Role of Endoplasmic Reticulum and Golgi Apparatus in the Biosynthesis of Plasma Glycoproteins

  • Janos Molnar


Glycoproteins are complex macromolecules composed of a polypeptide backbone to which one or more carbohydrate units are attached. Based on the linkage between the peptide and sugar, one can classify several types of glycoproteins (Spiro, 1970). The linkage between N-acetylglucosamine and asparagine through an N-glycosydic bond is found in most of the plasma glycoproteins. The O-glycosidic linkage between N-acetylgalactosamine and serine or threonine is present in the various mucins of tissue secretions, in some blood-group substances, and cell-surface glycoproteins. The linkage between xylose and serine or threonine occurs in the proteoglycans of connective tissues, such as the protein complexes of chondroitin sulfates, hyaluronic acid, and heparin (Roden, 1970). The O-glycosydic linkage between galactose and serine or threonine is found in collagen.


Sialic Acid Golgi Apparatus Sugar Nucleotide Nascent Protein Golgi Region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anastassiades, T. P., 1973, Effects of a synthetic hexosamine derivative on mucopolysaccharide synthesis by human capsule and synovium, Biochem. Pharmacol. 22:3013.PubMedCrossRefGoogle Scholar
  2. Ashley, C. A., and Peters, T., Jr., 1969, Electron microscopic radioautographic detection of sites of protein synthesis and migration in liver, J. Cell. Biol. 43:237.PubMedCrossRefGoogle Scholar
  3. Ashwell, G., 1964, Carbohydrate metabolism, Ann. Rev. Biochem. 33:101.PubMedCrossRefGoogle Scholar
  4. Atheneos, E., Kukral, J. C., and Winzler, R. J., 1964, Biosynthesis of glycoproteins. II. The site of glucosamine incorporation into canine plasma α-1 acid glycoprotein, Arch. Biochem. Biophys. 106:338.CrossRefGoogle Scholar
  5. Barber, A. J., and Jamieson, G. A., 1971, Platelet collagen adhesion. Collagen glucosyltransferase of the plasma membranes of human platelets, Biochim. Biophys. Acta 252:533.PubMedCrossRefGoogle Scholar
  6. Barr, R. M., and De Luca, L. N., 1974, The in vivo incorporation of mannose, retinol and mevalonic acid into phospholipids of hamster liver, Biochem. Biophys. Res. Commun. 60:355.PubMedCrossRefGoogle Scholar
  7. Baynes, J. W., Hsu, A. F., and Heath, E. C., 1973, The role of mannosylphosphoryl-dihydropoly-isoprenol in the synthesis of mammalian glycoproteins, J. Biol. Chem. 248:5693.PubMedGoogle Scholar
  8. Becker, C. E., and Day, H. G., 1953, Utilization of glucosone and the synthesis of glucosamine in the rat, J. Biol. Chem. 201:795.PubMedGoogle Scholar
  9. Behrens, N. H., Leloir, L. F., 1970, Dolichol monophosphate glucose, an intermediate in glucose transfer in liver, Proc. Natl. Acad. Sci. U.S.A. 66:153.PubMedCrossRefGoogle Scholar
  10. Behrens, N. H., Parodi, A. J., Leloir, L., and Krisman, C. R., 1971a, Role of dolichol phosphate in sugar transfer, Arch. Biochem. Biophys. 143:375.CrossRefGoogle Scholar
  11. Behrens, N. H., Parodi, A. J., and Leloir, L. F., 1971b, Glucose transfer from dolichol monophosphate glucose; The product formed with exogenous microsomal acceptor, Proc. Natl. Acad. Sci. U.S.A. 68:2857.PubMedCrossRefGoogle Scholar
  12. Behrens, N. H., Carminatti, H., Staneloni, R. J., Leloir, L., and Cantarella, A. I., 1973, Formation of lipid-bound oligosaccharides containing mannose. Their role in glycoprotein synthesis, Proc. Natl. Acad. Sci. U.S.A. 70:3390.PubMedCrossRefGoogle Scholar
  13. Bekesi, J. G., and Winzler, R. J., 1967, The metabolism of plasma glycoproteins; studies on the incorporation of L-fucose-14C into tissue and serum in normal rats, J. Biol. Chem. 242:3873.PubMedGoogle Scholar
  14. Bekesi, J. G., Macbeth, R. A. L., and Bice, S., 1966, The metabolism of plasma glycoproteins II: Studies on the rate of incorporation of glucosamine-14C into protein-bound hexosamine in the rat bearing Walker 256 carcinoma, Cancer Res. 26:2307.PubMedGoogle Scholar
  15. Bekesi, J. G., Bekesi, E., and Winzler, R. J., 1969a, Effects of D-glucosamine on the biosynthesis of protein, RNA, and DNA in normal and neoplastic tissues in vivo and in vitro, J. Biol. Chem. 244:3766.PubMedGoogle Scholar
  16. Bekesi, J. G., Molnar, Z., and Winzler, R. J., 1969b, Inhibitory effect of D-glucosamine and other sugar analogs on the viability and transplantability of ascites tumor cells, Cancer Res. 29:353.PubMedGoogle Scholar
  17. Bennet, G., and Leblond, C. P., 1970, Formation of cell coat material for the whole surface of columnar cells in the rat small intestine as visualized by radioautography using fucose-3H, J. Cell Biol. 46:409.CrossRefGoogle Scholar
  18. Bennet, G., and Leblond, C. P., 1971, Passage of fucose-3H label from the Golgi apparatus into dense multivesicular bodies in the duodenal columnar cells and hepatocytes of the rat, J. Cell Biol. 51:875.CrossRefGoogle Scholar
  19. Bocci, V., 1970, Metabolism of plasma proteins, Arch. Fisiol. LXVII:315.Google Scholar
  20. Bosmann, H. B., 1970, Glycoprotein biosynthesis, subcellular localization and activity in 3T3 and SV-3T3 fibroblasts of glycoprotein N-acetylglucosaminyl transferases, FEBS Lett. 8:29.PubMedCrossRefGoogle Scholar
  21. Bosmann, H. B., and Hemsworth, B. A., 1970, Incorporation of amino acids and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria, J. Biol. Chem. 245:363.PubMedGoogle Scholar
  22. Bosmann, H. B., Hagopian, A., and Eylar, E. H., 1968, Membrane glycoprotein biosynthesis: Changes in levels of glycosyltransferases in fibroblasts transformed by oncogenic viruses, J. Cell. Physiol. 72:81.PubMedCrossRefGoogle Scholar
  23. Bostrom, H., Roden, L., and Yamashina, I., 1958, On the metabolism of the acid glycoprotein of plasma, J. Biol. Chem. 230:381.PubMedGoogle Scholar
  24. Boughilloux, S., and Gheftel, G., 1966, Biosynthesis of thyroglobulin; Absence of 14G-glucosamine incorporation on thyroid polysomes, Biochem. Biopkys. Res. Commun. 23:305.CrossRefGoogle Scholar
  25. Boughilloux, S., Ferrand, M., Grégoire, J., and Chabaud, O., 1969, Localization in smooth microsomes from sheep thyroid of both a galactose-transferase and an N-acetylhexosaminetransferase, Biochem. Biopkys. Res. Commun. 37:538.CrossRefGoogle Scholar
  26. Bouchilloux, S., Chabaud, O., Mighel-Beghet, M., Ferrand, M., and Athouel-Haon, A. M., 1970, Differential localization in thyroid microsomal subfractions of a mannosyltransferase, two N- acetylglucosaminetransferases and a galactosyltransferase, Biochem. Biophys. Res. Commun. 40:314.PubMedCrossRefGoogle Scholar
  27. Brooks, D., and Baddiley, J., 1969, The mechanism of biosynthesis and direction of chain extension of a poly(N-acetylglucosamine-1 -phosphate) from the walls of Staphylococcus lactis, Biochem. J. 113:635.PubMedGoogle Scholar
  28. Burton, R. M., Gargia-Bunel, L., Golden, M., and Belflour, Y. M., 1963, Incorporation of radioactivity of glucosamine-14C, glucose-14C, galactose-14C and serine-14C into rat brain lipids, Biochemistry 2:580.PubMedCrossRefGoogle Scholar
  29. Burton, R. M., Honda, S., Howard, R. A., and Vietti, T., 1972, Radioactive precursor incorporation into lipids of humans with cerebral lipidoses, Adv. Exp. Med. Biol. 19:269.Google Scholar
  30. Caccem, J. F., Jackson, J., and Eylar, E. H., 1969, Biosynthesis of mannose containing glycoproteins: A possible lipid intermediate, Biochem. Biophys. Res. Commun. 35:505.CrossRefGoogle Scholar
  31. Cantore, M. L., Leoni, P., Leveroni, A. F., and Regondo, E. F., 1971, Nucleotides and nucleotide sugars in human blood cells II: Group “O,” Biochim. Biophys. Acta 230:423.PubMedCrossRefGoogle Scholar
  32. Capps, J. C., Shetlar, M. R., and Bradford, R. H., 1966, Hexosamine metabolism I. The absorption and metabolism, in vivo, of orally administered D-glucosamine and N-acetyl-D-glucosamine in rats, Biochim. Biophys. Acta 127:194.PubMedCrossRefGoogle Scholar
  33. Chambers, J., Ghidoni, J., and Elbein, A., 1974, Glycoprotein synthesis in aorta, Fed. Proc. 33:817.Google Scholar
  34. Cheftel, C., and Boughilloux, S., 1968, Glycoprotein biosynthesis in sheep thyroid slices incubated with radioactive glucosamine and leucine I. Polysomes, microsomes and postmicrosomal fraction, Biochim. Biophys. Acta 170:15.PubMedCrossRefGoogle Scholar
  35. Cheftel, C., Boughilloux, S., and Chabaud, O., 1968, Glycoprotein biosynthesis in sheep thyroid slices incubated with radioactive glucosamine and leucine III. A study of microsomal subfractions, Biochim. Biophys. Acta 170:29.PubMedCrossRefGoogle Scholar
  36. Choi, Y. S., Knopf, P. M., and Lennox, E. S., 1971, Subcellular fractionation of mouse myeloma cells, 10:659.Google Scholar
  37. Clauser, H., Herman, G., Resignol, B., and Harbon, S., 1972, Biosynthesis of glycoproteins: Biosynthesis at the cellular and subcellular levels, in:Glycoproteins, Vol. 5 (A. Gottschalk, ed.), B.B.A. Library, pp. 1151–1169, Elsevier Publishing Co., New York.Google Scholar
  38. Cook, G. M. W., Laigo, M. T., and Eylar, E., 1965, Biosynthesis of glycoproteins of Ehlich ascites carcinoma cell membranes, Proc. Natl. Acad. Sci. U.S.A. 54:247.PubMedCrossRefGoogle Scholar
  39. Cowan, N.J., and Robinson, G. B., 1970, The ribosomal incorporation of hexosamine into glycoprotein in a mouse myeloma, FEBS Lett. 8:6.PubMedCrossRefGoogle Scholar
  40. Dallner, G., 1963, Studies on the structural and enzymic organization of the membranous elements of liver microsomes, Acta Pathol. Microbiol. Scand. (Suppl.) 166:1.Google Scholar
  41. Dallner, G., Behrens, N. H., Parodi, A. J., and Leloir, L. F., 1972, Subcellular distribution of dolichol phosphate, FEBS Lett. 24:315.PubMedCrossRefGoogle Scholar
  42. Defrêne, A., and Louisot, P., 1972, Activité des N-acetyl-glucosaminyltransferases microsomiques chez les animaux porteurs d’une infection à Myxovirus, C.R. Acad. Paris 274:1853.Google Scholar
  43. Del Giaggo, R., and Maley, F., 1964, Hexosamine metabolism II. Acid soluble products in rat liver following perfursion with glucosamine-14C, J. Biol. Chem. 239:PC2400.Google Scholar
  44. De Luga, L., and Yuspa, S. H., 1974, Altered glycoprotein synthesis in mouse epidermal cells treated with retinyl acetate in vitro, Exp. Cell Res. 86:106.CrossRefGoogle Scholar
  45. De Luga, L., Little, E. P., and Wolf, G., 1969, Vitamin A and protein synthesis by rat intestinal mucosa, J. Biol. Chem. 244:701.Google Scholar
  46. De Luga, L., Schumacher, M., and Wolf, G., 1970, Biosynthesis of a fucose containing glycopeptide from rat small intestine from normal and vitamin A deficient conditions, J. Biol. Chem. 245:4551.Google Scholar
  47. De Luca, L., Maestri, N., Rosso, G., and Wolf, G., 1973, Retinal glycolipids, J. Biol. Chem. 248:641.PubMedGoogle Scholar
  48. Dufford, R. O., and Caputto, L. R., 1972, A natural inhibitor of sialyltransferase, its influence in brain development, Biochemistry 11:1396.CrossRefGoogle Scholar
  49. Ehrenreich, J. H., Bergeron, J. J. M., Siekevitz, P., and Palade, G. E., 1973, Golgi fractions prepared from rat liver homogenates I. Isolation procedure and morphological characterization, J. Cell Biol. 59:45.PubMedCrossRefGoogle Scholar
  50. Evans, P. J., and Hemming, F. W., 1973, Unambiguous characterization of dolichyl-P-Man as a product of Man-transferase of pig liver endoplasmic reticulum, FEBS Lett. 31:335.PubMedCrossRefGoogle Scholar
  51. Fleischer, B., and Fleischer, S., 1970, Incorporation and characterization of Golgi membranes from rat liver, Biochim. Biophys. Acta 219:301.PubMedCrossRefGoogle Scholar
  52. Fleischer, B., Fleischer, S., and Ozawa, H., 1969, Isolation and characterization of Golgi membranes from bovine liver, J. Cell Biol. 43:59.PubMedCrossRefGoogle Scholar
  53. Froger, C., and Louisot, P., 1972, Glycoprotein biosynthesis in arbovirus infected cells, Int. J. Biochem. 3:613.CrossRefGoogle Scholar
  54. Gang, H., Lieber, G. S., and Rubin, E., 1973, Ethanol increases glycosyl transferase activity in the hepatic Golgi apparatus, Nature (London), New Biol. 243:123.CrossRefGoogle Scholar
  55. Ghalambor, M. A., and Jeanloz, R. W., 1974, Biosynthesis of P1–2-acetamido-2-deoxy-α-gluco-pyranosyl-P2-dolichyl-pyrophosphate, Fed. Proc. 33:813.Google Scholar
  56. Ginsburg, V., 1964, Sugar nucleotides and synthesis of carbohydrates, Adv. Enzymol. 26:35.PubMedGoogle Scholar
  57. Glaumann, H., 1970, Studies on the synthesis and transport of albumin in microsomal subfractions from rat liver, Biochim. Biophys. Acta 224:206.PubMedGoogle Scholar
  58. Glaumann, H., and Dallner, G., 1970, Subfractionation of smooth microsomes from rat liver, J. Cell Biol. 47:34.PubMedCrossRefGoogle Scholar
  59. Glaumann, H., and Ericsson, J. L. E., 1970, Evidence for the participation of the Golgi apparatus in the intracellular transport of nascent albumin in the liver cell, J. Cell Biol. 47:555.PubMedCrossRefGoogle Scholar
  60. Glaumann, H., Von der Decken, A., and Dallner, G., 1968, The heterogenous composition of the smooth microsomal membranes in rat liver, Life Sci. 7:905.PubMedCrossRefGoogle Scholar
  61. Glasgow, M. S., and Quarles, R. H., 1973, Appearance of 3H2O in rat tissues resulting from the metabolism of L-3H-fucose by intestinal bacteria, Biochim. Biophys. Acta 304:586.PubMedCrossRefGoogle Scholar
  62. Glasgow, M. S., Quarles, R. H., and Grollman, S., 1972, Metabolism of fucoproteins in the developing rat brain, Brain Res. 42:129.PubMedCrossRefGoogle Scholar
  63. Gordon, A. H., 1973, Acute-phase proteins in wound healing, in: Protein Turnover, Ciba Found. Symp. (new series), pp. 73–90.Google Scholar
  64. Gottschalk, A., 1973, On the biosynthesis of glycoproteins, Z. Naturforsch. 280:94.Google Scholar
  65. Griffin, E. E., and Miller, L. L., 1974, Effects of hypophysectomy of liver donor on net synthesis of specific plasma proteins by the isolated perfused rat liver, J. Biol. Chem. 249:5062.PubMedGoogle Scholar
  66. Haddad, M. D., Herscovics, A., Nadler, N.J., and Leblond, C. P., 1971, Radioautographic study of m vivo and in vitro incorporation of fucose-3H into thyroglobulin by rat thyroid folicullar cells, J. Cell Biol. 49:856.PubMedCrossRefGoogle Scholar
  67. Hallinan, T., Murty, G. N., and Grant, J. H., 1968a, Early labeling with glucosamine-14G of granular and agranular endoplasmic reticulum and free ribosomes from rat liver, Arch. Biochem. Biophys. 125:715.CrossRefGoogle Scholar
  68. Hallinan, T., Murty, C. N., and Grant, J. H., 1968b, The exclusive function of reticulum bound ribosomes in glycoprotein synthesis, Life Sci. 7:225.PubMedCrossRefGoogle Scholar
  69. Hamilton, R. L., Ragen, D. M., Grey, M. E., and LeQuire, V. S., 1967, Lipid transport in liver I. Electron microscopic identification of very low density lipoproteins in perfused rat liver, Lab. Invest. 16:305.PubMedGoogle Scholar
  70. Hawtrey, A., Scott-Burden, T., Jones, P., and Robertson, G., 1974, Inhibition of 1-β-D-arabino-furanosyl-cytosine of the incorporation of N-acetylneuraminic acid into glycolipids and glycoproteins of hamster embryo cells, Biochem. Biophys. Res. Commun. 54:1282.CrossRefGoogle Scholar
  71. Heath, E. C., 1971, Complex polysaccharides, Ann. Rev. Biochem. 40:29.PubMedCrossRefGoogle Scholar
  72. Helgeland, L., 1965, Incorporation of radioactive glucosamine into submicrosomal fractions isolated from rat liver, Biochim. Biophys. Acta 101:106.PubMedGoogle Scholar
  73. Herscovics, A., 1969, Biosynthesis of thyroglobulin: Incorporation of 14G-galactose, 14G-mannose and 3H-leucine into soluble proteins by rat thyroids in vitro, Biochem. J. 112:709.Google Scholar
  74. Herscovics, A., 1970, Biosynthesis of thyroglobulin: Incorporation of 3H-fucose into protein by rat thyroids in vitro, Biochem. J. 117:411.PubMedGoogle Scholar
  75. Herscovics, A., Warren, G. D., Jeanloz, R. W., Wedgwood, J. F., Liu, I., and Strominger, J. L., 1974, Occurrences of a j3-mannopyranosyl phosphate residue in the polyprenyl mannosyl phosphate formed in calf pancreas microsomes and human lymphocytes, FEBS Lett. 45:312.PubMedCrossRefGoogle Scholar
  76. Hill, R. B., Gaetani, S., Paolucci, A. M., RamaRao, P. B., Alden, R., Ranhorta, G. S., Shah, D. V., Shah, V. K., and Johnson, B. G., 1968, Vitamin K and biosynthesis of protein and prothrombin, J.Biol.Chem. 243:3930.PubMedGoogle Scholar
  77. Hsu, A. F., Baynes, J. W., and Heath, E. C., 1974a, The role of dolichol-oligosaccharide as an intermediate in glycoprotein biosynthesis, Fed. Proc. 33:814.Google Scholar
  78. Hsu, A. F., Baynes, J. W., and Heath, E. C., 1974b, The role of a dolichol-oligosaccharide as an intermediate in glycoprotein biosynthesis, Proc. Natl. Acad. Sci. U.S.A. 71:2391.PubMedCrossRefGoogle Scholar
  79. Hughes, R. G., 1973, Glycoproteins as components of cellular membranes, Prog. Biophys. Mol. Biol. 26:189.PubMedCrossRefGoogle Scholar
  80. Ikehara, Y., Molnar, J., and Ghao, H., 1971, Inhibition of glycoprotein synthesis by cycloheximide in liver and Ehrlich tumor cells, Biochim. Biophys. Acta 247:486.PubMedGoogle Scholar
  81. Jankowski, N., and Ghojnacki, T., 1972, Enzymatic formation of polyisoprenol phosphate sugars, Acta Biochem. Pol. 19:51.Google Scholar
  82. John, W. D., and Miller, L. L., 1969, Regulation of net biosynthesis of serum albumin and acute phase plasma proteins, J. Biol. Chem. 244:6134.PubMedGoogle Scholar
  83. Johnson, B. G., and Valakovich, G., 1972, Glycolipid derivatives of vitamin K, Biochem. Biophys. Res. Commun. 48:1437.PubMedCrossRefGoogle Scholar
  84. Jones, A. L., Ruderman, N. B., and Herrera, M. G., 1967, Electron microscopic and biochemical study of lipoprotein synthesis in the isolated perfused rat liver, J. Lipid Res. 8:429.PubMedGoogle Scholar
  85. Kawai, T., 1973, Clinical Aspects of the Plasma Proteins, J. B. Lippincott Co. Philadelphia.Google Scholar
  86. Kean, E. L., Planters, J. J., and Bruner, W. E., 1974, Mannosyl transferases of the retina, Fed. Proc. 33:816.Google Scholar
  87. Keenan, T. W., Morre, D. J., and Basu, S., 1974, Ganglioside biosyntheis, concentration of glycosphinogolipid and glycosyltransferases in Golgi apparatus from rat liver, J. Biol. Chem. 249:310.PubMedGoogle Scholar
  88. Kim, Y. G. L., and Wolf, G., 1974, Vitamin-A deficiency and the glycoproteins of rat corneal epithelium, J. Nutr. 104:710.PubMedGoogle Scholar
  89. Kirschbaum, B. B., and Bosmann, H. B., 1973a, Lysolecithine enhancement of glycoprotein: glycosyltransferase activity, FEBS Lett. 34:129.PubMedCrossRefGoogle Scholar
  90. Kirshbaum, B. B., and Bosmann, H. B., 1973b, Glycoprotein biosynthesis: Folic acid effects on glycoprotein glycosyl transferase activities of rat kidney and liver, Biochem. Biophys. Res. Commun. 50:510.CrossRefGoogle Scholar
  91. Kleinman, H. K., and Wolf, G., 1974, Biosynthesis of fucose containing glycoprotein from intestinal mucosa of normal and vitamin-A deficient rats, Biochem. Biophys. Acta 354:17.PubMedCrossRefGoogle Scholar
  92. Kohn, P., Winzler, R. J., and Hoffman, R. G., 1962, Metabolism of D-glucosamine and N-acetyl-D-glucosamine in the intact rat, J. Biol. Chem. 237:304.PubMedGoogle Scholar
  93. Kolodny, E. H., Brady, R. O., Quirk, J. M., and Kaufer, J. N., 1970, Preparation of radioactive Tay-Sachs ganglioside labeled in the sialic acid moiety, J. Lipid Res. 11:144.PubMedGoogle Scholar
  94. Kornfeld, R., 1967, Studies on L-glutamine D-fructose-6-phosphate amidotransferase, J. Biol. Chem. 242:3135.PubMedGoogle Scholar
  95. Kukral, J. G., Pancner, R. J., Louch, J., and Winzler, R. J., 1962, Synthesis of canine seromucoid before and after total hepatectomy, Am. J. Phys. 202:1087.Google Scholar
  96. Lawford, G. R., and Schachter, H., 1966, Biosynthesis of glycoprotein by liver: The incorporation in vivo of 14C-glucosamine into protein-bound hexosamine and sialic acid of rat liver subcellular fractions, J. Biol. Chem. 241:5408.PubMedGoogle Scholar
  97. Lee, Y. G., 1971, A common structural feature of asparagine-oligosaccharides from glycoproteins, Fed. Proc. 30:1223.Google Scholar
  98. Leloir, L. F., 1963, The biosynthesis of polysaccharides, Sixth Int. Congr. Biochem. 33:15.Google Scholar
  99. Leloir, L. F., 1964, Nucleoside diphosphate sugars and saccharide synthesis, Biochem. J. 91:1.Google Scholar
  100. Leloir, L. F., Staneloni, R. J., Carminatti, H., and Behrens, N., 1973, Biosynthesis of dolichyl-Google Scholar
  101. pyrophosphoryl-iV-acetyl-glucosaminyl-N-acetylglucosamine, Biochem. Biophys. Res. Commun. 52:1285.Google Scholar
  102. Li, Y. T., Li, S. C., and Shetlar, M. R., 1968, Isolation of glycopeptides from rat liver microsomes involved in the biosynthesis of plasma glycoproteins, J. Biol. Chem. 243:656.PubMedGoogle Scholar
  103. Lombard, C., and Winzler, R. J., 1971, Glycoproteins of blood cell plasma Am. Natl. Red Cross Ann. Sci. Symp. 4:204.Google Scholar
  104. Lukie, B. E., and Forstner, G. G., 1972, Synthesis of intestinal proteins; Inhibition by Na-salicilate of glycoprotein synthesis, Biochem. Biophys. Acta 273:380.PubMedCrossRefGoogle Scholar
  105. Maestri, N., and De Luca, L., 1974, Mannose transfer from manno-lipid to endogenous acceptors in hamster liver, Biochem. Biophys. Res. Commun. 53:1344.CrossRefGoogle Scholar
  106. Maley, F., Tarrentino, A. L., McGarrahan, J. F., and Del Giacco, R., 1968, Metabolism of galactosamine, N-acetylgalactosamine in rat liver, Biochem. J. 107:637.PubMedGoogle Scholar
  107. Marshall, R. D., and Neuberger, A., 1970, Aspects of the structure and metabolism of glycoproteins, Adv. Carbohydr. Chem. 25:407.CrossRefGoogle Scholar
  108. Martin, H. G., and Thorne, K.J. I., 1974, The involvement of endogenous dolichol in the formation of lipid-linked precursors of glycoprotein in rat liver, Biochem. J. 138:281.PubMedGoogle Scholar
  109. McGarrahan, J. F., and Maley, F., 1962, Hexosamine metabolism I. The metabolism in vivo and in vitro of D-glucosamine-l-14C in rat liver, J. Biol. Chem. 237:2458.Google Scholar
  110. Mechlers, F., 1971, Biosynthesis of the carbohydrate portion of immunoglobulins. Biochemical and chemical analysis of the carbohydrate moieties of two myeloma proteins purified from different subcellular fractions of plasma cells, Biochemistry 10:653.CrossRefGoogle Scholar
  111. Meszaros, K., Antoni, F., Mandl, J., Hrabak, A., and Garzo, T., 1974, Effect of galactosamine on nucleotides and microsomal membranes of mouse liver, FEBS Lett. 44:141.PubMedCrossRefGoogle Scholar
  112. Miller, L. L., and Bale, W. F., 1954, Synthesis of all plasma protein fractions except y-globulins by the liver, J. Exp. Med. 99:125.PubMedCrossRefGoogle Scholar
  113. Miller, L. L., Bly, G. G., and Bale, W. F., 1954, Plasma and tissue proteins produced by non-hepatic rat organs as studied with lysine-e-14G, J. Exp. Med. 99:133.PubMedCrossRefGoogle Scholar
  114. Molnar, J., 1974, Pathway of plasma glycoprotein synthesis in the liver, Colloq. Int. C.N.R.S., 221:921.Google Scholar
  115. Molnar, J., 1975, A proposed pathway of plasma glycoprotein synthesis, Mol. Cell. Biochem. 6:3.PubMedCrossRefGoogle Scholar
  116. Molnar, J., and Sy, D., 1967, Attachment of glucosamine to protein at the ribosomal site of rat liver, Biochemistry 6:1941.PubMedCrossRefGoogle Scholar
  117. Molnar, J., Robinson, G. B., and Winzler, R. J., 1964, The biosynthesis of glycoproteins III. Glucosamine intermediates in plasma glycoprotein synthesis in livers of puromycin-treated rats, J. Biol. Chem. 239:3157.PubMedGoogle Scholar
  118. Molnar, J., Robinson, G. B., and Winzler, R. J., 1965, The biosynthesis of glycoproteins IV. The subcellular sites of incorporation of glucosamine-1–14C into glycoprotein in rat liver, J. Biol. Chem. 240:1882.PubMedGoogle Scholar
  119. Molnar, J., Tetas, M., and Chao, H., 1969, Subcellular site of glycoprotein synthesis in liver, Biochem. Biophys. Res Commun. 37:684.PubMedCrossRefGoogle Scholar
  120. Molnar, J., Chao, H., and Ikehara, Y., 1971, Phosphoryl-N-acetylglucosamine transfer to a lipid acceptor of liver microsomal preparations, Biochim. Biophys. Acta 239:401.PubMedGoogle Scholar
  121. Monaco, F., and Robbins, J., 1973, Defective thyroglobulin synthesis in an experimental rat thyroid tumor. Lack of membrane-bound sialyltransferase activity, J. Biol. Chem. 248:2328.PubMedGoogle Scholar
  122. Mookerjea, S., 1972, Glycoprotein biosynthesis: Stimulation of N-acetyl-glucosaminyl transferase activity by cytidine 5-diphosphocholine, Can. J. Biochem. 50:1082.PubMedCrossRefGoogle Scholar
  123. Mookerjea, S., and Chow, A., 1969, Impairment of glycoprotein synthesis in acute ethanol intoxication in rats, Biochim. Biophys. Acta 184:83.PubMedCrossRefGoogle Scholar
  124. Mookerjea, S., and Chow, A., 1970, Stimulation of UDP-N-acetylglucosamine glycoprotein N-acetylglucosaminyl transferase activity by cytidine 5′-diphospho-choline, Biochem. Biophys. Res. Commun. 39:486.PubMedCrossRefGoogle Scholar
  125. Mookerjea, S., Jeng, D., and Black, J., 1967, Studies on the synthesis of plasma glycolipoprotein and hepatic sub-cellular glycoprotein in early choline deficiency, Can. J. Biochem. 45:825.PubMedCrossRefGoogle Scholar
  126. Mookerjea, S., Cole, D. E., Chow, A., and Letts, P., 1972, A role of cytidine 5′-diphosphocholine in the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine into endogenous acceptor lipids and proteins in rat and hen liver microsomes, Can. J. Biochem. 501:1094.Google Scholar
  127. Morgan, E. H., and Peters, T., Jr., 1971, Intracellular aspects of transferrin synthesis and secretion in the rat, J. Biol. Chem. 246:3508.PubMedGoogle Scholar
  128. Morré, D. J., and Mollenhauer, H. H., 1964, Isolation of the Golgi apparatus from plant cells, J. Cell Biol. 23:295.PubMedCrossRefGoogle Scholar
  129. Morré, D. J., Merlin, L. M., and Keenan, T. W., 1969, Localization of glycosyl transferase activities in a Golgi apparatus rich fraction isolated from rat liver, Biochem. Biophys. Res. Commun. 37:813.PubMedCrossRefGoogle Scholar
  130. Morré, D.J., Hamilton, R. L., Mollenhauer, H. H., Maley, R. W., Cunningham, W. P., Gheetham, R. D., and LeQuire, V. S., 1970, Isolation of a Golgi apparatus rich fraction from rat liver I. Method and morphology, J. Cell Biol. 44:484.PubMedCrossRefGoogle Scholar
  131. Moscarello, M. A., Sutherland, L., and Jackson, S. H., 1966, Stimulation of glucosamine-14G incorporation into plasma proteins by aminonucleoside, Biochim. Biophys. Acta 127:373.PubMedCrossRefGoogle Scholar
  132. Moscarello, M. A., Sutherland, L., and Jackson, S. H., 1967, Stimulation of glucosamine-14G incorporation into plasma glycoproteins after renal damage, Can. J. Biochem. 45:136.CrossRefGoogle Scholar
  133. Moscarello, M. A., Kashuba, L., and Sturgess, J. M., 1972, The incorporation of 14C-D-galactose and 3H-D-mannose into Golgi fractions of rat liver and into serum, FEBS Lett. 26:87.PubMedCrossRefGoogle Scholar
  134. Murty, G. N., and Hallinan, T., 1969, Aggranular membranes in free polysome preparations and their possible interference in studies of protein synthesis, Biochem. J. 112:269.PubMedGoogle Scholar
  135. Mutschler, L. E., and Gordon, A. H., 1966, Plasma protein synthesis by the isolated perfused regenerating liver, Biochim. Biophys. Acta 130:486.PubMedCrossRefGoogle Scholar
  136. Narayan, K. A., and Morris, H. P., 1972, In vitro synthesis of rat serum lipoproteins and proteins of Morris hepatoma 7777, FEBS Lett. 27:311.CrossRefGoogle Scholar
  137. Neufeld, E. F., and Hassid, W. Z., 1963, Biosynthesis of saccharides from glycopyranosyl esters of nucleotides, Adv. Carbohydr. Chem. 18:309.PubMedGoogle Scholar
  138. Neutra, M., and Leblond, G. P., 1966, Radioautographic comparison of the uptake of galactose-3H and glucose-3H in the Golgi region of various cell secretions of glycoproteins or mucopolysaccharides, J. Cell Biol. 30:137.PubMedCrossRefGoogle Scholar
  139. Nilsson, R., Petersson, E., and Dallner, G., 1973, Permeability of microsomal membranes isolated from rat liver, J. Cell Biol. 56:762.PubMedCrossRefGoogle Scholar
  140. O’Brien, P. J., and Neufeld, E. F., 1972, Biosynthesis of glycoproteins. Glycosyltransferases, in: Glycoproteins, Vol. 5 (A. Gottschalk, ed.), B.B.A. Library, pp. 1170–1186, Elsevier Publishing Co., New York.Google Scholar
  141. Osborn, M. J., 1969, Structure and biosynthesis of cell wall, Ann. Rev. Biochem. 39:501.CrossRefGoogle Scholar
  142. Parodi, A. J., Behrens, N. H., Leloir, L. F., and Denhart, M., 1972, Glucose transfer from dolicholphosphoglucose to endogenous acceptor, Biochim. Biophys. Acta 270:529.PubMedGoogle Scholar
  143. Parodi, A. J., Staneloni, R., Cantarella, A. I., Leloir, L. F., Behrens, N. H., Garminatti, H., and Levy, J. A., 1973, Further studies on a glycolipid formed from dolichyl-D-glucosyl monophosphate, Carbohydr. Res. 26:393.PubMedCrossRefGoogle Scholar
  144. Pelletier, G., 1974, Autoradiographic studies of synthesis and intracellular migration of glycoproteins in the rat anterior pituitary gland, J. Cell Biol. 62:185.PubMedCrossRefGoogle Scholar
  145. Pelletier, G., and Puviani, R., 1973, Detection of glycoproteins by autoradiographic localization of 3H-fucose in the thyroidectomy cells of rat anterior pituitary gland, J. Cell Biol. 56:600.PubMedCrossRefGoogle Scholar
  146. Pereira, M., and Gouri, D., 1971, Studies on the site of action of dicoumarol on prothrombin synthesis, Biochim. Biophys. Acta 237:348.PubMedCrossRefGoogle Scholar
  147. Pereira, M., and Couri, D., 1972, Site of inhibition of dicoumarol of prothrombin biosynthesis: Carbohydrate content of prothrombin from dicoumarol treated rats, Biochim. Biophys. Acta 261:375.CrossRefGoogle Scholar
  148. Pestka, S., 1971, Ann. Rev. Biochem. 40:697.CrossRefGoogle Scholar
  149. Pfaff, E., and Klingenberg, M., 1968, Adenine nucleotide translocation of mitochondria I. Specificity and control, Eur. J. Biochem. 6:66.PubMedCrossRefGoogle Scholar
  150. Quarles, R. H., and Brady, R. O., 1971, Synthesis of glycoproteins and gangliosides in developing rat brain, J. Neurochem. 18:1809.PubMedCrossRefGoogle Scholar
  151. Raisys, V. A., and Winzler, R. J., 1970, Metabolism of exogenous D-mannosamine, J. Biol. Chem. 245:3203.PubMedGoogle Scholar
  152. Redman, C. M., and Gherian, M. G., 1972, The secretory pathways of rat serum glycoproteins and albumin. Localization of newly formed protein with the endoplasmic reticulum, J. Cell Biol. 52:231.PubMedCrossRefGoogle Scholar
  153. Redman, C.M., and Sabatini, D. D., 1966, Vectorial discharge of peptides released by puromycin from attached ribosomes, Proc. Natl. Acad. Sci. U.S.A. 56:608.PubMedCrossRefGoogle Scholar
  154. Reekers, P. P. M., Lindhout, M. J., Kop-Klaassen, B. H. M., and Hemker, H. C., 1973, Demonstration of three anomalous plasma proteins induced by a vitamin K antagonist, Biochim. Biophys. Acta 317:559.PubMedGoogle Scholar
  155. Reeve, E. B., and Chen, Y., 1973, Studies with a mass balance method of measuring fibrinogen synthesis, Ciba Found. Symp. 9:91.Google Scholar
  156. Richards, J. B., and Hemming, F. W., 1972, The transfer of mannose from guanosine diphosphate mannose to dolichol phosphate and protein by pig liver endoplasmic reticulum, Biochem. J. 130:77.PubMedGoogle Scholar
  157. Richmond, J. E., 1963, Studies on the metabolism of plasma glycoproteins, Biochemistry 2:676.PubMedCrossRefGoogle Scholar
  158. Robinson, G. B., 1968, Distribution of isotropic label after the oral administration of free and bound 14C-labeled glucosamine in rats, Biochem. J. 108:275.PubMedGoogle Scholar
  159. Robinson, G. B., 1969a, The contamination of rat liver polyribosomal preparations by non-ribosomal proteins, FEBS Lett. 4:190.PubMedCrossRefGoogle Scholar
  160. Robinson, G. B., 1969b, The role of polyribosomes in the biosynthesis of glycoproteins, Biochem. J. 115:1077.PubMedGoogle Scholar
  161. Robinson, G. B., Molnar, J., and Winzler, R. J., 1964, The biosynthesis of glycoproteins I. Incorporation of glucosamine-14C into liver and plasma proteins of the rat, J. Biol. Chem. 239:1134.PubMedGoogle Scholar
  162. Roden, L., 1970, Biosynthesis of acidic glycosaminoglycans, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. II (W. H. Fishman, ed.), pp. 346–442, Academic Press, New York.Google Scholar
  163. Roseman, S., 1959, Metabolism of connective tissue, Ann. Rev. Biochem. 28:545.PubMedCrossRefGoogle Scholar
  164. Roseman, S., 1962, Metabolism of sialic acids and D-mannosamine, Fed. Proc. 21:1075.PubMedGoogle Scholar
  165. Rosner, H., Wiegandt, H., and Rahmann, M., 1973, Sialic acid incorporation into gangliosides and glycoproteins offish bone, J. Neurochem. 21:655.PubMedCrossRefGoogle Scholar
  166. Rothschild, M. A., and Waldmann, T. (eds.), 1970, Plasma Protein Metabolism: Regulation of Synthesis Distribution and Degradation, Academic Press, New York.Google Scholar
  167. Sarcione, E. J., 1962, Incorporation of glucose C14 into plasma glycoprotein fractions by the isolated rat liver, Biochemistry 1:1132.PubMedCrossRefGoogle Scholar
  168. Sarcione, E. J., 1963, Synthesis of ax-acid glycoprotein by the isolated perfused rat liver, Arch. Biochem. Biophys. 100:516.PubMedCrossRefGoogle Scholar
  169. Sarcione, E. J., 1964, The initial subcellular site of incorporation of hexoses into liver protein, J. Biol. Chem. 239:1686.PubMedGoogle Scholar
  170. Sauer, L. A., and Burrow, G. N., 1972, The submicrosomal distribution of labeled proteins released by puromycin from rough endoplasmic reticulum of rat liver, Biochim. Biophys. Acta 227:178.Google Scholar
  171. Schachter, H., and Roden, L., 1973, Biosynthesis of animal glycoproteins, in: Metabolic Conjugation, Metabolic Hydrolysis, Vol. 3 (W. H. Fishman, ed.), pp. 2–149, Academic Press, New York.Google Scholar
  172. Schachter, H., Jabbal, I., Hudgin, R. L., Pinteric, L., McGuire, E. J., and Roseman, S., 1970, Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgirich fraction, J. Biol. Chem. 245:1090.PubMedGoogle Scholar
  173. Sharon, N., 1966, Polysaccharides, Ann. Rev. Biochem. 35:485.PubMedCrossRefGoogle Scholar
  174. Shenkein, I., and Uhr, J. W., 1970, Immunoglobulin synthesis and secretion I. Biosynthetic studies of the addition of the carbohydrate moieties, J. Cell Biol. 46:42.CrossRefGoogle Scholar
  175. Sherr, G. J., and Uhr, J. W., 1969, Immunoglobulin synthesis and secretion III. Incorporation of glucosamine into immunoglobulin on polyribosomes, Proc. Natl. Acad. Sci. U.S.A. 64:381.PubMedCrossRefGoogle Scholar
  176. Shetlar, M. R., 1961, Serum glycoproteins; their origin and significance, Ann. Nat. Acad. Sci.N.Y. 94:44.CrossRefGoogle Scholar
  177. Shetlar, M. R., Bradford, R., Hern, D. L., Endecott, B., and Schilling, J. A., 1962, The fate of glucosamine administered parentally into the rat, Proc. Soc. Exp. Med. 109:335.Google Scholar
  178. Shetlar, M. R., Gapps, J. C., and Hern, D. L., 1964, Incorporation of radioactive glucosamine into serum proteins of intact rats and rabbits, Biochim. Biophys. Acta 83:93.PubMedGoogle Scholar
  179. Shinozuka, H., Farber, J. L., Konishi, Y., and Anukarahanonta, T., 1973, D-Galactosamine and acute liver cell injury, Fed. Proc. 32:1516.PubMedGoogle Scholar
  180. Shubert, D., 1970, Immunoglobulin synthesis IV. Carbohydrate attachment to subunits, J. Mol. Biol. 51:287.CrossRefGoogle Scholar
  181. Simkin, J. L., and Jamieson, J. C., 1968, Studies on the nature of microsome-bound substances involved in the biosynthesis of glycoproteins of guinea pig serum, Biochem. J. 106:23.PubMedGoogle Scholar
  182. Sinohara, H., and Sky-Peck, H. H., 1965, Soluble ribonucleic acid and glycoprotein biosynthesis in the mouse liver, Biochim. Biophys. Acta 101:90.PubMedGoogle Scholar
  183. Slabaugh, R. C., and Morris, A. J., 1970, Purification of peptidyl transfer ribonucleic acid from rabbit reticulocyte ribosomes, J. Biol. Chem. 245:6182.PubMedGoogle Scholar
  184. Spear, P. G., and Roizman, B., 1970, Proteins specified by herpes virus, IV. Site of glycosylation and accumulation of viral membrane proteins, Proc. Natl. Acad. Sci. U.S.A. 66:730.PubMedCrossRefGoogle Scholar
  185. Spiro, R. G., 1959, Studies on the biosynthesis of glucosamine in the rat, J. Biol. Chem. 234: 742.PubMedGoogle Scholar
  186. Spiro, R., 1970, Glycoproteins, Ann. Rev. Biochem. 39:599.PubMedCrossRefGoogle Scholar
  187. Spiro, R. G., and Spiro, M. J., 1966, Glycoprotein biosynthesis studies on thyroglobulin, J. Biol. Chem. 241:1271.PubMedGoogle Scholar
  188. Stein, O., and Stein, Y., 1967, Lipid synthesis intracellular transport, storage and secretion, J. Cell Biol. 33:319.PubMedCrossRefGoogle Scholar
  189. Stein, O., Sanger, L., and Stein, Y., 1974, Colchicine-induced inhibition of lipoprotein and protein secretion into the serum and lack of interference with secretion of biliary phospholipids and cholesterol by rat liver in vivo, J. Cell Biol. 62:90.PubMedCrossRefGoogle Scholar
  190. Stenflo, J., 1974, Vitamin K and the biosynthesis of prothrombin IV. Isolation of peptides containing prosthetic groups from normal prothrombin and corresponding peptides from dicoumarol-induced prothrombin, J. Biol. Chem. 249:5527.PubMedGoogle Scholar
  191. Strominger, J. L., 1960, Mononucleotide acid anhydrides and related compounds as intermediates in metabolic reactions, Physiol. Rev. 40:55.PubMedGoogle Scholar
  192. Sturgess, J. M., Minaker, E., Mitranic, M. M., and Moscarello, M. A., 1973, The incorporation of L-fucose into glycoproteins in the Golgi apparatus of rat liver and in serum, Biochim. Biophys. Acta 320:123.PubMedCrossRefGoogle Scholar
  193. Sudhof, H., and Abraham, S., 1957, Serum protein-bound galactose and mannose as studied with C14 labeled glucose and fructose, Arch. Biochem. Biophys. 71:221.PubMedCrossRefGoogle Scholar
  194. Suttie, J. W., 1970, The effect of cylcoheximide administration on vitamin-K stimulated prothrombin formation, Arch. Biochem. Biophys. 141:571.PubMedCrossRefGoogle Scholar
  195. Swenson, R. M., and Kern, M., 1968, The synthesis and secretion of y-globulin by lymphnode cells III. The slow acquisition of the carbohydrate moiety of y-globulin and its relationship to secretion, Proc. Natl. Acad. Sci. U.S.A. 59:546.PubMedCrossRefGoogle Scholar
  196. Tanner, W., Jung, P., and Behrens, N. H., 1971, Dolicholmonophosphates: Mannosyl acceptors in a particulate in vitro system of S. cerevisiae, FEBS Lett. 16:245.PubMedCrossRefGoogle Scholar
  197. Tarentino, A. L., Plummer, T. H., and Maley, F., 1970, Studies on the oligosaccharide sequence of ribonuclease B, J. Biol. Chem. 245:4150.PubMedGoogle Scholar
  198. Tetas, M., Chao, H., and Molnar, J., 1969, Glycosyl transfer reactions to endogenous substrates by liver microsomal fractions, Fed. Proc. 28:3621.Google Scholar
  199. Tetas, M., Chao, H., and Molnar, J., 1970, Incorporation of carbohydrates into endogenous acceptors of liver microsomal fractions, Arch. Biochem. Biophys. 138:135.PubMedCrossRefGoogle Scholar
  200. Tkacz, J. S., Herscovics, A., Warren, C. D., and Jeanloz, R. W., 1973, Characterization of a mannolipid from calf pancreas and chromatographic comparison with synthetic α-D-mannopyranosyl dolichyl phosphate, Int. Congr. Biochem. 9:397.Google Scholar
  201. Tkacz, J. S., Herscovics, A., Warren, C. D., and Jeanloz, R. W., 1974, Mannosyl transferase activity in calf pancreas microsomes, J. Biol. Chem. 249:6372.PubMedGoogle Scholar
  202. Trujillo, J. L., and Gan, J. C., 1971, Glycoprotein biosynthesis I. Studies on the metabolism and incorporation of L-14C-fucose into glycoproteins of bovine thyroid gland slices in vitro, Biochim. Biophys. Acta 230:610.PubMedCrossRefGoogle Scholar
  203. Waechter, C. J., Lucas, J. J., and Lennarz, W. J., 1973, Membrane glycoproteins I. Enzymatic synthesis of mannosyl phosphoryl polyisoprenol and its role as a mannosyl donor in glycoprotein synthesis, J. Biol. Chem. 248:7570.PubMedGoogle Scholar
  204. Waechter, C. J., Lucas, J. J., and Lennarz, W. J., 1974, Evidence for xylosyl lipids as intermediates in xylosyl transfer in hen oviduct membranes, Biochem. Biophys. Res. Commun. 56:343.PubMedCrossRefGoogle Scholar
  205. Wagner, R. R., and Cynkin, M. A., 1969, Enzymatic transfer of 14C-glucosamine from UDP-AT-acetyl-14C-glucosamine to endogenous acceptors in a Golgi apparatus-rich fraction from liver, Biochem. Biophys. Res. Commun. 35:139.PubMedCrossRefGoogle Scholar
  206. Wagner, R. R., Pettersson, E., and Dallner, G., 1973, Association of the two glycosyl transferase activities of glycoprotein synthesis with low equilibrium density smooth microsomes, J. Cell Sci. 12:603.PubMedGoogle Scholar
  207. Watkinson, R. J., Hussey, H., and Baddiley, J., 1971, Shared lipid phosphate carrier in the biosynthesis of teichoic acid and peptidoglycan, Nature (London), New Biol. 229:57.Google Scholar
  208. Wedgewood, J. F., and Strominger, J. L., 1974, Transfer of sugars from nucleoside diphosphosugar compounds to endogenous and synthetic dolichyl phosphate in human lymphocytes, J. Biol. Chem. 249:6316.Google Scholar
  209. Weimer, H. E., 1974, Parameters influencing the synthesis of α-macrofetoglobulin (a 2-acute phase globulin) of rat serum, Colloq. Int. C.N.R.S., 221:1019.Google Scholar
  210. Whur, P., Hersgovics, H., and Leblond, C. P., 1966, Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis, J. Cell Biol. 43:289.CrossRefGoogle Scholar
  211. Winzler, R. J., 1965a, Metabolism of glycoproteins, Clin. Chem. 11:339.PubMedGoogle Scholar
  212. Winzler, R. J., 1965b, Glycoproteins and glycosaminoglycans in plasma and in some other body fluids, in: The Amino Sugars (E. A. Balazs, and R. W. Jeanloz, eds.), pp. 338–352, Academic Press, New York.Google Scholar
  213. Winzler, R. J., and Bekesi, G. J., 1967, Glycoproteins in relation to cancer, Meth. Cancer Res. 2:159.Google Scholar
  214. Winzler, R. J., and Bocci, V., 1972, Turnover of plasma glycoproteins, in: Glycoproteins, Vol. 5 (A. Gottschalk, ed.), B.B.A. Library, pp. 1228–1245, Elsevier Publishing Co., New York.Google Scholar
  215. Zagury, D., Uhr, J. W., Jamieson, J. D., and Paladi, G. E., 1970, Immunoglobulin synthesis and secretion II. Radioautographic studies of sites of addition of carbohydrate moieties and intracellular transport, J. Cell Biol. 46:52.PubMedCrossRefGoogle Scholar
  216. Zhikov, V., 1972, Meaurement of the relative rates of synthesis of uridine diphosphate sugars in some tissues of vertebrates by using l-14C-glucose, Int. J. Biochem. 3:258.CrossRefGoogle Scholar
  217. Yuspa, S. H., and Harris, C. C., 1974, Altered differentiation of mouse epidermal cells treated with retinyl acetate in vitro, Exp. Cell Res. 86:95.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Janos Molnar
    • 1
  1. 1.Department of Biological ChemistryUniversity of Illinois at the Medical CenterChicagoUSA

Personalised recommendations