Advertisement

Fine Particulates to Ultrafine-Grain Ceramics

  • T. Vasilos
  • W. Rhodes
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 15)

Abstract

The preparation of dense ceramics with ultrafine-grain sizes has, in general, required a coupling of ultrafine particles as starting materials with applied pressure during densification.

The state-of-the-art of a number of ceramic materials so processed is described, with attention given to raw material characteristics and processing variables on final microstructure development.

Keywords

Green Density Sintered Density Percent Density Beryllium Oxide Pore Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coble R. L. and Burke, J. E. “Sintering in Ceramics,” Prog. Cer. Sci., Vol. 3, Macmillan Co., New York (1963), 197.Google Scholar
  2. 2.
    Coble, R. L., “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models,” J. Appl. Phys., 32 (1961), 787.CrossRefGoogle Scholar
  3. Coble, R. L., “Sintering Crystalline Solids. II. Experimental Tests of Diffusion Models in Powder Compacts,” ibid.,793.Google Scholar
  4. 3.
    Coble R. L. and Gupta, T. K., “Intermediate Stage Sintering,” in Sintering and Related Phenomena,G. C. Kuczynski et al.,eds., Gordon and Breach, New York (1967), 423.Google Scholar
  5. 4.
    Jorgensen, P. J., “Modification of Sintering Kinetics by Solute Segregation in Al203,” J. Am. Ceram. Soc., 48 (1965), 207.CrossRefGoogle Scholar
  6. 5.
    Bannister, M. J., “Interdependence of Pore Removal and Grain Growth During Later Stages of Sintering in Beryllium Oxide,” in Sintering and Related Phenomena,G. C. Kuczynski et al.,eds., Gordon and Breach, New York (1967), 581.Google Scholar
  7. 6.
    Gupta, T. K., “Sintering of Zinc Oxide,” Sc.D. Thesis, Massachusetts Institute of Technology (December 1966).Google Scholar
  8. 7.
    Burke, J. E., “Role of Grain Boundaries in Sintering,” J. Am. Ceram. Soc., 40 (1957), 80–85.CrossRefGoogle Scholar
  9. 8.
    Clare, T. E., “Sintering Kinetic of Beryllia,” J. Am. Ceram. Soc., 49 (1966), 159.CrossRefGoogle Scholar
  10. 9.
    Bruch, C. A., “Sintering Kinetics for the High Density Alumina Process,” Bull. Am. Ceram. Soc., 41 (1962), 799.Google Scholar
  11. 10.
    Kingery W. D. and Francois, B., “Sintering of Crystalline Oxides. I. Interactions Between Grain Boundaries and Pores, and II. Densification and Microstructure Development in UO2,” in Sintering and Related Phenomena,G. C. Kuczynski et al.,eds., Gordon and Breach, New York (1967), 471.Google Scholar
  12. 11.
    Charles R. J. and Shaw, R. R., “Delayed Failure of Polycrystalline and Single Crystal Alumina,” General Electric Co. Report No. 62–RL-3081M.Google Scholar
  13. 12.
    Harrisville Tool Co., distributors for Feldmuhle, Germany.Google Scholar
  14. 13.
    Ueltz, H. F. G., Abrasive Grain, U.S. Patent 3, 079, 243.Google Scholar
  15. 14.
    Coble, R. L., Transparent Alumina and Method of Preparation, U.S. Patent 3, 026, 210.Google Scholar
  16. 15.
    Wolkodoff, V. W. and Weaver, R. E., Alumina Ceramic, U.S. Patent 3, 377, 176.Google Scholar
  17. 16.
    Elyard, C. A., Gibbs, B. M. and Rawson, H., “Effect on Uranium Oxide of Controlling Grain Growth during Sintering,” Trans. Brit. Ceram. Soc., 62 (1963), 127.Google Scholar
  18. 17.
    Duderstadt, E. C. and White, J. E., “Sintering BeO to Variable Densities and Grain Sizes,” Bull. Am. Ceram. Soc., 44 (1965), 907.Google Scholar
  19. 18.
    Langrod, K., “Graphite as Grain Growth Inhibitor in Hot-Pressed Beryllium Oxide,” J. Am. Ceram. Soc., 48 (1965), 110.CrossRefGoogle Scholar
  20. 19.
    Hill, N. A., O’Neil, J. S. and Livey, D. T., AERE R5056 (1966).Google Scholar
  21. 20.
    Clougherty, E., Kalish, D. and Peters, E. T., “Research and Development of Oxidation Resistant Diborides,” AFML-TR-68–190.Google Scholar
  22. 21.
    Hillert, M., “On the Theory of Normal and Abnormal Grain Growth,” Acta Met., 13 (1965), 227.CrossRefGoogle Scholar
  23. 22.
    Woolfrey, J. L., “Feasibility of Dispersed Phase Grain Refinement in Ceramics,” AAEC/ E170 (February 1967).Google Scholar
  24. 23.
    Jorgensen P. J. and Westbrook, J. H., “Role of Solute Segregation at Grain Boundaries During Final Stage Sintering of Al2O3,” J. Am. Ceram. Soc., 47 (1964), 332.CrossRefGoogle Scholar
  25. 24.
    Paladino, A. E., Private communication.Google Scholar
  26. 25.
    Jorgensen P. J. and Anderson, R. C., “Grain Boundary Segregation and Final Stage Sintering of Y2O3,” J. Am. Ceram. Soc., 50 (1967). 553–58.CrossRefGoogle Scholar
  27. 26.
    Ferguson, D. E., Dean O. C. and Douglas, D. A., “The Sol-Gel Process for the Remote Preparation and Fabrication of Recycle Fuels,” presented at Third International Geneva Conference on the Peaceful Uses of Atomic Energy (September 1964).Google Scholar
  28. 27.
    Morgan C. S. and Yust, C. S., “Material Transport During Sintering of Materials with Fluorite Structure,” J. Nucl. Mat., 10 (1963), 182. See also: Morgan, C. S., McHargue, C. J. and Yust, C. S., “Material Transport in Sintering,” Proc. Brit. Ceram. Soc., 3 (1965), 177.Google Scholar
  29. 28.
    Morgan C. S. and Hall, L. L., “The Creep of ThO2 and ThO2-CaO Solid Solutions,” Proc. Brit. Ceram. Soc., 3 (1965), 177.Google Scholar
  30. 29.
    Mazdiyasni, K. S., Lynch C. T. and Smith, J. S., “Cubic Phase Stabilization of Translucent Yttria-Zirconia at Very Low Temperatures,” J. Am. Ceram. Soc., 50 (1967), 532.CrossRefGoogle Scholar
  31. 30.
    Rhodes, W. H., “Sintering Characteristics of Stabilized Zirconium Oxide,” General Electric Co. Report No. 61-RL-2703M.Google Scholar
  32. 31.
    Rhodes W. H. and Haag, R. M., “Ultra-High Purity Fine Particulate Stabilized Zirconia,” Contract F 33615–67-C-1693, Progresss Reports 1–4 (1967–68).Google Scholar
  33. 32.
    Mansour N. A. and White, J., Powder Metallurgy, 12 (1963), 108.Google Scholar
  34. 33.
    Livey, D. T., Brett, N. H., Denton I. and Murray, P., AERE Report M/R, 2794 (1959).Google Scholar
  35. 34.
    Coble, R. L., Private communications.Google Scholar
  36. 35.
    Murray, P., Rodgers, E. P. and Williams, A. E., “Practical and Theoretical Aspects of Hot Pressing of Refractory Oxides,” Trans. Brit. Ceram. Soc., 53 (1954), 471–510.Google Scholar
  37. Jackson J. S. and Palmer, P. F., “Hot Pressing Refractory Hard Materials,” Chap. 18 in Special Ceramics, P. Popper, ed., Heywood, London (1960), 305–28;Google Scholar
  38. McClelland, J. D., “A Plastic Flow Model of Hot Pressing,” J. Am. Ceram. Soc., 44 (1961), 526.CrossRefGoogle Scholar
  39. 36.
    Chang R. and Rhodes, C. G., “High Pressure Hot Pressing of Uranium Carbide Powders and Mechanism of Sintering of Refractory Bodies,” J. Am. Ceram. Soc., 45 (1962), 379–82.CrossRefGoogle Scholar
  40. 37.
    Clougherty E. and Kalish, D., Private communications.Google Scholar
  41. 38.
    Vasilos T. and Spriggs, R. M., “Pressure Sintering: Mechanisms and Microstructures for Alumina and Magnesia,” J. Am. Ceram. Soc., 46 (1963), 493–96.CrossRefGoogle Scholar
  42. 39.
    Rossi R. C. and Fulrath, R. M., “Final Stage Densification in Vacuum Hot Pressings of Alumina,” J. Am. Ceram. Soc., 48 (1965), 558–64.CrossRefGoogle Scholar
  43. 40.
    Coble, R. L., “Mechanisms of Densification During Hot Pressing,” in Sintering and Related Phenomena,G. C. Kuczynski et al.,eds., Gordon and Breach, New York, 329.Google Scholar
  44. 41.
    Coble R. L. and Ellis, J. S., “Hot Pressing Alumina-Mechanisms of Material Transport,” J. Am. Ceram. Soc., 46 (1963), 438–41.CrossRefGoogle Scholar
  45. 42.
    Vasilos T. and Spriggs, R. M., “Pressure Sintering of Ceramics,” Chap. 2 in Progress in Ceramic Science, Vol. 4, J. Burke, ed., Pergamon Press (1966).Google Scholar
  46. 43.
    Fulrath, R. M., “Hot Forming Processes,” in Critical Compilation of Ceramic Forming Methods, Air Force Materials Lab. Tech. Doc. Report No. RTD-TDR-63–4069 (January 1964), 33–43.Google Scholar
  47. 44.
    Rhodes, W. H., Sellers, D. J., Cannon, R. M., Heuer, A. H., Mitchell W. R. and Burnett, P. L., “Microstructure Studies of Polycrystalline Refractory Oxides,” Summary Report, U.S. Naval Air Systems Command, Contract NOw 19–67-C-0336 (May 1968).Google Scholar
  48. 45.
    Spriggs, R. M., Brissette L. A. and Vasilos, T., “Grain Growth in Fully Dense Magnesia,” J. Am. Ceram. Soc., 47 (1964), 447.Google Scholar
  49. 46.
    Leipold, M. H., “Impurity Distribution in MgO,” J. Am. Ceram. Soc., 49 (1966), 478.CrossRefGoogle Scholar
  50. 47.
    Kriegel, W. W., Palmour, Hayne III and Choi, D. M., “The Preparation and Mechanical Properties of Spinel,” Chap. 12 in Special Ceramics, Proceedings of a Symposium held by British Ceramic Research Association in 1964, P. Popper, ed., Academic Press (1965), 167.Google Scholar
  51. 48.
    Spriggs, R. M., Brissette, L. A., Rossetti, M. and Vasilos, T., “Hot Pressing Ceramics in Alumina Dies,” Bull. Am. Ceram. Soc., 42 (1963), 477.Google Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1970

Authors and Affiliations

  • T. Vasilos
    • 1
  • W. Rhodes
    • 1
  1. 1.Avco Space Systems DivisionWilmingtonUSA

Personalised recommendations