Insect-Plant Interactions: Nutrition and Metabolism

  • Stanley D. Beck
  • John C. Reese
Part of the Recent Advances in Phytochemistry book series (RBIO, volume 10)


From a phytochemical standpoint, plants are producers of chemicals, and insects are consumers. The biology of the consumer role played by insects is a very complex and intriguing subject, of which we will focus primarily on only two aspects — nutrition and metabolism. But even having so delimited the subject of discourse, it is immediately obvious that other aspects of insect-plant interaction must be considered, at least peripherally, for nutrition and metabolism are not isolated processes. They occur in conjunction with the behavioral and chemosensory facets of the biology of the phytophagous insects. It is an obvious truism that no insect is capable of utilizing every plant species, and conversely that no plant species is susceptible to attack by every species of plant-feeding insect. From both practical and theoretical viewpoints, the most important questions pertain to the identity of factors determining host specificity among the insects and susceptibility to insect depredation among the plants.


Juvenile Hormone Phytophagous Insect European Corn Borer Nutritional Index Acyrthosiphon Pisum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akey, D. H. and S. D. Beck, 1971. Continuous rearing of the pea aphid, Acyrthosiphon pisum, on a holidic diet. Ann. Ent. Soc. Amer. 64:946–949.Google Scholar
  2. 2.
    Akey, D. H. and S. D. Beck, 1972. Nutrition of the pea aphid, Acyrthosiphon pisum. Requirements for trace metals, sulphur, and cholesterol. J. Insect Physiol. 18:1901–1914.Google Scholar
  3. 3.
    Applebaum, S. W., B. Gestetner, and Y. Birk, 1965. Physiological aspects of host specificity in the Bruchidae. IV. Developmental incompatibility of soybeans for Callosobruchus. Jour. Insect Physiol. 11:611–616.Google Scholar
  4. 4.
    Auclair, J. L., 1963. Aphid feeding and nutrition. Ann. Rev. Ent 8:439–490.Google Scholar
  5. 5.
    Auclair, J. L., J. B. Maltais, and J. J. Cartier, 1957. Factors in resistance of peas to the pea aphid, Acyrthosiphon pisum (Harr) (Homoptera:Aphididae). II. Amino acids. Canad. Ent. 89:457–464.Google Scholar
  6. 6.
    Beck, S. D., 1957. The European corn borer Pyrausta nubilalis, Hubn., and its principal host plant. VI. Host plant resistance to larval establishment. Jour. Insect Physiol. 1:158–177.Google Scholar
  7. 7.
    Beck, S. D., 1960. The European corn borer, Pyrausta nubilalis (Hbn.) and its principal host plant. VII. Larval feeding behavior and host plant resistance. Ann. Ent. Soc. Amer. 53:206–212.Google Scholar
  8. 8.
    Beck, S. D., 1965. Resistance of plants to insects. Ann. Ent. Soc. Amer. 53:207–232.Google Scholar
  9. 9.
    Beck, S. D., 1972. Nutrition, adaptation and environment. in Insect and Mite Nutrition, J. G. Rodriguez, Ed., North Holland Publ. Co., Amsterdam.Google Scholar
  10. 10.
    Beck, S. D., 1974. Theoretical aspects of host plant specificity in insects. in Proc. Summer Inst. on Biol. Control of Plant Insects and Diseases, F. G. Maxwell and F. A. Harris, Eds., p. 290–311. Univ. Press of Mississippi, Jackson.Google Scholar
  11. 11.
    Beck, S. D. and J. L. Shane, 1969. Effects of ecdysones on diapause in the European corn borer, Ostrinia nubilalis. J. Insect Physiol. 15:721–730.Google Scholar
  12. 12.
    Beck, S. D. and E. E. Smissman, 1961. The European corn borer, Pyrausta nubilalis, and its principal host plant. IX. Biological activity of chemical analogs of corn resistance factor A (6 methoxyben-zoxazolinone). Ann. Ent. Soc. Amer. 54:53–61.Google Scholar
  13. 13.
    Beck, S. D. and J. F. Stauffer, 1957. The European corn borer Pyrausta nubilalis (Hbn.), and its principal host plant. III. Toxic factors influencing larval establishment. Ann. Ent. Soc. Amer. 50:166–170.Google Scholar
  14. 14.
    Bell, E. A., 1972. Toxic amino acids in the Leguminosae. in Phytochemical Ecology, J. B. Harborne, ed., p. 163–177. Acad. Press.Google Scholar
  15. 15.
    Bell, E. A., 1974. Biochemical bases of resistance of plants to pathogens. in Proceedings of the Summer Institute on Biological Control of Plant Insects and Diseases, F. G. Maxwell and F. A. Harris, eds., Univ. Press, Miss. Jackson, p. 453–462.Google Scholar
  16. 16.
    Bell, E. A. and D. H. Janzen, 1971. Medical and ecological considerations of L-dopa and 5-HTP in seeds. Nature 229:136–137.PubMedGoogle Scholar
  17. 17.
    Bergmann, E. D., Z. H. Levinson and R. Mechoulam, 1958. The toxicity of Veratrum and Solanum alkaloids to housefly larvae. Jour. Insect Physiol. 2:162–177.Google Scholar
  18. 18.
    Bloch, K., R. G. Langdon, A. J. Clark and G. Fraenkel, 1956. Impaired steroid biogenesis in insect larvae. Biochim. Biophys. Acta 21:176.PubMedGoogle Scholar
  19. 19.
    Bongers, W., 1970. Aspects of host-plant relationship of the Colorado beetle. Meded. Landbouwhogeschool Wageningen, Nederland 70-10:1–77.Google Scholar
  20. 20.
    Bonner, J. and J. E. Varner, 1965. Plant Biochemistry. Academic Press, New York and London. 1054 pp.Google Scholar
  21. 21.
    Bottger, G. T. and R. Patana, 1966. Growth, development and survival of certain Lepidoptera fed gossypol in the diet. J. Econ. Ent. 59:1166–1169.Google Scholar
  22. 22.
    Bowers, W. S., H. M. Fales, M. J. Thompson, and E. C. Uebel, 1966. Juvenile hormone: Identification of an active compound from balsam fir. Science 154: 1020–1021.PubMedGoogle Scholar
  23. 23.
    Brett, C. H., 1947. Interrelated effects of food, temperature, and humidity on the development of the lesser migratory grasshopper, Melanoplus mexicanus mexicanus (Saussure). Oklahoma Agr. Exp. Sta. Tech. Bull. T-26. Google Scholar
  24. 24.
    Buchner, P., 1965. Endosymbiosis of Animals with Plant Microorganisms. Wiley, New York.Google Scholar
  25. 25.
    Buhr, H., R. Toball, and K. Schreiber, 1958. Die Wurkung von einigen Pflanzlichen Sonderstoffen, insbesondere von Alkaloiden, auf die Entiwicklung der Larven des kartoffelkafers (Leptinotarsa decemlineata, Say). Ent. Exp. & Appl. 1:209–224.Google Scholar
  26. 26.
    Carlisle, D. B., P. E. Ellis and E. Betts, 1965. The influence of aromatic shrubs on sexual maturation in the desert locust, Schistocerca gregaria. Jour. Insect Physiol. 11:1541–1558.Google Scholar
  27. 27.
    Carlisle, D. B. and P. E. Ellis, 1968. Bracken and locust ecdysones: Their effects on molting in the desert locust. Science 159:1472–1474.PubMedGoogle Scholar
  28. 28.
    Cerny, V., L. Dolejs, L. Labler, F. Sorm and K. Slama, 1967. Dehydrojuvabione — a new compound with juvenile hormone activity from balsam fir. Tetrahedron Letters, March, 1967(12):1053–1057.Google Scholar
  29. 29.
    Chang, K. P. and A. J. Musgrave, 1972. Multiple symbiosis in a leafhopper, Eelochara communis Fitch (Cicadellidae:Homoptera): Envelopes, nucleoids and inclusions of the symbiotes. J. Cell. Sci. 11: 275–293.PubMedGoogle Scholar
  30. 30.
    Chapman, R. F., 1974. The chemical inhibition of feeding by phytophagous insects: A review. Bull. Ent. Res. 64:339–363.Google Scholar
  31. 31.
    Chawla, S. S., J. M. Perron and M. Cloutier, 1974. Effects of different growth factors on the potato aphid, Macrosiphum exphorbiae, fed on an artifical diet. Canad. Ent. 106:273–280.Google Scholar
  32. 32.
    Chino, H., 1974. Biosynthesis of a-ecdysone by protho-racic glands in vitro. Science 183:529–530.PubMedGoogle Scholar
  33. 33.
    Chu, H. M., D. M. Norris and L. T. Kok, 1970. Pupation requirement of the beetle, Xyleborus ferrugineus: Sterols other than cholesterol. J. Insect. Physiol. 16:1379–1387.PubMedGoogle Scholar
  34. 34.
    Cibula, A. B., R. H. Davidson, F. W. Fisk and J. B. Lapidus, 1967. Relationship of free amino acids of some solanaceous plants to growth and development of Leptinotarsa decemlineata (Coleoptera:Chrysomeli-dae). Ann. Ent. Soc. Amer. 60:626–631.Google Scholar
  35. 35.
    Clark, A. J. and K. Bloch, 1959. The absence of sterol synthesis in insects. J. Biol. Chem. 234:2578–2582.PubMedGoogle Scholar
  36. 36.
    Clayton, R. B., 1960. The role of intestinal symbionts in the sterol metabolism of Blattella germanica. Jour. Biol. Chem. 235:3421–3425.Google Scholar
  37. 37.
    Dadd, R. H. and T. E. Mittler, 1966. Permanent culture of an aphid on a totally synthetic diet. Experientia 22:832.PubMedGoogle Scholar
  38. 38.
    Dahlman, D. L. and G. A. Rosenthal, 1975. Non-protein amino acid-insect interactions. 1. Growth effects and symptomology of L-canavanine consumption by tobacco hornworm, Manduca sexta (L.). Comp. Biochem. Physiol. 51A:33–36.Google Scholar
  39. 39.
    Dethier, V. G., 1941. Chemical factors determining the choice of food plants by papilio larvae. Amer. Nat. 75:61–73.Google Scholar
  40. 40.
    Duffey, S. S. and G. G. E. Scudder, 1972. Cardiac glycosides in North American Asclepiadaceae, a basis for unpalatability in brightly coloured Hemiptera and Coleoptera. J. Insect Physiol. 18:63–78.Google Scholar
  41. 41.
    Ehrhardt, P., 1966. Die Wirkung von Lysozyminjektionen auf Aphiden und deren Symbioten. Z. vergl. Physiol. 52:130–141.Google Scholar
  42. 42.
    Ehrhardt, P., 1968. Der Vitaminbedarf einer siebröhrensaugenden Aphide, Neomyzus circumflexus Buckt. (Homoptera, Insecta). Z. Vergl. Physiol. 60:416–426.Google Scholar
  43. 43.
    Ehrlich, P. R. and P. H. Raven, 1964. Butterflies and plants: A study in coevolution. Evol. 18:586–608.Google Scholar
  44. 44.
    Erickson, J. M. and P. Feeny, 1974. Sinigrin: A chemical barrier to the black swallowtail butterfly. Ecology 55:103–111.Google Scholar
  45. 45.
    Feeny, P. P., 1968. Effects of oak leaf tannins on larval growth of the winter moth Operophtera brumata. J. Insect Physiol. 14:805–817.Google Scholar
  46. 46.
    Feeny, P., K. L. Paauwe, and N. J. Demong, 1970. Flea beetles and mustard oils: Host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera:Chrysomelidae). Ann. Ent. Soc. Amer. 63:832–841.Google Scholar
  47. 47.
    Forrest, J. M. S. and B. A. Knights, 1972. Presence of phytosterols in the food of the aphid, Myzus persicae. J. Insect Physiol. 18:123–128.Google Scholar
  48. 48.
    Fraenkel, G. S., 1959. The Raison d’être of secondary plant substances. Sci. 129:1466–1410.Google Scholar
  49. 49.
    Fraenkel, G. S., 1969. Evaluation of our thoughts on secondary plant substances. Ent. Exp. and Appl. 12:413–486.Google Scholar
  50. 50.
    Galbraith, M. N. and D. H. S. Horn, 1969. Insect moulting hormones: Crustecdysone (20-hydroxyecdysone) from Podocarpus elatus. Austral. J. Chem. 22:1045–1057.Google Scholar
  51. 51.
    Galbraith, M. N., D. H. S. Horn, and E. J. Middleton. 1973. Ecdysone biosynthesis in the blowfly Calliphora stygia. Chem. Commun. (3):179–180.Google Scholar
  52. 52.
    Galston, A. W. and P. J. Davies, 1970. Control Mechanisms in Plant Development. Prentice-Hall, Inc., Englewood Cliffs, N. J. 184 pp.Google Scholar
  53. 53.
    Gilbert, B. L., J. E. Baker, and D. M. Norris, 1967. Juglone (5-hydroxy-1,4, naphthoquinone) from Carya ovata, a deterrent to feeding by Scolytus multistria-tus. J. Insect Physiol. 13:1453–1459.Google Scholar
  54. 54.
    Gilbert, B. L. and D. M. Norris, 1968. A chemical basis for bark beetle (Scolytus) distinction between host and non-host trees. J. Insect Physiol. 14:1063–1068.Google Scholar
  55. 55.
    Gilbert, L. I. and D. S. King, 1973. Physiology of growth and development: Endocrine aspects. Physiology of Insecto, 1:249–370.Google Scholar
  56. 56.
    Granich, M. S., B. P. Halpern and T. Eisner, 1974. Gymnemic acids: Secondary plant substances of dual defensive action? J. Insect Physiol. 20: 435–439.Google Scholar
  57. 57.
    Green, T. R. and C. A. Ryan, 1972. Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science 175: 776–777.PubMedGoogle Scholar
  58. 58.
    Griffiths, G. W. and S. D. Beck, 1973. Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 19:75–84.Google Scholar
  59. 59.
    Griffiths, G. W. and S. D. Beck, 1974. Effects of antibiotics on intracellular symbiotes in the pea aphid, Acyrthosiphon pisum. Cell Tiss. Res. 148: 287–300.Google Scholar
  60. 60.
    Griffiths, G. W. and S. D. Beck, 1975. Ultrastructure of pea aphid mycetocytes: Evidence for symbiote secretion. Cell Tiss. Res. 159:351–367.Google Scholar
  61. 61.
    Grison, P., 1958. L’influence de la plant-hôte sur la fecondite de l’insecte phytophage. Ent. Exp. & App. 1:73–93.Google Scholar
  62. 62.
    Grunwald, C., 1975. Plant sterols. Ann. Rev. Pl. Physiol. 26:209.Google Scholar
  63. 63.
    Guerra, A., 1970. Effects of biologically active substances in the diet on development and reproduction of Heliothis spp. J. Econ. Ent. 63:1518–1521.Google Scholar
  64. 64.
    Harley, K. L. S. and A. J. Thorsteinson, 1967. The influence of plant chemicals on the feeding behavior, development, and survival of the two-striped grasshopper, Melanoplus bivittatus (Say), Acrididae: Orthoptera. Canad. J. Zool. 45:305.Google Scholar
  65. 65.
    Harrewijn, P., 1973. Functional significance of indole alkylamines linked to nutritional factors in wing development of the aphid, Myzus persicae. Ent. Exp. & Appl. 16:499–513.Google Scholar
  66. 66.
    Hasegawa, K. and A. M. Ata, 1971. Studies on the effect of ecdysone — analogues on the development of the silkworm, Bombyx mori L. (Lepidoptera:Bombycidae). I. Penetration of phytoecdysones in larval cuticle. Appl. Ent. Zool. 6:147–155.Google Scholar
  67. 67.
    Hasegawa, K. and A. M. Ata, 1972. Penetration of phytoecdysones through the pupal cuticle of the silkworm, Bombyx mori. J. Insect Physiol. 18:959–971.Google Scholar
  68. 68.
    Hedin, P. A., F. G. Maxwell, and J. N. Jenkins, 1974. Insect plant attractants, feeding stimulants, repellents, deterrents, and other related factors affecting insect behavior. in Proceedings of the Summer Institute on Biological Control of Plant Insects and Diseases. F. G. Maxwell and F. A. Harris, eds., Univ. Press, Mississippi, Jackson, p. 494–527.Google Scholar
  69. 69.
    Heftmann, E., 1970. Insect molting hormones in plants. Rec. Adv. Phytochem. 3:211–277.Google Scholar
  70. 70.
    Heftmann, E., 1975. Functions of steroids in plants. Phytochem. 14:891–901.Google Scholar
  71. 71.
    Heftmann, E., H. H. Savas and R. D. Bennett, 1968. Biosynthesis of ecdysterone from cholesterol by a plant. Naturwiss 55:37.PubMedGoogle Scholar
  72. 72.
    Heinrich, G. and H. Hoffmeister, 1967. Ecdyson als Begleitsubstanz des Ecdysterons in Polypodium vulgare L. Experientia 23:995.PubMedGoogle Scholar
  73. 73.
    Hendry, L. B., J. K. Wichmann, D. M. Hinderlang, R. O. Mumma, and M. E. Anderson, 1975. Evidence for origin of insect sex pheromones: Presence in food plants. Science 188:59–62.PubMedGoogle Scholar
  74. 74.
    Herout, V. 1970. Some relations between plants, insects and their isoprenoids. Rec. Adv. Phytochem. 2:143.Google Scholar
  75. 75.
    Hinde, R., 1971. The fine structure of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae. J. Insect Physiol. 17:2035–2050.PubMedGoogle Scholar
  76. 76.
    Hobson, R. P., 1935. On a fat-soluble growth factor required by blowfly larvae. II. Identity of the growth factor with cholesterol. Biochem. J. 29: 2023–2026.PubMedGoogle Scholar
  77. 77.
    Hodge, C., 1933. Growth and nutrition of Melanoplus differentials Thomas Orthoptera, acrididoe) I. Growth on a satisfactory mixed diet and on diets of single food plants. Physiol. Zool. 6:306–328.Google Scholar
  78. 78.
    Hoffman, J. A., J. Koolman, P. Karlsonand P. Joly, 1974. Molting hormone titer and metabolic fate of injected ecdysone during the fifth instar and in adults of Locusta migratoria. Gen. Comp. Endocrinol. 22:90–97.Google Scholar
  79. 79.
    Horber, E., 1965. Isolation of components from the roots of alfalfa (Medicago sativa L.) toxic to white grubs (Melolontha vulgaris F.). Proc. XII. Int. Congr. Ent. pp. 540–541.Google Scholar
  80. 80.
    Horber, E., 1972. Alfalfa saponins significant in resistance to insects. in Insect and Mite Nutrition, J. B. Rodriguez, Ed., North Holland Publ. Co., Amsterdam, pp. 611–627.Google Scholar
  81. 81.
    Hori, K., 1973. Studies on the feeding habits of Lygus disponsi Linnavuori (Hemiptera: Miridae) and the injury to its host plant. IV. Amino acids and sugars in injured tissues of sugar beet leaf. Appl. Ent. Zool. 8:138–142.Google Scholar
  82. 82.
    Horn, D. H. S., 1971. The ecdysones. in Naturally Occurring Insecticides, M. Jacobson, D. G. Crosby, Eds., Dekker, New York. pp. 333–459.Google Scholar
  83. 83.
    Houk, E. J., G. W. Griffiths, and S. D. Beck, 1975. Lipid metabolism in the symbiotes of the pea aphid, Acyrthosiphon pisum. Comp. Biochem. Physiol, (in press).Google Scholar
  84. 84.
    House, H. L., 1962. Insect nutrition. Ann. Rev. Biochem. 31:653–672.PubMedGoogle Scholar
  85. 85.
    House, H. L., 1969. Effects of different proportions of nutrients on insects. Ent. Exp. & Appl. 12:651–669.Google Scholar
  86. 86.
    House, H. L., 1970. Choice of food by larvae of the fly, Agria affinis, related to dietary proportions of nutrients. J. Insect Physiol. 16:2041–2050.Google Scholar
  87. 87.
    House, H. L., 1971. Relations between dietary proportions of nutrients, growth rate, and choice of food in the fly larva Agria affinis. J. Insect Physiol. 17:1225–1238.Google Scholar
  88. 88.
    Hovanitz, W., V. C. S. Chang and G. Honch., 1963. The effectiveness of different isothiocyanates on attracting larvae of Pieris rapae. J. Res. Lepid. 3:159–173.Google Scholar
  89. 89.
    Hutchins, R. F. N. and J. N. Kaplanis, 1969. Sterol sulfates in an insect. Steroids 13:605–614.PubMedGoogle Scholar
  90. 90.
    Ishaaya, I. and Y. Birk, 1965. Soybean saponins. IV. The effect of proteins on the inhibitory activity of soybean saponins on certain enzymes. J. Food Sci. 30:118–120.Google Scholar
  91. 91.
    Isogai, A., C. Chang, S. Murakoshi, A. Suzuki, 1973. Screening search for biologically active substances to insects in crude drug plants. J. Agr. Chem. Soc. Japan 47:443–447.Google Scholar
  92. 92.
    Isogai, A., S. Murakoshi, A. Suzuki and S. Tamura, 1973b. Isolation from “Astragali Radix” of L-canavanine as an inhibitory substance to metamorphosis of silkworm, Bombyx mori. J. Agr. Chem. 47:449–453.Google Scholar
  93. 93.
    Isogai, A., S. Murakoshi, A. Suzuki and S. Tamura, 1973c. Growth inhibitory effects of phenylpropanoids in nutmeg on silkworm larvae. J. Agric. Chem. Soc. Jap. 47:275–279.Google Scholar
  94. 94.
    Isogai, A., S. Murakoshi, A. Suzuki and S. Tamura, 1973d. Isolation from “Astragali Radix” of L-canavanine as an inhibitory substance to metamorphosis of silkworm, Bombyx mori L. J. Agrio. Chem. 7:449–453.Google Scholar
  95. 95.
    Ito, T., Y. Horie and K. Watanabe, 1970. Effect of phytoecdysones on the length of the fifth instar and the quality of cocoons in the silkworm, Bombyx mori. Annot. Zool. Japon. 43:175–181.Google Scholar
  96. 96.
    Kamikado, T., C. F. Chang, S. Murakoshi, A. Sakurai, and S. Tamura, 1975. Isolation and structure elucidation of growth inhibitors on silkworm larvae from Magnolia kobus. Agric. Biol. Chem. 39:833–836.Google Scholar
  97. 97.
    Kaplanis, J. N., M. J. Thompson, W. E. Robbins, and B. M. Bryce, 1967. Insect hormones: Alpha ecdysone and 20-hydroxyecdysone in bracken fern. Science 157: 1436–1437.PubMedGoogle Scholar
  98. 98.
    Karlson, P. and C. Bode, 1969. Die inaktivierung des ecdysons bei der schmeissfliege Calliphora erythrocephala Meigen. J. Insect Physiol. 15:111–118.Google Scholar
  99. 99.
    Karlson, P. and J. Koolman, 1973. On the metabolic rate of ecdysone and 3-dehydroecdysone in Calliphora vicina. Insect Biochem. 3:409–417.Google Scholar
  100. 100.
    Kato, M. and H. Yamada, 1966. Silkworm requires 3,4-dihydroxybenzene structure of chlorogenic acid as a growth factor. Life Sciences 5:717–722.Google Scholar
  101. 101.
    King, D. S., 1972. Ecdysone metabolism in insects. Amer. Zool. 12:343–345.Google Scholar
  102. 102.
    King, D. S., W. E. Bollenbacher, D. W. Borst, W. V. Vedeckis, J. D. O’Connor, P. I. Ittycheriah and L. I. Gilbert, 1974. The secretion of a-ecdysone by the prothoracic glands of Manduca sexta in vitro. Proc. Nat. Acad. Sci. 71:793.PubMedGoogle Scholar
  103. 103.
    Kircher, H. W., W. B. Heed, J. S. Russell, and J. Grove, 1967. Senita cactus alkaloids: Their significance to Sonoran Desert Drosophila ecolody. J. Insect Physiol. 13:1869–1874.Google Scholar
  104. 104.
    Klingauf, F., 1971. Die Wirkung des clucosids phlorizin auf das wirtswahlverhalten von Rhopalosiphum insertum (Walk.) und Aphis pomi DeGeer (Homoptera:Aphididae). Z. ang. Ent. 63:41–55.Google Scholar
  105. 105.
    Klun, J. A., 1974. Biochemical basis of resistance of plants to pathogens and insects: Insect hormone mimics and selected examples of other biologically active chemicals derived from plants. in Proceedings of the Summer Institute of Biological Control of Plant Insects and Diseases, F. G. Maxwell and F. A. Harris, eds., Univ. Press, Jackson, Mississippi. pp. 463–484.Google Scholar
  106. 106.
    Klun, J. A. and T. A. Brindley, 1966. Role of 6-methoxybenzoxazolinone in inbred resistance of host plant (maize) to first-brood larvae of European corn borer. Jour. Econ. Ent. 59:711–718.Google Scholar
  107. 107.
    Klun, J. A., C. L. Tipton, and T. A. Brindley, 1967. 2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borer. J. Econ. Ent. 60:1529–1533.Google Scholar
  108. 108.
    Kobayashi, M., T. Takemoto, S. Ogawa, and N. Nishimoto, 1967. The moulting hormone activity of ecdysterone and inokosterone isolated from Acyranthis radix.. J. Insect Physiol. 13:1395–1399.Google Scholar
  109. 109.
    Kogan, M. and D. Cope, 1974. Feeding and nutrition of insects associated with soybeans. 3. Food intake, utilization, and growth in the soybean looper, Pseudoplusia includens. Ann. Ent. Soc. Amer. 74: 66–72.Google Scholar
  110. 110.
    Kogan, M. and R. D. Goeden, 1971. Feeding and host-selection behavior of Lema trilineata daturaphila larvae (Coleoptera:Chrysomelidae). Ann. Ent. Soc. Amer. 64:1435–1448.Google Scholar
  111. 111.
    Koolman, J., J. A. Hoffman, and P. Karlson, 1973. Sulphate esters as inactivation products of ecdysone in Locusta migratoria. H. S. Z. Physio. Chem. 354: 1043–1048.Google Scholar
  112. 112.
    Krieger, R. I., P. P. Feeny, C. F. Wilkinson, 1971. Detoxication enzymes in the guts of caterpillars: An evolutionary answer to plant defense? Science 172:579–581.PubMedGoogle Scholar
  113. 113.
    Leckstein, P. M. and M. Llewellyn, 1973. Effect of dietary amino acid on the size and alary polymorphism of Aphis fabae. J. Insect Physiol. 19:973–980.Google Scholar
  114. 114.
    Loeb, J., 1915a. The salts required for the development of insects. Jour. Biol. Chem. 23:431–434.Google Scholar
  115. 115.
    Loeb, J., 1915b. The simplest constituents required for growth and the completion of the life cycle in an insect (Drosophila). Soi. 41:169–170.Google Scholar
  116. 116.
    Lukefahr, M. J. and D. F. Martin, 1966. Cotton-plant pigments as a source of resistance to the bollworm and tobacco budworm. Jour. Econ. Ent. 59:176–179.Google Scholar
  117. 117.
    Maltais, J. B. and J. L. Auclair, 1962. Free amino acid and amide composition on pea leaf juice, pea aphid haemolymph, and honeydew, following the rearing of aphids on single pea leaves treated with amino compounds. Jour. Insect Physiol. 8:391–400.Google Scholar
  118. 118.
    Mansingh, A., T. S. Sahota, and D. A. Shaw, 1970. Juvenile hormone activity in the wood and bark extracts of some forest trees. Canad. Ent. 102:49–53.Google Scholar
  119. 119.
    Maxwell, F. G., J. N. Jenkins and W. L. Parrott, 1967. Influence of constituents of the cotton plant on feeding, oviposition, and development of the boll weevil. J. Econ. Ent. 60:1294–1297.Google Scholar
  120. 120.
    Maxwell, F. G., J. N. Jenkins, and W. L. Parrott, 1972. Resistance of plants to insects. Adv. Agron. 24: 187–265.Google Scholar
  121. 121.
    Maxwell, F. G., H. N. Lafever, and J. N. Jenkins, 1966. Influence of the glandless genes in cotton on feeding, oviposition, and development of the boll weevil in the laboratory. Jour. Econ. Ent. 59:585.Google Scholar
  122. 122.
    Meyer, H. J. and D. M. Norris, 1974. Lignin intermediates and simple phenolics as feeding stimulants for Scolytus multistriatus. J. Insect Physiol. 20: 2015–2021.PubMedGoogle Scholar
  123. 123.
    Mittler, T. E., 1973. Aphid polymorphism as affected by diet. in Perspectives in Aphid Biology, A. D. Lowe, Ed., pp. 65–75. Bull. 2. Ent. Soc. N.Z.Google Scholar
  124. 124.
    Mittler, T. E. and R. H. Dadd, 1966. Food and wing determination in Myzus persicae. Ann. Ent. Soc. Amer. 59:1162–1166.Google Scholar
  125. 125.
    Mittler, T. E. and O. R. W. Sutherland, 1969. Dietary influences on aphid polymorphism. Ent. Exp. Appl. 12:703–713.Google Scholar
  126. 126.
    Montgomery, M. E. and H. Arn, 1974. Feeding response of Aphis pomi, Myzus persicae, and Amphorophora agathonica to phlorizin. J. Insect. Physiol. 20: 413–421.Google Scholar
  127. 127.
    Nakanishi, K., H. Moriyama, T. Okauchi, S. Fujioka, and M. Koreeda, 1972. Biosynthesis of α-and β-ecdysones from cholesterol outside the prothoracic gland in Bombyx mori. Science 176:51–52.PubMedGoogle Scholar
  128. 128.
    Nault, L. R. and W. E. Styer, 1972. Effects of sinigrin on host selection by aphids. Ent. Exp. and Appl. 15:423.Google Scholar
  129. 129.
    Neville, P. F. and T. D. Luckey, 1971. Bioflavonoids as a new growth factor for the cricket, Acheta domesticus. J. Nutr. 101:1217–1224.PubMedGoogle Scholar
  130. 130.
    Norris, D. M., J. E. Baker, T. K. Borg, S. M. Ferkovitch, and J. M. Rozental. An energy transduction mechanism in chemoreception by the bark beetle, Scolytus multistriatus. Contrib. Boyce Thomp. Instit. 24:263–274.Google Scholar
  131. 131.
    Oliver, B. F., F. G. Maxwell and J. N. Jenkins, 1970. Utilization of glanded and glandless cotton diets by the bollworm. J. Econ. Ent. 63:1965–1966.Google Scholar
  132. 132.
    Oliver, B. F., F. G. Maxwell and J. N. Jenkins, 1971. Growth of the bollworm on glanded and glandless cotton. J. Econ. Ent. 64:396–398.Google Scholar
  133. 133.
    Parr, J. C. and R. Thurston, 1972. Toxicity of nicotine in synthetic diets to larvae of the tobacco hornworm. Ann. Ent. Soc. Amer. 65:1185–1188.Google Scholar
  134. 134.
    Parrott, W. L., F. G. Maxwell, J. N. Jenkins, and J. K. Mauldin, 1969. Amino acids in hosts and nonhosts of the boll weevil, Anthonomus grandis. Ann. Ent. Soc. Amer. 62:255–261.Google Scholar
  135. 135.
    Pearl, R., 1926. A synthetic food medium for the cultivation of Drosophila. Preliminary note. Jour. Gener. Physiol. 9:513–519.Google Scholar
  136. 136.
    Randolph, P. A., J. C. Randolph, and C. A. Barlow, 1975. Age-specific energetics of the pea aphid, Acyrthosiphon pisum. Ecology 56:359–369.Google Scholar
  137. 137.
    Reese, J. C., 1975. Effects of allelochemics on the black cutworm, Agrotis ipsilon. Ph.D. Dissert., University of Wisconsin.Google Scholar
  138. 138.
    Reese, J. C., L. M. English, T. R. Yonke, and M. L. Fairchild, 1972. A method for rearing black cutworm. J. Econ. Ent. 65:1047–1050.Google Scholar
  139. 139.
    Rehr, S. S., D. H. Janzen, and P. P. Feeny, 1973. L-dopa in legume seeds: A chemical barrier to insect attack. Science 181:81–82.PubMedGoogle Scholar
  140. 140.
    Reichstein, T., J. von Euw, J. A. Parsons and M. Rothschild, 1968. Heart poisons in the Monarch butterfly. Science 161:861–866.PubMedGoogle Scholar
  141. 141.
    Retig, N. and I. Chet, 1974. Catechol-induced resistance of tomato plants to Fusarium wilt. Physiol. Plant Pathol. 4:469–475.Google Scholar
  142. 142.
    Riddiford, L. M., 1967. Trans-2-hexenal: Mating stimulant for polyphemus moths. Science 158:139–141.PubMedGoogle Scholar
  143. 143.
    Robbins, W. E., J. N. Kaplanis, J. A. Svoboda, and M. J. Thompson, 1971. Steroid metabolism in insects. Ann. Rev. Ent. 16:53–72.Google Scholar
  144. 144.
    Robbins, W. E., J. N. Kaplanis, M. J. Thompson, T. J. Shortino, C. F. Cohen, and S. C. Joyner, 1968. Ecdysones and analogs: Effects on development and reproduction of insects. Science 161:1158–1160.PubMedGoogle Scholar
  145. 145.
    Robinson, T., 1974. Metabolism and function of alkaloids in plants. Science 184:430–435.PubMedGoogle Scholar
  146. 146.
    Roller, H., K. H. Dahm, C. C. Sweely and B. M. Trost, 1967. The structure of juvenile hormones. Angew. Che. (Int. Edit.) 6:179–180.Google Scholar
  147. 147.
    Ryan, C. A. and T. R. Green, 1974. Proteinase inhibitors in natural plant protection. Rec. Adv. Phytochem. 8:123–140.Google Scholar
  148. 148.
    Salama, H. S. and A. M. El-Sharaby, 1972. Giberellic acid and B-sitosterol as sterilants of the cotton leafworm, Spodoptera littoralis Boisduval. Experientia 28:413–414.PubMedGoogle Scholar
  149. 149.
    Sauer, H. H., R. D. Bennett, and E. Heftmann, 1968. Ecdysterone biosynthesis in Podocarpus elata. Phytochem. 7:2027.Google Scholar
  150. 150.
    Schaeffers, G. A. and M. E. Montgomery, 1973. Influence of cytokinin (N6Benzyladenine) on development and alary polymorphism in strawberry aphid, Chaetosiphon fragaefolii. Ann. Ent. Soc. Amer. 66:1115–1119.Google Scholar
  151. 151.
    Schmialek, P., 1963. Metamorphosehemmung von Tenebrio molitor durch Farnesylmethylather. Zeit f. Naturfor. 18B:513.Google Scholar
  152. 152.
    Schreiber, K., 1958. Uber einige Inhaltsstoffe der Solanaceen und ihre Bedeutung fur die Kartoffelkaferresistenz. Ent. Exp. & Appl. 1:28–31.Google Scholar
  153. 153.
    Schroeder, L. A., 1971. Energy budget of larvae of Hyalophora cecropia (Lepidoptera) fed Acer negundo. Oikos 22:256–259.Google Scholar
  154. 154.
    Schroeder, L. A., 1972. Energy budget of cecropia moths, Platysamia cecropia (Lepidoptera; Staurniidae), fed lilac leaves. Ann. Ent. Soc. Amer. 65:367–372.Google Scholar
  155. 155.
