Optimum Procedures for Determining Ultrafine-Grain Sizes

  • J. E. Hillard
  • J. B. Cohen
  • W. M. Paulson
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 15)


A review is given of microscopic and X-ray methods for estimating grain size in compacted or sintered ceramics. Particular emphasis is given to two aspects of grain-size analysis that are often neglected. The first is the definition of an “average” size and the type of average that each procedure yields. The second is the sampling error and how this can be minimized for a particular procedure.

It is shown that from microscopical measurements it is possible to determine three different average grain sizes. A theoretical and experimental study has also been made of an X-ray procedure that involves the measurement of the variance in diffracted intensity from different parts of the specimen.


Optimum Procedure Sampling Error Test Figure Grain Shape Linear Absorption Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hilliard, J. E., Proceedings of the Second International Congress for Stereology, Chicago, 1967, H. Elias, ed., Springer-Verlag, New York (1967).Google Scholar
  2. 2.
    Hilliard, J. E., Metal Progress, 85 (1964), 99.Google Scholar
  3. 3.
    Hilliard, J. E., General Electric Research Laboratory Report No. 62-RL-3133M(December 1962).Google Scholar
  4. 4.
    Hilliard, J. E. and Cahn, J. W., Trans. Met. Soc. AIME, 221 (1961), 344.Google Scholar
  5. 5.
    Hilliard, J. E., Quantitative Microscopy, R. T. De Hoff and F. N. Rhines, eds., McGraw-Hill, New York (1968), 45–76.Google Scholar
  6. 6.
    Hilliard, J. E., Recrystallization, Grain Growth and Textures, H. Margolin, ed., American Society for Metals, Metals Park, Ohio (1966), 267.Google Scholar
  7. 7.
    Gladman, T. and Woodhead, J. H., J. Iron and Steel Inst., 194 (1960), 189.Google Scholar
  8. 8.
    De Marco, J. J. and Weiss, R. J., Reported in [9].Google Scholar
  9. 9.
    Cooper, M. J., Phil. Mag., 11 (1965), 969.CrossRefGoogle Scholar
  10. 10.
    Warren, B. E., Progress in Metal Physics, 8 (1959), 147.CrossRefGoogle Scholar
  11. 11.
    Suoninen, E., Acta Polytechnia Scandinavica (Physics Nucleonic Ser.) Ph., 54 (1968).Google Scholar
  12. 12.
    Alexander, L., Klug, H. P. and Kummer, E., J. Appl. Phys., 19 (1948), 742.CrossRefGoogle Scholar
  13. 13.
    De Wolff, P. M., Appl. Sci. Research, 7 (1958), 102.CrossRefGoogle Scholar
  14. 14.
    De Wolff, P. M., Taylor, J. M. and Parrish, W., J. Appl. Phys., 30 (1959), 63.CrossRefGoogle Scholar
  15. 15.
    Warren, B. E., J. Appl. Phys., 31 (1960), 2237.CrossRefGoogle Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1970

Authors and Affiliations

  • J. E. Hillard
    • 1
  • J. B. Cohen
    • 1
  • W. M. Paulson
    • 1
  1. 1.Northwestern UniversityEvanstonUSA

Personalised recommendations