Skip to main content

Plastic Deformation in Fine-Grain Ceramics

  • Chapter
Ultrafine-Grain Ceramics

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 15))

Abstract

Plastic deformation in fine-grain (i.e., ≤ 10 µ)ceramics is discussed. It is shown that fine-grain polycrystals can be exceptionally ductile, the fine grain size enhancing diffusional deformation and grain boundary sliding processes. The deformation is sensitive to both grain size and temperature.

The influence of grain size (1–10 µ),strain-rate (2 × 10−6 −3 × 10−4/sec), and temperature (1100–1700°C) on the deformation of fine-grain alumina has been studied. It is suggested that the predominant deformation mechanism in the larger grained polycrystals is diffusional creep, and that grain boundary sliding makes an increasingly important contribution as the grain size is decreased; in addition, deformation twinning can also be important. These results are shown to be consistent with previous work on deformation in polycrystalline alumina. A brief review of the literature on plastic deformation in fine-grain magnesia, beryllia, thoria, and Urania indicates that grain boundary sliding may be important for each of these materials as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gilman, J. J., “Monocrystals in Mechanical Technology,” Trans. ASM, 59 (1966), 596.

    Google Scholar 

  2. Groves, G. W. and Kelly, A., “Independent Slip Systems in Crystals,” Phil. Mag., 8 (1963), 877.

    Article  CAS  Google Scholar 

  3. Day, R. B. and Stokes, R. J., “Mechanical Behavior of MgO at High Temperatures,” J. Am. Ceram. Soc., 47 (1964), 493.

    Article  CAS  Google Scholar 

  4. Day, R. B. and Stokes, R. J., “Mechanical Behavior of MgO at High Temperatures,” ibid., “Effect of Crystal Orientation on the Mechanical Behavior of MgO at High Temperatures,” J. Am. Ceram. Soc., 49 (1966), 72.

    Article  CAS  Google Scholar 

  5. Copley. S. M. and Pask, J. A., “Deformation of Polycrystalline MgO at Elevated Temperatures,” J. Am. Ceram. Soc., 48 (1965), 636.

    Article  Google Scholar 

  6. Nadeau, J. S., “The Strength of Oxygen-rich UO2 at High Temperatures,” to be published in J. Am. Ceram. Soc.

    Google Scholar 

  7. Crussard, C. and Friedel, J., Creep and Fracture of Metals, London, H. M. Stationery Office (1956), 243.

    Google Scholar 

  8. Ishida, Y. and Henderson-Brown, N., “Dislocations in Grain Boundaries and Grain Boundary Sliding,” Acta Met., 15 (1967), 857.

    Article  CAS  Google Scholar 

  9. Heuer, A. H., “Deformation Twinning in Corundum,” Phil. Mag., 3 (1966), 379.

    Article  Google Scholar 

  10. Stofel, E. and Conrad, H., “Fracture and Twinning in Sapphire (ct-Al2O3) Crystals,” Trans. AIME, 227 (1963), 1053.

    Google Scholar 

  11. Conrad, H., Janowski, J. and Stofel, E., “Additional Observations on Twinning in Sapphire (a-Al2O3) During Compression,” ibid., 2333 (1965), 255.

    Google Scholar 

  12. Nabarro, F. R. N., Report of a Conference on the Strength of Solids, Physical Society, London (1948), 75.

    Google Scholar 

  13. Herring, C., “Diffusional Viscosity of a Polycrystalline Solid,” J. Appl. Phys., 21 (1950), 437.

    Article  Google Scholar 

  14. Coble, R. L., “Model for Boundary Diffusion Controlled Creep,” ibid., 34 (1963), 1679.

    Google Scholar 

  15. Gifkins, R. C., “Diffusional Creep Mechanisms,” J. Am. Ceram. Soc., 51 (1968), 69.

    Article  CAS  Google Scholar 

  16. Ryan, H. F. and Suiter, J. W., “Grain Boundary Topography in Tungsten,” Phil. Mag., 10 (1964), 727.

    Article  CAS  Google Scholar 

  17. Hensler, J. H. and Cullen, G. V., “Grain Shape Change During Creep in MgO,” J. Am. Ceram. Soc., 50 (1967), 584.

    Article  CAS  Google Scholar 

  18. Lifshitz, I. M., “On the Theory of Diffusion-Viscous Flow of Polycrystalline Bodies,” Soviet Physics JETP, 17 (1963), 909.

    Google Scholar 

  19. Gibbs, G. B., “The Role of Grain-Boundary Sliding in High-Temperature Creep,” Mat. Sci. and Eng., 2 (1967–68), 269.

    Google Scholar 

  20. Turnbaugh, J. E. and Norton, F. H., “Low-Frequency Grain-Boundary Relaxation in Alumina,” J. Am. Ceram. Soc., 51 (1968), 344.

    Article  CAS  Google Scholar 

  21. Stevens, R. N., “Grain Boundary Sliding in Metals,” Met. Rev., 11 (1966), 129.

    Article  Google Scholar 

  22. Gifkins, R. C., Gittins, A., Bell, R. L. and Langdon, T. G., “The Dependence of Grain Boundary Sliding on Shear Stress,” J. Mat. Sci., 3 (1968), 306.

    Article  CAS  Google Scholar 

  23. Gifkins, R. C. and Snowden, K. U., “The Stress Sensitivity of Creep of Pb at Low Stresses,” Trans. AIME, 239 (1967), 910.

    CAS  Google Scholar 

  24. Bell, R. L. and Langdon, T. G., “An Investigation of Grain-Boundary Sliding During Creep,” J. Mat. Sci., 2 (1967), 313.

    Article  CAS  Google Scholar 

  25. Alden, T. H., “The Origin of Superplasticity in the Sn-5% Bi Alloy,” Acta Met., 15 (1967), 469.

    Article  CAS  Google Scholar 

  26. Alden, T. H., “The Origin of Superplasticity in the Sn-5% Bi Alloy,” Alden, T. H., J. of Metals, 20 (1968), 39A.

    Google Scholar 

  27. Heuer, A. H. and Cannon, R. M., “Plastic Deformation of Fine-Grained Aluminum Oxide,” presented at Symposium on Mechanical Testing Procedures for Brittle Materials, March 28–30, 1967, IIT Research Inst., Chicago, Ill., to be published.

    Google Scholar 

  28. Spriggs, R. M., Mitchell, J. B. and Vasilos, T., “Mechanical Properties of Pure, Dense Al2O3 as a Function of Temperature and Grain Size,” J. Am. Ceram. Soc., 47 (1964), 323.

    Article  CAS  Google Scholar 

  29. Passmore, E. M., Moschetti, A. and Vasilos, T., “Brittle-Ductile Transition in Polycrystalline Al2O3,” Phil. Mag., 13 (1966), 1157.

    Google Scholar 

  30. Hewson, C. W. and Kingery, W. D., “Effect of MgO and Mg TiO3 Doping on Diffusion Controlled Creep of Polycrystalline Al2O3,” J. Am. Ceram. Soc., 50 (1967), 218.

    Article  CAS  Google Scholar 

  31. Kronberg, M. L., “Dynamical Flow Properties of Single Crystals of Sapphire, I, ” J. Am. Ceram. Soc., 45 (1962), 274.

    Article  CAS  Google Scholar 

  32. Weertman, J., “Theory of Steady State Creep Based on Dislocation Climb,” J. Appl. Phys., 26 (1955), 1213.

    Google Scholar 

  33. Weertman, J., “Theory of Steady State Creep Based on Dislocation Climb,” ibid., “Steady State Creep Through Dislocation Climb,”J. Appl. Phys., 28 (1957), 362.

    CAS  Google Scholar 

  34. Weertman, J., “Theory of Steady State Creep Based on Dislocation Climb,” ibid., “Steady State Creep of Crystals,” J. Appl. Phys., 28 (1957), 1185.

    Google Scholar 

  35. Zener, C. and Holloman, J. H., “Plastic Flow and Rupture of Metals,” Trans. ASM, 33 (1944), 163.

    Google Scholar 

  36. Zener, C. and Holloman, J. H., “Plastic Flow and Rupture of Metals,” ibid., “Effect of Strain Rate Upon Plastic Flow of Steel,” J. Appl. Phys., 15 (1944), 22.

    Article  Google Scholar 

  37. Sherby, O. D and Burke, P. M., “Mechanical Behavior of Crystalline Solids at Elevated Temperatures,” Prog. Mat. Sci., 13 (1967), 325.

    Google Scholar 

  38. Heuer, A. H., Sellers, D. and Rhodes, W. H., “Hot Working in Aluminum Oxide: Primary Recrystallization and Texture,” to be published. See also: Heuer A. H., “Plastic Deformation in Polycrystalline Alumina,” Proc. Brit. Ceram. Soc.,15, in press.

    Google Scholar 

  39. Tighe, N. J. and Heuer, A. H., “Substructure of Hot-Pressed Polycrystalline AI2O3,” Bull. Am. Ceram. Soc., 47 (1968), 349.

    Google Scholar 

  40. Barrett, C. R., Lytton, J. L. and Sherby, D., “Effect of Grain Size and Annealing Treatment on Steady State Creep of Copper,” Trans. AIME, 239 (1967), 170.

    CAS  Google Scholar 

  41. Folweiler, R. C., “Creep Behavior of Pore-Free Polycrystalline Aluminum Oxide,” J. Appl. Phys., 32 (1961), 773.

    Article  CAS  Google Scholar 

  42. Warshaw, S. I. and Norton, F. H., “Deformation Behavior of Polycrystalline Aluminum Oxide,” J. Am. Ceram. Soc., 45 (1962), 479.

    Article  CAS  Google Scholar 

  43. Coble. R. L. and Guerard, Y. H., “Creep of Polycrystalline Aluminum Oxide,” ibid., 46 (1963), 353.

    Google Scholar 

  44. Passmore, E. M. and Vasilos, T., “Creep of Dense, Pure, Fine-Grained Aluminum Oxide,” ibid., 49 (1966), 166.

    CAS  Google Scholar 

  45. Rhodes, H., Sellers, D. and Heuer, A. H., to be published.

    Google Scholar 

  46. Oishi, Y. and Kingery, W. D., “Self-Diffusion of Oxygen in Single-Crystal and Polycrystalline Aluminum Oxide,” J. Chem. Phys., 33 (1960), 480.

    Article  CAS  Google Scholar 

  47. Paladino, A. E. and Kingery, W. D., “Aluminum Ion Diffusion in Aluminum Oxide,” ibid., 37 (1962), 957.

    CAS  Google Scholar 

  48. Mistier, R. E., “Grain Boundary Diffusion and Boundary Migration Kinetics in Aluminum Oxide, Sodium Chloride, and Silver,” Sc.D. Thesis, Massachussets Institue of Technology (1967).

    Google Scholar 

  49. Johnson, D. L. and Berrin, L., “Grain Boundary Diffusion in the Sintering of Oxides,” in Sintering and Related Phenomena, G. C. Kuczynski, N. A. Hooton, and C. G. Gibbon, eds., Gordon and Breach, Science Publishers, New York (1967).

    Google Scholar 

  50. Chang, R., “Diffusion-Controlled Deformation and Shape Changes in Nonfissionable Ceramics,” in Proceedings of the Conference on Nuclear Application of Non-fissionable Ceramics, A. Boltax and J. H. Handwerk, eds., American Nuclear Society, Hinsdale, Ill. (1966).

    Google Scholar 

  51. Vasilos, T., Mitchell, J. B. and Spriggs, R. M., “Creep of Polycrystalline Magnesia,” J. Am. Ceram. Soc., 47 (1964), 203.

    Article  CAS  Google Scholar 

  52. Passmore, E., Duff, R. H. and Vasilos, T., “Creep of Dense, Polycrystalline Magnesia,” ibid., 49 (1966), 594.

    CAS  Google Scholar 

  53. Scott, R., Hall, A. R. and Williams, J., “The Plastic Deformation of Uranium Oxides Above 800°C,” J. Nucl. Mat., 1 (1959), 39.

    Article  CAS  Google Scholar 

  54. Armstrong, W. M., Irvine, W. R. and Martinson, R. H., “Creep Deformation of Stoichiometric UO2,” ibid., 7 (1962), 133.

    CAS  Google Scholar 

  55. Armstrong, W. M. and Irvine, W. R., “Creep Deformation of Non-Stoichiometric UO2,” ibid., 9 (1963), 121.

    CAS  Google Scholar 

  56. Fryxwell, R. E. and Chandler, B. A., “Creep Strength, Expansion, and Elastic Moduli of Sintered BeO as a Function of Grain Size, Porosity, and Grain Orientation,” J. Am. Ceram. Soc., 47 (1964), 283.

    Article  Google Scholar 

  57. Poteat, L. E. and Yust, C. E., “Creep of Polycrystalline ThO2,” ibid., 49 (1966), 410.

    CAS  Google Scholar 

  58. Tagai, H. and Zisner, T., “High-Temperature Creep of Polycrystalline Magnesia: I, Effect of Simultaneous Grain Growth,” ibid., 51 (1968), 303.

    CAS  Google Scholar 

  59. Gordon, R. S., Terwilliger, G. R., Bowen, H. K. and Marchant, D. D., Impurity Effects on the Creep of Polycrystalline Magnesium and Aluminum Oxides at Elevated Temperatures, AEC AT (11–1)-1591 (December 1967).

    Google Scholar 

  60. Terwilliger, G. R., “Creep of Polycrystalline Magnesia,” Ph.D. Thesis, University of Utah (1968); and Gordon, R. S., Private communication, September 1968.

    Google Scholar 

  61. Fryer, G. M. and Roberts, J. P., “Tensile Creep of Porous Polycrystalline Alumina,” Proc. Brit. Ceram. Soc., 6 (1969), 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Syracuse University Press Syracuse, New York

About this chapter

Cite this chapter

Heuer, A.H., Cannon, R.M., Tighe, N.J. (1970). Plastic Deformation in Fine-Grain Ceramics. In: Burke, J.J., Reed, N.L., Weiss, V. (eds) Ultrafine-Grain Ceramics. Sagamore Army Materials Research Conference Proceedings, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2643-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2643-4_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2645-8

  • Online ISBN: 978-1-4684-2643-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics