Advertisement

Plastic Deformation in Fine-Grain Ceramics

  • A. H. Heuer
  • R. M. Cannon
  • N. J. Tighe
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 15)

Abstract

Plastic deformation in fine-grain (i.e., ≤ 10 µ)ceramics is discussed. It is shown that fine-grain polycrystals can be exceptionally ductile, the fine grain size enhancing diffusional deformation and grain boundary sliding processes. The deformation is sensitive to both grain size and temperature.

The influence of grain size (1–10 µ),strain-rate (2 × 10−6 −3 × 10−4/sec), and temperature (1100–1700°C) on the deformation of fine-grain alumina has been studied. It is suggested that the predominant deformation mechanism in the larger grained polycrystals is diffusional creep, and that grain boundary sliding makes an increasingly important contribution as the grain size is decreased; in addition, deformation twinning can also be important. These results are shown to be consistent with previous work on deformation in polycrystalline alumina. A brief review of the literature on plastic deformation in fine-grain magnesia, beryllia, thoria, and Urania indicates that grain boundary sliding may be important for each of these materials as well.

Keywords

Strain Rate Sensitivity Steady State Creep Deformation Twinning Basal Slip Grain Boundary Slide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gilman, J. J., “Monocrystals in Mechanical Technology,” Trans. ASM, 59 (1966), 596.Google Scholar
  2. 2.
    Groves, G. W. and Kelly, A., “Independent Slip Systems in Crystals,” Phil. Mag., 8 (1963), 877.CrossRefGoogle Scholar
  3. 3.
    Day, R. B. and Stokes, R. J., “Mechanical Behavior of MgO at High Temperatures,” J. Am. Ceram. Soc., 47 (1964), 493.CrossRefGoogle Scholar
  4. Day, R. B. and Stokes, R. J., “Mechanical Behavior of MgO at High Temperatures,” ibid., “Effect of Crystal Orientation on the Mechanical Behavior of MgO at High Temperatures,” J. Am. Ceram. Soc., 49 (1966), 72.CrossRefGoogle Scholar
  5. 4.
    Copley. S. M. and Pask, J. A., “Deformation of Polycrystalline MgO at Elevated Temperatures,” J. Am. Ceram. Soc., 48 (1965), 636.CrossRefGoogle Scholar
  6. 5.
    Nadeau, J. S., “The Strength of Oxygen-rich UO2 at High Temperatures,” to be published in J. Am. Ceram. Soc.Google Scholar
  7. 6.
    Crussard, C. and Friedel, J., Creep and Fracture of Metals, London, H. M. Stationery Office (1956), 243.Google Scholar
  8. 7.
    Ishida, Y. and Henderson-Brown, N., “Dislocations in Grain Boundaries and Grain Boundary Sliding,” Acta Met., 15 (1967), 857.CrossRefGoogle Scholar
  9. 8.
    Heuer, A. H., “Deformation Twinning in Corundum,” Phil. Mag., 3 (1966), 379.CrossRefGoogle Scholar
  10. 9.
    Stofel, E. and Conrad, H., “Fracture and Twinning in Sapphire (ct-Al2O3) Crystals,” Trans. AIME, 227 (1963), 1053.Google Scholar
  11. Conrad, H., Janowski, J. and Stofel, E., “Additional Observations on Twinning in Sapphire (a-Al2O3) During Compression,” ibid., 2333 (1965), 255.Google Scholar
  12. 10.
    Nabarro, F. R. N., Report of a Conference on the Strength of Solids, Physical Society, London (1948), 75.Google Scholar
  13. Herring, C., “Diffusional Viscosity of a Polycrystalline Solid,” J. Appl. Phys., 21 (1950), 437.CrossRefGoogle Scholar
  14. 11.
    Coble, R. L., “Model for Boundary Diffusion Controlled Creep,” ibid., 34 (1963), 1679.Google Scholar
  15. 12.
    Gifkins, R. C., “Diffusional Creep Mechanisms,” J. Am. Ceram. Soc., 51 (1968), 69.CrossRefGoogle Scholar
  16. 13.
    Ryan, H. F. and Suiter, J. W., “Grain Boundary Topography in Tungsten,” Phil. Mag., 10 (1964), 727.CrossRefGoogle Scholar
  17. 14.
    Hensler, J. H. and Cullen, G. V., “Grain Shape Change During Creep in MgO,” J. Am. Ceram. Soc., 50 (1967), 584.CrossRefGoogle Scholar
  18. 15.
    Lifshitz, I. M., “On the Theory of Diffusion-Viscous Flow of Polycrystalline Bodies,” Soviet Physics JETP, 17 (1963), 909.Google Scholar
  19. 16.
    Gibbs, G. B., “The Role of Grain-Boundary Sliding in High-Temperature Creep,” Mat. Sci. and Eng., 2 (1967–68), 269.Google Scholar
  20. 17.
    Turnbaugh, J. E. and Norton, F. H., “Low-Frequency Grain-Boundary Relaxation in Alumina,” J. Am. Ceram. Soc., 51 (1968), 344.CrossRefGoogle Scholar
  21. 18.
    Stevens, R. N., “Grain Boundary Sliding in Metals,” Met. Rev., 11 (1966), 129.CrossRefGoogle Scholar
  22. 19.
    Gifkins, R. C., Gittins, A., Bell, R. L. and Langdon, T. G., “The Dependence of Grain Boundary Sliding on Shear Stress,” J. Mat. Sci., 3 (1968), 306.CrossRefGoogle Scholar
  23. 20.
    Gifkins, R. C. and Snowden, K. U., “The Stress Sensitivity of Creep of Pb at Low Stresses,” Trans. AIME, 239 (1967), 910.Google Scholar
  24. 21.
    Bell, R. L. and Langdon, T. G., “An Investigation of Grain-Boundary Sliding During Creep,” J. Mat. Sci., 2 (1967), 313.CrossRefGoogle Scholar
  25. 22.
    Alden, T. H., “The Origin of Superplasticity in the Sn-5% Bi Alloy,” Acta Met., 15 (1967), 469.CrossRefGoogle Scholar
  26. Alden, T. H., “The Origin of Superplasticity in the Sn-5% Bi Alloy,” Alden, T. H., J. of Metals, 20 (1968), 39A.Google Scholar
  27. 23.
    Heuer, A. H. and Cannon, R. M., “Plastic Deformation of Fine-Grained Aluminum Oxide,” presented at Symposium on Mechanical Testing Procedures for Brittle Materials, March 28–30, 1967, IIT Research Inst., Chicago, Ill., to be published.Google Scholar
  28. 24.
    Spriggs, R. M., Mitchell, J. B. and Vasilos, T., “Mechanical Properties of Pure, Dense Al2O3 as a Function of Temperature and Grain Size,” J. Am. Ceram. Soc., 47 (1964), 323.CrossRefGoogle Scholar
  29. 25.
    Passmore, E. M., Moschetti, A. and Vasilos, T., “Brittle-Ductile Transition in Polycrystalline Al2O3,” Phil. Mag., 13 (1966), 1157.Google Scholar
  30. 26.
    Hewson, C. W. and Kingery, W. D., “Effect of MgO and Mg TiO3 Doping on Diffusion Controlled Creep of Polycrystalline Al2O3,” J. Am. Ceram. Soc., 50 (1967), 218.CrossRefGoogle Scholar
  31. 27.
    Kronberg, M. L., “Dynamical Flow Properties of Single Crystals of Sapphire, I, ” J. Am. Ceram. Soc., 45 (1962), 274.CrossRefGoogle Scholar
  32. 28.
    Weertman, J., “Theory of Steady State Creep Based on Dislocation Climb,” J. Appl. Phys., 26 (1955), 1213.Google Scholar
  33. Weertman, J., “Theory of Steady State Creep Based on Dislocation Climb,” ibid., “Steady State Creep Through Dislocation Climb,”J. Appl. Phys., 28 (1957), 362.Google Scholar
  34. Weertman, J., “Theory of Steady State Creep Based on Dislocation Climb,” ibid., “Steady State Creep of Crystals,” J. Appl. Phys., 28 (1957), 1185.Google Scholar
  35. 29.
    Zener, C. and Holloman, J. H., “Plastic Flow and Rupture of Metals,” Trans. ASM, 33 (1944), 163.Google Scholar
  36. Zener, C. and Holloman, J. H., “Plastic Flow and Rupture of Metals,” ibid., “Effect of Strain Rate Upon Plastic Flow of Steel,” J. Appl. Phys., 15 (1944), 22.CrossRefGoogle Scholar
  37. 30.
    Sherby, O. D and Burke, P. M., “Mechanical Behavior of Crystalline Solids at Elevated Temperatures,” Prog. Mat. Sci., 13 (1967), 325.Google Scholar
  38. 31.
    Heuer, A. H., Sellers, D. and Rhodes, W. H., “Hot Working in Aluminum Oxide: Primary Recrystallization and Texture,” to be published. See also: Heuer A. H., “Plastic Deformation in Polycrystalline Alumina,” Proc. Brit. Ceram. Soc.,15, in press.Google Scholar
  39. 32.
    Tighe, N. J. and Heuer, A. H., “Substructure of Hot-Pressed Polycrystalline AI2O3,” Bull. Am. Ceram. Soc., 47 (1968), 349.Google Scholar
  40. 33.
    Barrett, C. R., Lytton, J. L. and Sherby, D., “Effect of Grain Size and Annealing Treatment on Steady State Creep of Copper,” Trans. AIME, 239 (1967), 170.Google Scholar
  41. 34.
    Folweiler, R. C., “Creep Behavior of Pore-Free Polycrystalline Aluminum Oxide,” J. Appl. Phys., 32 (1961), 773.CrossRefGoogle Scholar
  42. 35.
    Warshaw, S. I. and Norton, F. H., “Deformation Behavior of Polycrystalline Aluminum Oxide,” J. Am. Ceram. Soc., 45 (1962), 479.CrossRefGoogle Scholar
  43. 36.
    Coble. R. L. and Guerard, Y. H., “Creep of Polycrystalline Aluminum Oxide,” ibid., 46 (1963), 353.Google Scholar
  44. 37.
    Passmore, E. M. and Vasilos, T., “Creep of Dense, Pure, Fine-Grained Aluminum Oxide,” ibid., 49 (1966), 166.Google Scholar
  45. 38.
    Rhodes, H., Sellers, D. and Heuer, A. H., to be published.Google Scholar
  46. 39.
    Oishi, Y. and Kingery, W. D., “Self-Diffusion of Oxygen in Single-Crystal and Polycrystalline Aluminum Oxide,” J. Chem. Phys., 33 (1960), 480.CrossRefGoogle Scholar
  47. 40.
    Paladino, A. E. and Kingery, W. D., “Aluminum Ion Diffusion in Aluminum Oxide,” ibid., 37 (1962), 957.Google Scholar
  48. 41.
    Mistier, R. E., “Grain Boundary Diffusion and Boundary Migration Kinetics in Aluminum Oxide, Sodium Chloride, and Silver,” Sc.D. Thesis, Massachussets Institue of Technology (1967).Google Scholar
  49. 42.
    Johnson, D. L. and Berrin, L., “Grain Boundary Diffusion in the Sintering of Oxides,” in Sintering and Related Phenomena, G. C. Kuczynski, N. A. Hooton, and C. G. Gibbon, eds., Gordon and Breach, Science Publishers, New York (1967).Google Scholar
  50. 43.
    Chang, R., “Diffusion-Controlled Deformation and Shape Changes in Nonfissionable Ceramics,” in Proceedings of the Conference on Nuclear Application of Non-fissionable Ceramics, A. Boltax and J. H. Handwerk, eds., American Nuclear Society, Hinsdale, Ill. (1966).Google Scholar
  51. 44.
    Vasilos, T., Mitchell, J. B. and Spriggs, R. M., “Creep of Polycrystalline Magnesia,” J. Am. Ceram. Soc., 47 (1964), 203.CrossRefGoogle Scholar
  52. 45.
    Passmore, E., Duff, R. H. and Vasilos, T., “Creep of Dense, Polycrystalline Magnesia,” ibid., 49 (1966), 594.Google Scholar
  53. 46.
    Scott, R., Hall, A. R. and Williams, J., “The Plastic Deformation of Uranium Oxides Above 800°C,” J. Nucl. Mat., 1 (1959), 39.CrossRefGoogle Scholar
  54. 47.
    Armstrong, W. M., Irvine, W. R. and Martinson, R. H., “Creep Deformation of Stoichiometric UO2,” ibid., 7 (1962), 133.Google Scholar
  55. 48.
    Armstrong, W. M. and Irvine, W. R., “Creep Deformation of Non-Stoichiometric UO2,” ibid., 9 (1963), 121.Google Scholar
  56. 49.
    Fryxwell, R. E. and Chandler, B. A., “Creep Strength, Expansion, and Elastic Moduli of Sintered BeO as a Function of Grain Size, Porosity, and Grain Orientation,” J. Am. Ceram. Soc., 47 (1964), 283.CrossRefGoogle Scholar
  57. 50.
    Poteat, L. E. and Yust, C. E., “Creep of Polycrystalline ThO2,” ibid., 49 (1966), 410.Google Scholar
  58. 51.
    Tagai, H. and Zisner, T., “High-Temperature Creep of Polycrystalline Magnesia: I, Effect of Simultaneous Grain Growth,” ibid., 51 (1968), 303.Google Scholar
  59. 52.
    Gordon, R. S., Terwilliger, G. R., Bowen, H. K. and Marchant, D. D., Impurity Effects on the Creep of Polycrystalline Magnesium and Aluminum Oxides at Elevated Temperatures, AEC AT (11–1)-1591 (December 1967).Google Scholar
  60. Terwilliger, G. R., “Creep of Polycrystalline Magnesia,” Ph.D. Thesis, University of Utah (1968); and Gordon, R. S., Private communication, September 1968.Google Scholar
  61. 53.
    Fryer, G. M. and Roberts, J. P., “Tensile Creep of Porous Polycrystalline Alumina,” Proc. Brit. Ceram. Soc., 6 (1969), 225.Google Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1970

Authors and Affiliations

  • A. H. Heuer
    • 1
  • R. M. Cannon
    • 2
  • N. J. Tighe
    • 3
  1. 1.Case Western Reserve UniversityClevelandUSA
  2. 2.Avco Advanced Technology DivisionLowellUSA
  3. 3.National Bureau of StandardsUSA

Personalised recommendations