Under the Spell of Hypothalamic Feedback

  • János Szentágothai
Part of the Perspectives in Neuroendocrine Research book series (PNR, volume 1)


If it were not for its insignificance, my relation to neuroendocrinology could be best characterized by the Hungarian saying, “He enters [into the story] like Pontius Pilate into the Apostolic Creed.” As I was educated as a neuroanatomist during the mid-thirties, my knowledge of endocrine mechanisms was on the (lower) level of the contemporary German textbooks of physiology. About the hypothalamus I knew that it might have something to do with the control of visceral and metabolic functions, and how to demonstrate to the students its gross anatomy in our routine practical course of brain dissection. My interests were focused in those years—at the First Anatomy Department of Budapest University and during the last years—and shortly after the retirement of my teacher, Michael von Lenhossék—upon the structure of peripheral vegetative innervation. Understandably, I soon became interested in the question of the central origin of preganglionic fibers and their supranuclear connections. Very little, apart from the rather vague classical data, was known at that time of the question. Laruelle (1936), the famous Belgian neurologist, was the only scientist particularly engaged then in the study of the vegetative nuclei of the spinal cord, and a short visit to his laboratory during the summer of 1939 impressed me with the potentialities of this field.


Median Eminence Quick Bird Endocrine Mechanism Vegetative Nucleus Hypothalamic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barry, J. M., P. Dubois, P. Poulain (1973). LRF producing cells of the mammalian hypothalamus. Z. Zellforsch. 146: 351.PubMedCrossRefGoogle Scholar
  2. Dey, F. L. (1941). Changes in ovaries and uteri in guinea-pigs with hypothalamic lesions. Am. J. Anat., 69: 61.CrossRefGoogle Scholar
  3. Dey, F. L. (1943). Evidence of hypothalamic control of hypophyseal gonadotrophic function in the female guinea-pig. Endocrinology 33: 75.CrossRefGoogle Scholar
  4. Endröczi, E., K. Lissäk, M. Tekeres (1961). Hormonal “feedback” regulation of pituitary - adrenocortical activity. Acta Physiol. Acad. Sci. Hung. 18: 291.PubMedGoogle Scholar
  5. Fink, R. P., L. Heimer (1967). Two methods for selective impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4: 369.PubMedCrossRefGoogle Scholar
  6. Flerkö, B. (1951). Einfluss experimenteller Hypothalamuslaesionen auf das Eileiterepithel. Acta Morphol. Acad. Sci. Hung. 1: 5.CrossRefGoogle Scholar
  7. Flerkö, B. (1954). Zur hypothalamischen Steuerung der gonadotrophen Funktion der Hypophyse. Acta Morphol. Acad. Sci. Hung. 4: 475.Google Scholar
  8. Flerkö, B. (1957). Le röle des structures hypothalamiques dans l’action inhibitrice de la folliculine sur la secretion de l’hormone folliculo-stimulante. Arch. Anat. Microsc. Morphol. Exp. 46: 159.Google Scholar
  9. Flerkö, B. (1963). The central nervous system and the secretion and release of luteinizing hormone and follicle stimulating hormone. Pages 221–224 in A. V. Nalbandov, ed., Advances of Neuroendocrinology. University of Illinois Press, Urbana.Google Scholar
  10. Flerkö, B., J. Szentägothai (1957). Oestrogen sensitive nervous structures in the hypothalamus. Acta Endocrinol. (Kbh.) 26: 121.Google Scholar
  11. Gerendai, I., J. Kiss, J. Molnär, B. Haläsz (1974). Further data about the existence of the neural pathway from the adrenal gland to the hypothalamus. Cell and Tissue Res. 153: 559.CrossRefGoogle Scholar
  12. Haläsz, B., L. Pupp (1965). Hormone secretion of the anterior pituitary gland after physical interruption of all nervous pathways to the hypophysiotrophic area. Endocrinology 77: 553.PubMedCrossRefGoogle Scholar
  13. Haläsz, B., L. Pupp, S. Uhlarik (1962). Hypophysiotrophic area in the hypothalamus. J. Endocrinol. 25: 147.PubMedCrossRefGoogle Scholar
  14. Haläsz, B., M. Rethelyi, J. Szentägothai (1968). Examen electromicroscopique sur l’eminence mediane isolee (desafferentee neuralement). Arch. Anat. (Strasbourg) 51: 289.Google Scholar
  15. Haläsz, B., J. Szentägothai (1959). Histologischer Beweis einer nervösen Signalübermittlung von der Nebennierenrinde zum Hypothalamus. Z. Zellforsch. 50: 297.PubMedCrossRefGoogle Scholar
  16. Haläsz, B., and J. Szentägothai (1960). Control of adrenocorticotrophic function by direct influence of pituitary substance on the hypothalamus. Acta Morphol. Acad. Sci. Hung. 9: 251.Google Scholar
  17. Hillarp, N. Ä. (1949). Studies on the localization of hypothalamic centres controlling the gonadotrophic function of the hypophysis. Acta Endocrinol. (Kbh.) 2: 11.Google Scholar
  18. Hohlweg, W., K. Junkmann (1932). Die hormonal-nervöse Regulierung der Funktion des Hypophysenvorderlappens. Klin. Wochenschr. 11: 321.CrossRefGoogle Scholar
  19. Krieg, W. S. (1932). The hypothalamus of the albino rat. J. Comp. Neurol. 55: 19.CrossRefGoogle Scholar
  20. Laruelle, L. (1936). Contribution ä l’etude du nevraxe vegetatif. C. R. Assoc. Anat. 31: 210.Google Scholar
  21. Lenhossek, M. von (1898). Über Flimmerzellen. Verh. Anat. Ges. 14: 106.Google Scholar
  22. Mess, B. (1952). Influence of hypothalamic injury on spermatogenesis in albino rats. Acta Morphol. Acad. Sci. Hung. 2: 275.Google Scholar
  23. Mess, B. (1954). Kernvolumnia der Schilddrüse als Mastab für die thyreotrope Aktivität des Hypophysenvorderlappens. Acta Morphol. Acad. Sci. Hung. 4: 515.PubMedGoogle Scholar
  24. Mihälik, P. von (1934–35). Uber die Bildung des Flimmerapparates im Eileiterepithel. Anat. Anz. 79: 259.Google Scholar
  25. Monroe, B. G. (1967). A comparative study of the ultrastructure of the median eminence, infundibular stem and neural lobe of the hypophysis of the rat. Z. Zellforsch. 76: 405.PubMedCrossRefGoogle Scholar
  26. Nauta, W. J., P. A. Gygax (1954). Silver impregnation of degenerating axons in the central nervous system: A modified technique. Stain Technol. 29: 91.PubMedGoogle Scholar
  27. Raisman, G. (1969a). A comparison of the mode of termination of the hippocampal and hypothalamic afferents to the septal nuclei as revealed by electron microscopy of degeneration. Exp. Brain Res. 7: 317.PubMedCrossRefGoogle Scholar
  28. Raisman, G. (1969b). Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 14: 25.PubMedCrossRefGoogle Scholar
  29. Raisman, G., P. M. Field (1971). Sexual dimorphism in the preoptic area of the rat. Science 173: 731.PubMedCrossRefGoogle Scholar
  30. Ramön y Cajal, S. (1909). Histologie du Systeme Nerveux de l’homme et des vertebres. I. Maloine, Paris.Google Scholar
  31. Ramön y Cajal, S. (1911). Histologie du Systeme Nerveux de l’homme et des vertibres. I I. Maloine, Paris.Google Scholar
  32. Rethelyi, M., B. Haläsz (1970). Origin of the nerve endings in the surface zone of the median eminence of the rat hypothalamus. Exp. Brain Res. 11: 145.PubMedGoogle Scholar
  33. Röhlich, P., B. Vigh, I. Teichmann (1965). Electron microscopy of the median eminence of the rat. Acta Biol. Acad. Sci. Hung. 15: 431.PubMedGoogle Scholar
  34. Setälö, G., S. Vigh, A. V. Shally, A. Arimura, B. Flerko LH-RH-Containing neural elements in the rat hypothalamus. Endocrinology 96: 135–142, 1975.PubMedCrossRefGoogle Scholar
  35. Sousa-Pinto, A. (1970). Electron microscopic observations on the possible retinohypothalamic projection in the rat. Exp. Brain Res. 11: 528.PubMedGoogle Scholar
  36. Szentägothai, J. (1942a). Die innere Gliederung des Oculomotoriuskernes. Arch. Psychiatr. Nervenkr. 115: 127.CrossRefGoogle Scholar
  37. Szentägothai, J. (1942b). Die zentrale Leitungsbahn des Lichtreflexes der Pupillen. Arch. Psychiatr. Nervenkr. 115: 136.CrossRefGoogle Scholar
  38. Szentägothai, J. (1951). Short propriospinal neurons and intrinsic connections of the spinalGoogle Scholar
  39. grey matter. Acta Morphol. Acad. Sci. Hung. 1: 81.Google Scholar
  40. Szentägothai, J. (1952). The general visceral efferent column of the brain stem. Acta Morphol. Acad. Sci. Hung. 2: 314.Google Scholar
  41. Szentägothai, J. (1964). The parvicellular neurosecretory system. Pages 135–146 in W.Google Scholar
  42. Bargmann J. P. Schade, eds., Lectures on the Diencephalon. Prog. Brain Res. 5. Elsevier, Amsterdam.Google Scholar
  43. Szentägothai, J. (1969). The synaptic architecture of the hypothalamo-hypophyseal neuron system. Acta Neurol. Belg. 69: 453.Google Scholar
  44. Szentägothai, J., B. Flerkö, B. Mess, B. Haläsz (1962). The hypothalamic control of the anterior pituitary. Akademiai Kiadö, Budapest.Google Scholar
  45. Szentägothai, J., B. Flerkö, B. Mess, B. Haläsz (1968). The hypothalamic control oj the anterior pituitary. 3rd rev. enlarged ed. Akademiai Kiadoo, Budapest.Google Scholar
  46. Szentägothai, J., B. Haläsz (1964). Regulation des endokrinen Systems über Hypothalamus. Pages 227-248 in R. Zaunick, Hrsg. Die Nervenphysiologie in gegenwärtiger Sicht. Nova Acta Leopoldina N. F. 28, Leipzig.Google Scholar
  47. Török, B. (1954). Lebendbeobachtung des Hypophysenkreislaufes an Hunden. Acta Morphol. Acad. Sci. Hung. 4: 83.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • János Szentágothai
    • 1
  1. 1.First Department of AnatomySemmelweis University Medical SchoolBudapest IXHungary

Personalised recommendations