    Seamans, H. L. and E. McMillan, 1935. The effect of food plants on the development of the pale western cutworm (Agrotis orthogonia Morr.). Jour. Econ. Ent. 28:421–425.Google Scholar
  156. 156.
    Self, L. S., F. E. Guthrie and E. Hodgson, 1964. Adaptation of tobacco hornworms to the ingestion of nicotine. Jour. Insect Physiol. 10:907–914.Google Scholar
  157. 157.
    Self, L. S., F. E. Guthrie and E. Hodgson, 1964. Metabolism of nicotine by tobacco-feeding insects. Nature 204:300.PubMedGoogle Scholar
  158. 158.
    Shaaya, E., 1969. Studies on the distribution of ecdysone in different tissues of Calliphora erythrocephula and its biological half-life. Z. Naturforsch. 24B:718–721.Google Scholar
  159. 159.
    Shany, S., B. Gestetner, Y. Birk and A. Bond, 1970. Lucerne saponins. III. Effect of lucerne saponins on larval growth and their detoxification by various sterols. J. Sci. Food Agric. 21:508–510.PubMedGoogle Scholar
  160. 160.
    Shaver, T. N. and M. J. Lukefahr, 1969. Effect of flavonoid pigments and gossypol on growth and development of the bollworm, tobacco budworm, and pink bollworm. J. Econ. Ent. 62:643–646.Google Scholar
  161. 161.
    Shaver, T. N., M. J. Lukefahr and J. A. Garcia, 1970. Food utilization, ingestion, and growth of larvae of the bollworm and tobacco budworm on diets containing gossypol. J. Econ. Ent. 63:1544–1546.Google Scholar
  162. 162.
    Shaver, T. N. and W. L. Parrott, 1970. Relationship of larval age to toxicity of gossypol to bollworms, tobacco budworms, and pink bollworms. J. Econ. Ent. 63:1802–1804.Google Scholar
  163. 163.
    Shigematsu, H., H. Moriyama and N. Arai, 1974. Growth and silk formation of silkworm larvae influenced by photoecdysones. J. Insect Physiol. 20:867–875.PubMedGoogle Scholar
  164. 164.
    Slama, K., 1969. Plants as a source of materials with insect hormone activity. Ent. Exp. Appl. 12:721–728.Google Scholar
  165. 165.
    Slama, K. and C. M. Williams, 1966a. “Paper factor” as an inhibitor of the embryonic development of the European bug, Pyrrhocoris apterus. Nature 210:329.PubMedGoogle Scholar
  166. 166.
    Slama, K. and C. M. Williams, 1966b. The juvenile hormone. V. The sensitivity of the bug, Pyrrhocoris apterus, to a hormonally active factor in American paper pulp. Biol. Bull. 130:235.Google Scholar
  167. 167.
    Smissman, E. E., S. D. Beck, and M. R. Boots, 1961. Growth inhibition of insects and a fungus by indole-3-acetonitrile. Sci. 133:462.Google Scholar
  168. 168.
    Smissman, E. E., J. B. Lapidus, and S. D. Beck, 1957. Isolation and synthesis of an insect resistance factor from corn plants. Jour. Amer. Chem. Soc. 79:4697–4698.Google Scholar
  169. 169.
    Smith, D. S., 1959. Utilization of food plants by the migratory grasshopper, Melanoplus bilituratus (Walker) (Orthoptera:Acrididae) with some observations on the nutritional value of the plants. Ann. Ent. Soc. Amer. 52:674–680.Google Scholar
  170. 170.
    Snyder, Karl D., 1954. The effect of temp. and food on the development of the variegated cutworm Peridroma margaritosa Haw. Ann. Ent. Soc. of Amer. 47:603–613.Google Scholar
  171. 171.
    Soo Hoo, C. F. and G. Fraenkel, 1966a. The selection of food plants in a polyphagous insect, Prodenia eridania. Jour. Inseot Physiol. 12:693–709.Google Scholar
  172. 172.
    Soo Hoo, C. F. and G. Fraenkel, 1966b. The consumption, digestion, and utilization of food plants by a polyphagous insect, Prodenia eridania (Craner). Jour. Inseot Physiol. 12:711–730.Google Scholar
  173. 173.
    Sturchkow, B. and I. Low, 1961. Die Wirkung einiger Solanum-Alkaloidglykoside auf den Kartoffelkafer, Leptinotarsa decemlineata Say. Ent. Exp. & Appl. 4: 133–142.Google Scholar
  174. 174.
    Sutherland, O. R. W., N. D. Hood and J. R. Hillier, 1975. Lucerne root saponins: a feeding deterrent for the grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae). N. Z. J. Zool. 2:93–100.Google Scholar
  175. 175.
    Svoboda, J. A., R. F. N. Hutchins, M. J. Thompson, and W. E. Robbins, 1969. 22-Trans-cholesta-5,22,24-trien-3B-ol— an intermediate in the conversion of stigmasterol to cholesterol in the tobacco hornworm, Manduca sexta, (Johannson). Steroids 14:469.PubMedGoogle Scholar
  176. 176.
    Svoboda, J. A., J. N. Kaplanis, W. E. Robbins, and M. J. Thompson, 1975. Recent developments in insect steroid metabolism. Ann. Rev. Ent. 20:205.Google Scholar
  177. 177.
    Svoboda, J. A. and W. E. Robbins, 1968. Desmosterol as a common intermediate in the conversion of a number of C23 and C29 plant sterols to cholesterol by the tobacco hornworm. Experientia 24:1131.PubMedGoogle Scholar
  178. 178.
    Takemoto, T., S. Ogawa, and N. Nishimoto, 1967a. Studies on the constituents of Aohyranthis radix. II. Isolation of the insect moulting hormones. Yak. Zass. (J. Pharm. Soc. Japan) 87:1469–1473.Google Scholar
  179. 179.
    Takemoto, T., S. Ogawa, and N. Nishimoto, 1967b. Studies on the constituents of Achyranthis radix. III. Structure of Inokosterone. Yak. Zass. (J. Pharm. Soc. Japan) 87:1474–1477.Google Scholar
  180. 180.
    Takemoto, T., S. Ogawa, N. Nishimoto and S. Taniguchi, 1967c. Studies on the constituents of Achyranthis radix. IV. Isolation of the insect moulting hormones from Formosan Achyranthes spp. Yak. Zass. (J. Pharm. Soc. Japan) 87:1478–1480.Google Scholar
  181. 181.
    Takemoto, T., S. Ogawa, N. Nishimoto, and K. Mue, 1967d. Studies on the constituents of Achyranthis radix. V. Insect hormone activity of ecdysterone and inokosterone on the flies. Yak. Zass. (J. Pharm. Soc. Japan) 87:1481–1483.Google Scholar
  182. 182.
    Tarnopol, J. H. and H. J. Ball, 1972. A survey of some common midwestern plants for juvenile hormone activity. J. Econ. Ent. 65a:980–982.Google Scholar
  183. 183.
    Thompson, J. A., J. B. Siddall, M. N. Galbraith, D. H. S. Horn, and D. J. Middleton, 1969. The biosynthesis of ecdysones in the blowfly Calliphora stygia. Chem. Commun. 1969:669–670.Google Scholar
  184. 184.
    Thompson, M. J., J. N. Kaplanis, W. E. Robbins, and J. A. Svoboda, 1973. Metabolism of steroids in insects. Adv. Lipids Res. 11:219–265.Google Scholar
  185. 185.
    Thorsteinson, A. J., 1953. The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.) Lepidoptera). Can. Jour. Zool. 31:52–72.Google Scholar
  186. 186.
    Tipton, C. L., J. A. Klun, R. R. Husted, and M. D. Pierson, 1967. Cyclic hydroxamic acids and related compounds from maize. Isolation and characterization. Biochem. 6:2866–2870.Google Scholar
  187. 187.
    Todd, G. W., A. Getahun, and D. C. Cress, 1971. Resistance in barley to the greenbug, Sohizaphis graminum. 1. Toxicity of phenolic and flavonoid compounds and related substances. Ann. Ent. Soc. Amer. 64:718–722.Google Scholar
  188. 188.
    Uvarov, B. P., 1928. Insect nutrition and metabolism. Trans. Ent. Soc. London 76:255–343.Google Scholar
  189. 189.
    Vanderzant, E. S. and J. H. Chremos, 1971. Dietary requirements of the boll weevil for arginine and the effect of arginine analogues on growth and on the composition of body amino acids. Ann. Ent. Soc. Amer. 64:480–485.Google Scholar
  190. 190.
    Van Emden, H. F., 1972. Aphids as phytochemists in Phytochemical Ecology, J. B. Hartborne, Ed., Academic Press, N. Y. pp. 25–43.Google Scholar
  191. 191.
    Verschaffelt, E., 1910. The cause determining the selection of food in some herbiverous insects. Proc. K. Akad. Wetensch. Amsterdam Sect. Sci. 13:536–542.Google Scholar
  192. 192.
    Virtanen, A. I. and P. K. Hietala, 1955. 2(3)-Benzoxazolinone, an anti-fusarium factor in rye seedlings. Acta Chem. Scand. 9:1543–1544.Google Scholar
  193. 193.
    Virtanen, A. I. and P. K. Hietala, 1959. On the structure of the precursors of benzoxazolinones in rye plants. Suom. Kemist. B 32:252. (reprint filed as abstract).Google Scholar
  194. 194.
    Waldbauer, G. P., 1964. The consumption, digestion, and utilization of Solanaceous and non-solanaceous plants by larvae of the tobacco hornworm, Protoparce sexta (Johan) (Lepidoptera:Sphingidae). Ent. Exp. & Appl. 7:253–269.Google Scholar
  195. 195.
    Waldbauer, G. P., 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5: 229–288.Google Scholar
  196. 196.
    Wardojo, S., 1969. Some Factors Relating to the Larval Growth of the Colorado Potato Beetle, Leptinotarsa decemlineata Say (Coleoptera:Chrysomeli-dae), on Artificial Diets. H. Veenman and Zonen N.V., Wageningen 75 pp.Google Scholar
  197. 197.
    Wensler, R. J. D., 1962. Mode of host selection by an aphid. Nature 195:830–831.Google Scholar
  198. 198.
    White, D., 1972. Effect of varying dietary amino acid and sucrose concentrations on production of apterous cabbage aphids. J. Insect Physiol. 18: 1241–1248.Google Scholar
  199. 199.
    Whittaker, R. H., 1970. The biochemical ecology of higher plants. in Chemical Ecology, E. Sondheimer and J. B. Simeone, Eds. Academic Press, pp. 43–70.Google Scholar
  200. 200.
    Whittaker, R. H. and P. P. Feeny, 1971. Allelochemics: Chemical interactions between species. Science 171: 757–770.PubMedGoogle Scholar
  201. 201.
    Wiklund, C., 1975. The evolutionary relationship between adult oviposition preferences and larval host plant range in Papilio machaon L. Oecologia 18: 185–197.Google Scholar
  202. 202.
    Williams, C. M., 1970. Hormonal interactions between plants and insects. in Chemical Ecology, Eds. E. Sondheimer and J. B. Simeone. Academic Press, New York and London, pp. 103–132.Google Scholar
  203. 203.
    Yamada, H. and M. Kato, 1966. Chlorogenic acid as an indispensable component of the synthetic diet for the silkworm. Proc. Jap. Acad. 42:399.Google Scholar
  204. 204.
    Yang, R. S. H. and F. E. Guthrie, 1969. Physiological responses of insects to nicotine. Ann. Ent. Soc. Amer. 62:141–146.Google Scholar
  205. 205.
    Yang, R. S. H. and C.F. Wilkinson, 1972. Enzymic sulphation of p-nitrophenol and steroids by larval gut tissues of the southern army worm (Prodenia eridania Cramer). Biochem. J. 130:487–493.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Stanley D. Beck
    • 1
  • John C. Reese
    • 1
  1. 1.Department of EntomologyUniversity of WisconsinMadisonUSA

Personalised recommendations