Microstructure of Fine-Grain Ceramics

  • N. J. Tighe
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 15)


This chapter describes the use of transmission electron-microscopy to characterize the microstructure of fine-grain ceramics. Observations have been made on a number of polycrystalline materials including alumina, magnesia, zirconia, metal-ceramic composites, and rock specimens.

Thin sections were prepared by ion bombardment. In these sections grain boundaries, pores, impurity precipitates, and dislocations could be observed directly. Crystalline second-phase material formed as grains and small precipitates could be identified by means of electron diffraction. The method of specimen preparation and the results obtained from the observation of the specimens will be discussed.


Electron Beam Triple Junction Rock Specimen Diffraction Contrast Fringe Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kingery, W. D., Introduction to Ceramics, John Wiley and Sons, Inc., New York (1960).Google Scholar
  2. 2.
    Insley, H. and Fréchette, V. D., Microscopy of Ceramics and Cements, Academic Press, New York (1955).Google Scholar
  3. 3.
    Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., Electron Microscopy of Thin Crystals, Plenum Press, New York (1965). Butterworth li Co., Ltd.Google Scholar
  4. 4.
    Thomas, G., Transmission Electron Microscopy of Metals, John Wiley and Sons, Inc., New York (1962).Google Scholar
  5. 5.
    Amelinckx, S., The Direct Observation of Dislocations, Academic Press, New York (1964).Google Scholar
  6. 6.
    Heidenreich, R. D., Fundamentals of Transmission Electron Microscopy, Interscience Publishers, New York (1964).Google Scholar
  7. 7.
    Tighe, N. J. and Hyman, A., “Transmission Electron Microscopy of Alumina Ceramics,” in Anisotropy in Single-Crystal Refractory Compounds, Plenum Press, New York (1968), 121–36.Google Scholar
  8. 8.
    Tighe, N. J. and Heuer, A. H., “Substructure of Hot Pressed Polycrystalline Al203,” Bull. Am. Ceram. Soc, 47 (1968), 349 (abstract).Google Scholar
  9. 9.
    Tighe, N. J. and Kreglo, J. R., “Microstructure of Mg0 Brick,” Bull. Am. Ceram. Soc., 47 (1968), 426, to be published.Google Scholar
  10. 10.
    Langdon, T. G., “Thinning of Polycrystalline Mg0 for Transmission Electron Microscopy,” J. Sci. Inst, 38 (1967), 125.CrossRefGoogle Scholar
  11. 11.
    Gulden, T. D., “Direct Observation of Nonbasal Dislocations in Sintered Alumina,” J. Am. Ceram. Soc., 50 (1967), 472–75.CrossRefGoogle Scholar
  12. 12.
    Crosby, A., Personal communication.Google Scholar
  13. 13.
    Barber, D. J. and Tighe, N. J., “Observations of Dislocations and Surface Features in Corundum Crystals by Electron Transmission Microscopy,” J. Res. NBS, 69A (1965), 271–80.CrossRefGoogle Scholar
  14. 14.
    Doherty, P. E. and Leombruno, “Transmission Electron Microscopy of Thin Glass Samples,” J. Am. Ceram. Soc., 47 (1964), 368–70.CrossRefGoogle Scholar
  15. 15.
    Williams, J. P., Carrier, G. B., Holland, H. J. and Farncomb, F. J., “The Determination of the Crystalline Content of Glass-Ceramics,” J. Mat. Sci., 2 (1967), 513–20.CrossRefGoogle Scholar
  16. 16.
    Christie, J. M., Personal communication.Google Scholar
  17. 17.
    Bauer, T. E. and Beauchamp, R. H., “Mechanical Thinning of Ceramic Materials for Transmission Electron and Optical Microscopy,” AEC-BNWL-652 (1968), Battelle Northwest.Google Scholar
  18. 18.
    Ashbee, K. H. G., Lyall, R. and White, D., “Plastic Deformation of a Glass-Ceramic,” Phil. Mag., 17 (1968), 225–34.CrossRefGoogle Scholar
  19. 19.
    Paulus, M. and Reverchon, F., “Dispositif de Bombardement Ionique pour Préparations Micrographiques,” J. Phys. Radium, 22 (1961), 103A.Google Scholar
  20. 20.
    Etude des Parametres du Bombardement Ionique des Ferrites,“ in Le Bombarde- ment Ionique, C. N. R. S. No. 113, Paris (1966), 223–34.Google Scholar
  21. 21.
    Barber, D. J. and Tighe, N. J., “Electron Microscopy and Diffraction of Synthetic Corundum Crystals. Il. Dislocations and Grain Boundaries in Impurity-doped Aluminum Oxide,” Phil. Mag., 14 (1966), 531–45.CrossRefGoogle Scholar
  22. 22.
    Gevers, R., van Landuyt, J. and Amelinckx, S., “On a Simple Derivation of the Amplitudes of the Electron Beams Transmitted and Scattered by a Crystal Containing Planar Interfaces-Images of Subgrain Boundaries,” Phys. Stat. Sol., 18 (1966), 325–42.CrossRefGoogle Scholar
  23. 23.
    Phillips, V. A. and Livingstone, J. D., “Direct Observation of Coherency Strains in a Copper-Cobalt Alloy,” Phil. Mag., 8 (1962), 969–80.CrossRefGoogle Scholar
  24. 24.
    Ashby, M. F. and Brown, L. M., “On Diffraction Contrast from Inclusions,” Phil. Mag., 8 (1963), 1649–76.CrossRefGoogle Scholar
  25. 25.
    McLaren, A. D. and Phakey, P. P., “A Transmission Electron Microscope Study of Amethyst and Citrine,” Aust. J. Phys., 18 (1965), 135–41.CrossRefGoogle Scholar
  26. 26.
    Christie, J. M. and Tighe, N. J., to be published.Google Scholar
  27. 27.
    Heuer, A. H., Cannon, R. M. and Tighe, N. J., “Plastic Deformation in Fine-Grain Ceramics,” this volume.Google Scholar
  28. 28.
    Barber, D. J. and Tighe, N. J., “Electron Microscopy and Diffraction of Synthetic Corundum Crystals. I. Pure Aluminum Oxide Grown by the Verneuil Process,” Phil. Mag., 11 (1965), 495–512.CrossRefGoogle Scholar
  29. 29.
    Heuer, A. H., “Deformation Twinning in Corundum,” Phil. Mag., 13 (1966), 379–93.CrossRefGoogle Scholar
  30. 30.
    Swann, P. R. and Warlimont, H., “The Electron Metallography and Crystallography of Copper-Aluminum Martensites,” Acta Met., 11 (1963), 511–27.CrossRefGoogle Scholar
  31. 31.
    Washburn, J., Groves, G. W., Kelly, A. and Williamson, G. K., “Electron Microscope Observations of Deformed Magnesium Oxide,” Phil. Mag., 5 (1960), 991–99.CrossRefGoogle Scholar
  32. 32.
    Rice, R. W., “Internal Surfaces of MgO,” in Materials Science Research, Vol. 3, The Role of Grain Boundaries and Surfaces in Ceramics, Plenum Press, New York (1966).Google Scholar
  33. 33.
    Barber, D. J. and Tighe, N. J., “Observations of Neutron Damage in Single Crystal Aluminum Oxide,” J. Am. Ceram. Soc., 51 (1968), 611–17.CrossRefGoogle Scholar
  34. 34.
    Dupouy, G., and Perrier, F., “Microscope Électronique Fonctionnant sous une Tension d’un Million de Volts,” J. Microscopie, 1 (1962), 167.Google Scholar
  35. 35.
    Thomas, G., “Electron Microscopy at High Voltages,” Phil. Mag., 17 (1968), 1097–1108.CrossRefGoogle Scholar
  36. 36.
    Cosslett, V. E., “The Voltage Electron Microscope,” Contemp. Phys., 9 (1968), 333.CrossRefGoogle Scholar
  37. 37.
    Uyeda, R. and Nonoyama, M., “The Observation of Thick Specimens by High Voltage Electron Microscopy. 1I. Experiment with Molybdenite Films at 50–1200 kV,” Japan J. Appl. Phys., 7 (1968), 200.CrossRefGoogle Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1970

Authors and Affiliations

  • N. J. Tighe
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations