studies of proteins associated with subcellular fractions of normal human platelets, J. Lab. Clin. Med. 69:651.PubMedGoogle Scholar
  150. Nachman, R. L., Marcus, A. J., and Safier, L. B., 1967b, Platelet thrombosthenin: Subcellular localization and function, J. Clin. Invest. 46:1380.PubMedGoogle Scholar
  151. Nakao, K., and Angrist, A. A., 1968, Membrane surface specialization of blood platelet and megakaryocyte, Nature (London) 217:960.Google Scholar
  152. Nelsestuen, G. L., and Suttie, J. W., 1972, Mode of action of vitamin K. Calcium binding properties of bovine prothrombin, Biochemistry 11:4961.PubMedGoogle Scholar
  153. Nelsestuen, G. L., and Zytkovicz, T. H., 1974, The mode of action of vitamin K. Identification of γ-carboxyglutamic acid as a component of prothrombin, J. Biol. Chem. 249:6347.PubMedGoogle Scholar
  154. Nishizawa, E. E., Hovig, T., Lotz, F., Rowsell, H. C., and Mustard, J. F., 1969, Effect of a natural phosphatidyl serine fraction on blood coagulation, platelet aggregation and haemostasis, Br. J. Haematol. 16:487.PubMedGoogle Scholar
  155. O’Brien, J. R., 1963, Some effects of adrenaline and anti-adrenaline on platelets in vitro and in vivo, Nature (London) 200:763.Google Scholar
  156. Øllgaard, E., 1961, Macroscopic studies of platelet aggregation. Nature of an aggregating factor in red blood cells and platelets, Thromb. Diath. Haemorrh. 6:86.PubMedGoogle Scholar
  157. Owen, W. G., Esmon, C. T., and Jackson, C. M., 1974, The conversion of prothrombin to thrombin. I. Characterization of the reaction products formed during the activation of bovine prothrombin, J. Biol. Chem. 249:594.PubMedGoogle Scholar
  158. Oxender, D. L., 1972, Membrane Transport, Ann. Rev. Biochem. 41:777.PubMedGoogle Scholar
  159. Papahadjopoulos, D., and Hanahan, D. J., 1964, Observations on the interactions of phospholipids and certain clotting factors in prothrombin activator formation, Biochim. Biophys. Acta 90:436.PubMedGoogle Scholar
  160. Papahadjopoulos, D., Mayhew, E., Poste, G., Smith, S., and Vail, W. J., 1974, Incorporation of lipid vesicles by mammalian cells provides a potential method for modifying cell behaviour, Nature (London) 252:163.Google Scholar
  161. Pepper, D. S., and Jamieson, G. A., 1968, Isolation of a glycoprotein fraction from human platelet membranes which inhibits viral haemagglutination, Nature (London) 219:1252.Google Scholar
  162. Pepper, D. S., and Jamieson, G. A., 1969, Studies on glycoproteins. III. Isolation of sialylglycopeptides from human platelet membranes, Biochemistry 8:3362.PubMedGoogle Scholar
  163. Pepper, D. S., and Jamieson, G. A., 1970, Isolation of a macroglycopeptide from human platelets, Biochemistry 9:3706.PubMedGoogle Scholar
  164. Philip, G., Moran, J., and Colman, R. W., 1970, Dissociation and association of the oligomeric forms of factor V, Biochemistry 9:2212.PubMedGoogle Scholar
  165. Phillips, D. R., 1972, Effect of trypsin on the exposed polypeptides and glycoproteins in the human platelet membrane, Biochemistry 11:4582.PubMedGoogle Scholar
  166. Phillips, D. R., and Agin, P. P., 1974a, Thrombin substrates and the proteolytic site of thrombin action on human platelet membranes, Biochim. Biophys. Acta 352:218.PubMedGoogle Scholar
  167. Phillips, D. R., and Agin, P. P., 1974b, Thrombin interaction with human platelets. Potentiation of thrombin-induced aggregation and release by inactivated thrombin, Thromb. Diath. Haemorrh. 32:207.PubMedGoogle Scholar
  168. Probst, E., and Lüscher, E. F., 1972, Studies on thrombosthenin A, the actin-like moiety of the contractile protein from blood platelets. I. Isolation, characterization and evidence for two forms of thrombosthenin A., Biochim. Biophys. Acta 278:577.PubMedGoogle Scholar
  169. Puett, D., Wasserman, B. K., Ford, J. D., and Cunningham, L. W., 1973, Collagen-mediated platelet aggregation. Effects of collagen modification involving the protein and carbohydrate moieties, J. Clin. Invest. 52:2495.PubMedGoogle Scholar
  170. Puszkin, S., Puszkin, E., Katz, A. M., and Aledort, L. M., 1974, Control of platelet actomyosin activity: Effect of ADP on superprecipitation and ATPase activity of human platelet actomyosin, Biochim. Biophys. Acta 347:102.PubMedGoogle Scholar
  171. Radcliffe, R. D., and Barton, P. G., 1972, The purification and properties of activated factor X: Bovine factor X activated with Russell’s viper venom, J. Biol. Chem. 247:7735.PubMedGoogle Scholar
  172. Rodman, N. F., 1967a, Platelet ultrastructure, Thromb. Diath. Haemorrh. Suppl. 26:9.PubMedGoogle Scholar
  173. Rodman, N. F., 1967b, Sequential changes in platelet ultrastructure in a white thrombus model, in: Physiology of Hemostasis and Thrombosis (S. A. Johnson and W. H. Seegers, eds.), pp. 266–287, Charles C.Thomas, Springfield, Illinois.Google Scholar
  174. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5:270.PubMedGoogle Scholar
  175. Salzman, E. W., and Neri, L. L., 1969, Cyclic 3′,5 -adenosine monophosphate in human blood platelets, Nature (London) 224:609.Google Scholar
  176. Salzman, E. W., Chambers, D. A., and Neri, L. L., 1966, Possible mechanism of aggregation of blood platelets by adenosine diphosphate, Nature (London) 210:167.Google Scholar
  177. Schmukler, M., and Zuve, P. D., 1972, Studies of glycosidases in fresh and stored human platelets, J. Lab. Clin. Med. 80:635.PubMedGoogle Scholar
  178. Seaman, G. V. F., 1967, Surface potential and platelet aggregation, Thromb. Diath. Haemorrh. Suppl. 26:53.PubMedGoogle Scholar
  179. Seaman, G. V. F., and Vassar, P. S., 1966, Changes in the electrokinetic properties of platelets during their aggregation, Arch. Biochem. Biophys. 117:10.PubMedGoogle Scholar
  180. Shio, H., and Ramwell, P. W., 1972, Prostaglandin E1 in platelet harvesting: An in vitro study, Science 175:536.PubMedGoogle Scholar
  181. Siegel, A., Burri, P. H., Weibel, E. R., Bettex-Galland, M., and Lüscher, E. F., 1971, Density gradient centrifugation and electron microscopic characterization of subcellular fractions from human blood platelets, Thromb. Diath. Haemorrh. 25:252.PubMedGoogle Scholar
  182. Siraganian, R. P., 1972, Platelet requirement in the interaction of the complement and clotting systems, Nature (London) New Biol. 239:208.Google Scholar
  183. Skoza, L., Zucker, M. B., Jerushalmy, Z., and Grant, R., 1967, Kinetic studies of platelet aggregation induced by adenosine diphosphate and its inhibition by chelating agents, guanidino compounds and adenosine, Thromb. Diath. Haemorrh. 18:713.PubMedGoogle Scholar
  184. Smith, J. B., Silver, M. J., Ingerman, C. M., and Kocsis, J. J., 1974, PGE D2 inhibits aggregation of human platelets, Thromb. Res. 5:291.PubMedGoogle Scholar
  185. Spaet, T. H., and Cintron, J., 1965, Studies on platelet factor 3 availability, Br. J. Haematol. 11:296.Google Scholar
  186. Spaet, T. H., and Lejnieks, I., 1966, Studies on the mechanism whereby platelets are clumped by adenosine diphosphate, Thromb. Diath. Haemorrh. 15:36.PubMedGoogle Scholar
  187. Spaet, T. H., and Stemmerman, M. B., 1972, Platelet adhesion, Ann. N.Y. Acad. Sci. 201:13.PubMedGoogle Scholar
  188. Spector, A. A., Hoak, J. C., Warner, E. D., and Fry, G. L., 1970, Utilization of long chain free fatty acids by human platelets, J. Clin. Invest. 49:1489.PubMedGoogle Scholar
  189. Steiner, M., 1972, Lipid and amino acid synthesis in aggregating platelets, Ann. N.Y. Acad. Sci. 201:92.PubMedGoogle Scholar
  190. Steiner, M., 1973, Effect of thrombin on the platelet membrane, Biochim. Biophys. Acta 233:653.Google Scholar
  191. Steiner, M., and Kuramoto, A., 1971, Energy metabolism of aggregating platelets. Ser. Haematol. 4:98.PubMedGoogle Scholar
  192. Steiner, M., Ando, Y., and Lowenstein, S. R., 1973, Quantification of sulfhydryl and disulfide groups in platelet membranes. Effect of mercaptide formation on aggregation in: Erythrocytes, Thrombocytes, and Leukocytes (E. Gerlach, K. Moser, E. Deutsch, and W. Willmanns, eds.), pp. 206–208, Georg Thieme, Stuttgart.Google Scholar
  193. Stenflo, J., and Ganrot, P. O., 1973, Binding of Ca2+ to normal and dicoumarol-induced prothrombin, Biochem. Biophys. Res. Commun. 50:98.PubMedGoogle Scholar
  194. Stenflo, J., Fernlund, P., Egan, W., and Roepstorff, P., 1974, Vitamin K dependent modifications of glutamic acid residues in prothrombin, Proc. Natl. Acad. Sci. U.S.A. 71:2730.PubMedGoogle Scholar
  195. Sterzing, P. R., and Barton, P. G., 1973, The influence of cholesterol on the activity of phospholipids in blood coagulation: Requirement for a liquid-crystalline lipid phase, Chem. Phys. Lipids 10:137.PubMedGoogle Scholar
  196. Stone, J. V., Horák, H., Singh, R. K., and Barton, P. G., 1976, Sulfhydryl analogues of adenosine diphosphate: chemical synthesis and activity as platelet aggregating agents, Can. J. Biochem. 54:540.Google Scholar
  197. Tangen, O., McKinnon, E. L., and Berman, H. J., 1973, On the fine structure and aggregation requirements of gel filtered platelets, Scand. J. Haematol. 10:96.PubMedGoogle Scholar
  198. Tanner, M. J. A., Boxer, D. H., Gumming, J., and Verrier-Jones, J., 1974, A set of surface proteins common to the circulating human platelet and lymphocyte, Biochem. J. 141:909.PubMedGoogle Scholar
  199. Tollefsen, D. M., Feagler, J. R., and Majerus, P. W., 1974, The binding of thrombin to the surface of human platelets, J. Biol. Chem. 249:2646.PubMedGoogle Scholar
  200. Valeri, G. R., Zaroulis, C. G., Rogers, J. C., Handin, R. I., and Marghionni, L. D., 1972, Prostaglandins in the preparation of blood components, Science 175:539.PubMedGoogle Scholar
  201. Van der Plas, P. M., Van Es, G., Kraan, L., and Hemker, H. G., 1973, The influence of the polyene antibiotic filipin on the extrinsic pathway of blood coagulation, Haemostasis 1:191.Google Scholar
  202. Van der Plas, P. M., Kraan, L., Van Es, G., Stibbe, J., and Hemker, H. C., 1974, Effect of the polyene antibiotic filipin on the lipid-dependent intrinsic pathway of blood coagulation, Haemostasis 3:1.PubMedGoogle Scholar
  203. Vroman, L., 1965, Effects of hydrophobic surfaces upon blood coagulation, Thromb. Diath. Haemorrh. 10:455.Google Scholar
  204. Walsh, P. N., 1972, Albumin density gradient separation and washing of platelets and the study of platelet coagulant activities, Br. J. Haematol. 22:205.PubMedGoogle Scholar
  205. White, J. G., 1971, Platelet morphology, in: The Circulating Platelet (S. A. Johnson, ed.), pp. 45–121, Academic Press, New York.Google Scholar
  206. White, J. G., 1972, Interactions of membrane systems in blood platelets, Am. J. Pathol. 66:295.PubMedGoogle Scholar
  207. White, J. G., 1974, Shape change, Thromb. Diath. Haemorrh. Suppl. 60:156.Google Scholar
  208. Willingham, M. G., Ostlund, R. E., and Pastan, I., 1974, Myosin is a component of the cell surface of cultured cells, Proc. Natl. Acad. Sci. U.S.A. 71:4144.PubMedGoogle Scholar
  209. Wilner, G. D., Nossel, H. L., and LeRoy, E. C., 1968, Aggregation of platelets by collagen, J. Clin. Invest. 47:2616.PubMedGoogle Scholar
  210. Zucker, M. B., and Peterson, J., 1967, Serotonin, platelet factor 3 and platelet aggregating agent released by adenosine diphosphate, Blood 30:556.Google Scholar
  211. Zucker, M. B., and Peterson, J., 1968, Inhibition of adenosine diphosphate-induced secondary aggregation and other platelet functions by acetylsalicyclic acid ingestion, Proc. Soc. Exp. Biol. Med. 127:547.PubMedGoogle Scholar
  212. Zucker-Franklin, D., and Grusky, G., 1972, The actin and myosin filaments of human and bovine blood platelets, J. Clin. Invest. 51:419.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Peter G. Barton
    • 1
  1. 1.Department of BiochemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations