Advertisement

Alterations of Galactosaminyl- and Galactosyltransferases in Cultured Mammalian Cells and in Vivo

  • Roscoe O. Brady
  • Peter H. Fishman

Abstract

A large proportion of the reactions involved in the biosynthesis of cellular constituents are catalyzed by membrane-bound enzymes. A major group of these components is the sialoglycolipids known as gangliosides. These substances contain a common subunit called ceramide (N-acylsphingosine) to which carbohydrate chains are linked by their nonreducing ends. A homologous series of gangliosides is found in normal contact-inhibited cultured mouse cell lines containing 2–4 molecules of hexose and 1 or 2 molecules of N-acetylneuraminic acid (or N-glycolylneuraminic acid) (Figure 1). A larger series of gangliosides is present in normal human brain and the structures of these components are indicated in Figure 2. We have recently observed striking alterations in both of these patterns resulting from specific blocks in the synthesis of gangliosides. The agents which bring about these enzymatic defects in the cultured cells simultaneously cause tumorogenic transformation of the cells. In this chapter we shall examine the potential relevance of the altered ganglioside composition to neoplastic transformation of cells. We shall also indicate the pathological consequences of a particular block in ganglioside synthesis in a novel human metabolic disorder which has recently been identified.

Keywords

Mouse Cell Line Glycosyltransferase Activity Murine Sarcoma Virus Sialyltransferase Activity Ganglioside Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S. A., and Todaro, G. J., 1968, Development of 3T3-like lines from Balb/c mouse embryo cultures: transformation susceptibility to SV-40 J. Cell. Physiol. 72:141.PubMedCrossRefGoogle Scholar
  2. Basiligo, C., Renger, H. C., Burstin, S. J., and Toniolo, D., 1974, Host cell control of viral transformation, in:Control of Proliferation in Animal Cells (B. Clarkson and R. Baserga, eds.), Cold Spring Harbor, New York, pp. 167–176.Google Scholar
  3. Basu, S., Kaufman, B., and Roseman, S., 1968, Enzymatic synthesis of ceramide glucose and ceramide lactose by glycosyltransferases from embryonic chicken brain, J. Biol. Chem. 243:5802.PubMedGoogle Scholar
  4. Brady, R. O., and Fishman, P. H., 1974, Biosynthesis of glycolipids in virus-transformed cells, Biochim. Biophys. Acta 355:121.PubMedGoogle Scholar
  5. Brady, R. O., and Mora, P. T., 1970, Alterations in ganglioside pattern and synthesis in SV-40 and polyoma virus-transformed mouse cell lines, Biochim. Biophys. Acta 218:308.Google Scholar
  6. Brady, R. O., and Quarles, R. H., 1973, Enzymology of myelination, Mol. Cell. Biochem. 2:23.PubMedCrossRefGoogle Scholar
  7. Brady, R. O., Borek, C., and Bradley, R. M., 1969, Composition and synthesis of gangliosides in rat hepatocytes and hepatoma cell lines, J. Biol. Chem. 244:6552.PubMedGoogle Scholar
  8. Brady, R. O., Fishman, P. H., and Mora, P. T., 1973, Membrane components and enzymes in virally transformed cells, Fed. Proc. 32:192.Google Scholar
  9. Coleman, P. L., Fishman, P. H., Brady, R. O., and Todaro, G. J., 1975, Altered ganglioside biosynthesis in mouse cell cultures following transformation with chemical carcinogens, J. Biol. Chem. 250:55.PubMedGoogle Scholar
  10. Cumar, F. A., Brady, R. O., Kolodny, E. H., McFarland, V. W., and Mora, P. T., 1970, Enzymatic block in the synthesis of gangliosides in DNA virus-transformed tumorigenic mouse cell lines, Proc.Natl. Acad. Sci. U.S.A. 67:757.PubMedCrossRefGoogle Scholar
  11. Cumar, F. A., Fishman, P. H., and Brady, R. O., 1971, Analogous reactions for the biosynthesis of monosialo and disialo-gangliosides in brain, J. Biol. Chem. 246:5075.PubMedGoogle Scholar
  12. Cumar, F. A., Tallman, J. F., and Brady, R. O., 1972, The biosynthesis of a disiayl-ganglioside by galctosyltransferase from rat brain, J. Biol. Chem. 247:2322.PubMedGoogle Scholar
  13. Den, H., Sela, B.-A., Roseman, S., and Sachs, L., 1974, Blocks in ganglioside synthesis in transformed hamster cells and their revertants, J. Biol. Chem. 249:659.PubMedGoogle Scholar
  14. Diringer, H., Strobel, G., and Koch, M. A., 1972, Glycolipids of mouse fibroblasts and virus transformed mouse cell lines, Hoppe-Seyler’s Z. Physiol. Chem. 353:1769.PubMedCrossRefGoogle Scholar
  15. Dubbs, D. R., Kitt, S., de Torres, R. A., and Anken, M., 1967, Virogenic properties of bromodeoxyuridine resistant Simian virus 40-transformed mouse kidney cells, J. Virol. 1:968.PubMedGoogle Scholar
  16. Fishman, P. H., 1974, Normal and abnormal biosynthesis of gangliosides, Chem. Phys. Lipids 13:305.PubMedCrossRefGoogle Scholar
  17. Fishman, P. H., McFarland, V. W., Mora, P. T., and Brady, R. O., 1972, Ganglioside biosynthesis in mouse cells: Glycosytransferase activities in normal and virally-transformed lines, Biochem. Biophys. Res. Commun. 48:48.PubMedCrossRefGoogle Scholar
  18. Fishman, P. H., Brady, R. O., Bradley, R. M., Aaronson, S. A., and Todaro, G. J., 1974, Absence of a specific ganglioside galactosyl transferase in mouse cells transformed by murine sarcoma virus, Proc. Natl. Acad. Sci. U.S.A. 71:298.PubMedCrossRefGoogle Scholar
  19. Fishman, P. H., Simmons, I. H., Brady, R. O., and Freese, E., 1974, Induction of glycolipid biosynthesis by soidum butyrate in HeLa cells, Biochem. Biophys. Res. Commun. 59:292.PubMedCrossRefGoogle Scholar
  20. Fishman, P. H., Max, S. R., Tallman, J. F., Brady, R. O., Maglaren, N. K., and Cornblath, M., 1975, Deficient ganglioside biosynthesis: A novel human sphigolipidosis, Science 187:68.PubMedCrossRefGoogle Scholar
  21. Ginsburg, E., Solomon, D., Sreevalsan, T., and Freese, E., 1973, Growth inhibition and morphological changes caused by lipophilic acids in mammalian cells, Proc. Natl. Acad. Sci. U.S.A. 70:2457.PubMedCrossRefGoogle Scholar
  22. Hollenberg, M. D., Fishman, P. H., Bennett, V., and Cuatrecasas, P., 1974, Cholera toxin and cell growth: Role of membrane gangliosides, Proc. Natl. Acad. Sci. U.S.A. 71:4224.PubMedCrossRefGoogle Scholar
  23. Jaenisch, R., and Mintz, B., 1974, Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocytes injected with virus DNA, Proc. Natl. Acad. Sci. U.S.A. 71:1250.PubMedCrossRefGoogle Scholar
  24. Kaufman, B., Basu, S., and Roseman, S., 1967, Studies on the biosynthesis of gangliosides, in:Inborn Disorders of Sphigo lipid Metabolism (S. M. Aaronson and B. W. Volk, eds.), pp. 193–213, Pergamon Press, Oxford.Google Scholar
  25. Kaufman, B., Basu, S., and Roseman, S., 1968, Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chicken brain, J. Biol. Chem. 243:5804.PubMedGoogle Scholar
  26. Keenan, R. W., Moore, D. J., and Basu, S., 1974, Concentration of glycosphingolipid glycosyltrans-ferases in Golgi apparatus from rat brain, J. Biol. Chem. 249:310.PubMedGoogle Scholar
  27. Klenk, H.-D., and Choppin, P. W., 1970, Glycosphingolipids of plasma membranes of cultured cells and an enveloped virus (SV5) grown in these cells, Proc. Natl. Acad. Sci. U.S.A. 66:57.PubMedCrossRefGoogle Scholar
  28. Kostic, D., and Bughheit, F., 1970, Gangliosides in human brain tumors, Life Sci. 9:589.CrossRefGoogle Scholar
  29. Max, S. R., Maclaren, N. K., Brady, R. O., Bradley, R. M., Rennels, M. B., Tanaka, J., Garcia, J. H., and Cornblath, M., 1974, GM3 (hematoside) sphingolypodystrophy, N. Engl. J. Med. 291:929.PubMedCrossRefGoogle Scholar
  30. Mora, P. T., Brady, R. O., Bradley, R. M., and McFarland, V. W., 1969, Gangliosides in DNA virus-transformed and spontaneously transformed tumorigenic mouse cell lines, Proc. Natl. Acad.Sci. U.S.A. 63:1290.PubMedCrossRefGoogle Scholar
  31. Mora, P. T., Cumar, F. A., and Brady, R. O., 1971, A common biochemical change in SV-40 and polyoma virus-transformed mouse cells coupled to control of cell growth in culture, Virology 46:60.PubMedCrossRefGoogle Scholar
  32. Mora, P. T., Fishman, P. H., Bassin, R. H., Brady, R. O., and McFarland, V. W., 1973, Transformation of Swiss 3T3 cells by murine sarcoma virus is followed by a decrease in a glycolipid glycosyltransferase, Nature, 245:226.Google Scholar
  33. Nigam, V. N., Lallier, R., and Brailovsky, C., 1973, Ganglioside patterns and phenotypic characteristics in a normal variant and a transformed back variant of a simian virus 40-induced hamster tumor cell line, J. Cell Biol. 58:307.PubMedCrossRefGoogle Scholar
  34. Patt, L. M., and Grimes, W. J., 1974, Cell surface glycolipid and glycoprotein glycosyltransferases of normal and transformed cells, J. Biol. Chem. 249:4157.PubMedGoogle Scholar
  35. Quirk, J. M., Tallman, J. F., and Brady, R. O., 1972, The preparation of trihexosyl and tetrahexosyl-gangliosides specifically labeled in the N-acetylgalactosaminyl moiety, J. Labelled Compd. VIII:483.CrossRefGoogle Scholar
  36. Renger, H. C., and Basiligo, C., 1972, Mutation causing temperature-sensitive expression of cell transformation by a tumor virus., Proc. Natl. Acad. Sci. U.S.A. 69:109.PubMedCrossRefGoogle Scholar
  37. Renkonen, O., Gahmberg, C. G., Simons, K., and Kaariainen, L., 1970, Enrichment of gangliosides in plasma membranes of hamster kidney fibroblasts, Acta Chem. Scand. 24:733.PubMedCrossRefGoogle Scholar
  38. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intracellular adhesion., Chem. Phys. Lipids 5:270.PubMedCrossRefGoogle Scholar
  39. Seifert, H., and Uhlenbruck, G., 1965, Uber ganglioside in Hirntumoren, Naturwissenschaften 52:190.CrossRefGoogle Scholar
  40. Sheinin, R., Onodera, K., Yogeeswaran, G., and Murray, R. K., 1971, Studies of components of the surface of normal and virus-transformed mouse cells, in: The Biology of Oncogenic Viruses (L. G. Silvestre, ed.), pp. 274–285, North Holland, Amsterdam.Google Scholar
  41. Simmons, J. L., Fishman, P. H., Freese, E., and Brady, R. O., 1975, Morphological alterations and ganglioside sialyl transferase activity induced by small fatty acids in HeLa cells, J. Cell Biol. 66:414.PubMedCrossRefGoogle Scholar
  42. Tanaka, J., Garcia, J. H., Max, S. R., Viloria, J. E., Kamijyo, T., Maclaren, N. K., Cornblath, M., and Brady, R. O., 1975, Cerebral sponginess and GM3 gangliosidosis, J. Neuropathol. Exp.Neurol. 34:249.PubMedCrossRefGoogle Scholar
  43. Todaro, G. J., and Green, H., 1963, Quantitative studies on the growth of mouse embryo cells in culture and their development into established lines, J. Cell Biol. 17:299.PubMedCrossRefGoogle Scholar
  44. Weinstein, D. B., Marsh, J. B., Glick, M. C., and Warren, L., 1970, Membranes of animal cells. VI. The glycolipids of the L cell and its surface membrane, J. Biol. Chem. 245:3928.PubMedGoogle Scholar
  45. Wiblin, C. N., and MacPherson, I., 1973, Reversion in hybrids between SV-40 transformed hamster and mouse cells, Int. J. Cancer 12:148.PubMedCrossRefGoogle Scholar
  46. Yogeeswaran, G., Sheinin, R., Wherrett, J. R., and Murray, R. K., 1972, Studies on the glyco-sphingolipids of normal and virally transformed 3T3 mouse fibroblasts, J. Biol. Chem. 247:5146.PubMedGoogle Scholar
  47. Yogeeswaran, G., Laine, R. A., and Hakomori, S., 1974, Mechanism of cell contact-dependent glycolipid synthesis: Further studies with glycolipid-glass complex, Biochem. Biophys. Res. Commun. 59:591.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Roscoe O. Brady
    • 1
  • Peter H. Fishman
    • 1
  1. 1.Developmental and Metabolic Neurology Branch, National Institute of Neurological Diseases and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations