Electrical and Magnetic Behavior of Ultrafine-Grain Ceramics

  • A. J. Mountvala
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 15)


The electrical and magnetic properties of ceramic materials can be influenced by their microstructural characteristics, including ultrafine-grain size. Salient features of a boundary region which significantly alter or affect the electronic processes in a material are discussed. Electrical characterization of surface characteristics to show the relationship between the dielectric properties of bulk and surface layer in ultrafine particulate BaTiO3 is presented. An electron-beam scanning technique capable of differentiating the electrical characteristics of grain boundaries and adjacent grains has been developed, and preliminary experimental data obtained. The implications of the role of grain boundaries in the electronic behavior of ultrafine-grain ceramics is discussed.


Boundary Region Coercive Force Magnetic Behavior Barium Titanate Relative Dielectric Constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kittel, C., “Phys. Theory of Ferromagnetic Domains,” Rev. Mod. Phys., 21 (1949), 541–83.CrossRefGoogle Scholar
  2. 2.
    Blum, S. L., “Microstructure and Properties of Ferrites,” J. Am. Ceram. Soc., 41 (1958), 489–93.CrossRefGoogle Scholar
  3. 3.
    Went, J. J., Rathenau, G. W., Gorter, E. W. and Van Oosterhout, G. W., “Ferroxdure, a Class of New Permanent Magnet Materials,” Philips Tech. Rev.,13 (1951–52), 194–208.Google Scholar
  4. 4.
    Brockman, F. G., Beck, P. W. and Staneck Jr., W. G., “Research Investigations of Magnetic Materials, Permanent Ceramic Type,” Eighth Progress Rept., Contract No. DA-36–039 sc-42503, Philips Research Laboratories, New York.Google Scholar
  5. 5.
    Guillaud, C., “Propriétés d’Aimant Des Poudres Ferromagnetiques cas Particulier de l’Alliage MnBi,” J. Rech. C.N.R.S., 2 (1949), 267–78.Google Scholar
  6. 6.
    Guillaud, C., “The Properties of Manganese-Zinc Ferrites and the Physical Processes Governing Them,” Proc. Inst. Electr. Engrs., 104B (1957), 165–73.Google Scholar
  7. 7.
    Paulus, M., “Influence des pores et des inclusiens sur la croissance des cristaus de ferrite,” Phys. Stat. Sol., 2 (1962), 1325–41.CrossRefGoogle Scholar
  8. 8.
    Torkar, K. and Fredriksen, O., “The Effect of Grain Size on Saturation Magnetization of Barium Ferrite Powders,” Powder Metallurgy, 4 (1959), 105–107.Google Scholar
  9. 9.
    Kniepkamp, H. and Hewang, W., “Über Depolarisationseffekte in polykristallinem BaTiO3,” Z. Angew Physik, 6 (1954), 385–90.Google Scholar
  10. 10.
    Jonker, G. H. and Noorlander, W., Science of Ceramics, Vol. I, Academic Press, New York (1962), 225.Google Scholar
  11. 11.
    Brandmayr, R. J., “Properties of Ultrafine Grained BaTiO3 Super-Pressed at Low Temperatures,” Tech. Report ECOM-2719 (August 1966).Google Scholar
  12. 12.
    Haertling, G. H., “Hot-Pressed Lead-Zirconate Lead-Titanate Ceramics Containing Bismuth,” Bull. Am. Ceram. Soc., 43 (1964), 875–79.Google Scholar
  13. 13.
    Mountvala, A. J., “Hot-Pressing Piezoelectric and Ferroelectric Materials,” Bull. Am. Ceram. Soc., 42 (1963), 120–21.Google Scholar
  14. 14.
    Buessem, W. R., Cross, L. E. and Goswami, A. K., “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate,” J. Am. Ceram. Soc., 49 (1966), 33–36;CrossRefGoogle Scholar
  15. Buessem, W. R., Cross, L. E. and Goswami, A. K., “Effect of Two-Dimensional Pressure on the Permittivity of Fine-and Coarse-Grained Barium Titanate,” ibid, 49 (1966), 36–39.Google Scholar
  16. 15.
    Haertling, G. H., “Improved Ceramics for Piezoelectric Devices,” presented at Western Electric Show and Convention, Los Angeles, California (August 23–26, 1966 ).Google Scholar
  17. 16.
    Land, C. E., “Ferroelectric Ceramic Electro-optic Storage and Display Devices,” presented at IEEE International Electron Devices Meeting, Washington, D.C. (October 18–20, 1967 ).Google Scholar
  18. 17.
    Barta, R., et al.,“Electrical Resistance of Sintered Alumina,” Silikaty,1 (1957), 77–83.Google Scholar
  19. 18.
    Tien, T. Y., “Grain Boundary Conductivity of Zr0.84Ca0.16O1.84 Ceramics,” J. Appl. Phys., 35 (1964), 122–24.CrossRefGoogle Scholar
  20. 19.
    Mountvala, A. J., “Effect of Thermal Conditioning on I-V Characteristics of Polycrystalline Al2O3,” to be published.Google Scholar
  21. 20.
    Weyl, W. A., Private communications.Google Scholar
  22. 21.
    Mountvala, A. J., “Characterization of Ceramic Materials for Microelectronic Applications,” NASA Report No. CR-6605 (March 1968).Google Scholar
  23. 22.
    Anliker, M., Burger, H. R. and Kanzig, W., “Das Verhalten von Kolloidalen Seignettealektrika III, Barium Titanat BaTiO3,” Helvetica Physica Acta, 27 (1954), 99.Google Scholar
  24. 23.
    Kanzig, W., “Space Charge Layer Near the Surface of a Ferroelectric,” Phys. Rev., 98 (1959), 549.CrossRefGoogle Scholar
  25. 24.
    Chynoweth, A. G., “Surface Space-Charge Layers in Barium Titanate,” Phys. Rev., 102 (1956), 705–14.CrossRefGoogle Scholar
  26. 25.
    Gerthsen, P. and Hardtl, K., “Eine Methode zum direkten Nachweis von Leitfähigkeitsinhomogenitäten an Korngrenzen,” Z. Naturforsch, 18a (1963), 423.Google Scholar
  27. 26.
    Kinase, W. and Takahashi, H., “Theory of Spontaneous Deformation of Barium Titanate,” J. Phys. Soc. Japan, 10 (1955), 942–52.CrossRefGoogle Scholar
  28. 27.
    Gaehwiller, Ch., “Absorptionkantenvehschiebung an BaTiO3 in einem elektrischen Feld,” Helvetica Physica Acta, 38 (1965), 361.Google Scholar
  29. 28.
    Ulrich, D. R., Private communications.Google Scholar
  30. 29.
    Seiwatz, H., “A Nondestructive Electron Beam Scanning System for Measuring Dielectric Properties Including Breakdown,” Proc. of the Fifty-First Meeting of the Juniper Committee, Sandia Corporation, May 1966.Google Scholar
  31. 30.
    Mountvala, A. J. and Marks, H. R., “Dielectric Properties of Ceramic Grain Boundaries by Electron Beam Scanning Technique,” to be published.Google Scholar
  32. 31.
    Gallagher, C. S., “Plastic Deformation of Germanium and Silicon,” Phys. Rev., 88 (1952), 721.CrossRefGoogle Scholar
  33. 32.
    Pearson, G. L., Read, W. T. and Morin, F. J., “Dislocations in Plastically Deformed Germanium,” Phys. Rev., 93 (1954), 666.CrossRefGoogle Scholar
  34. 33.
    Chang, R., “Electrical Resistivity Changes of Al2O3 Crystals During Creep,” J. Appl. Phys., 34 (1963), 1564.CrossRefGoogle Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1970

Authors and Affiliations

  • A. J. Mountvala
    • 1
  1. 1.IIT Research InstituteChicagoUSA

Personalised recommendations