Proposed Theory for the Static Fatigue Behavior of Brittle Ceramics

  • D. P. H. Hasselman
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 15)


A theory is developed for the static fatigue behavior of brittle ceramics on the basis of the growth of microcracks by the stress-enhanced thermally activated formation of vacancies at the crack tip. The driving force for crack growth is derived from the decrease in elastic energy around the microcrack upon an increase in crack length. Above the fatigue limit an applied load results in a thermodynamic non-equilibrium which results in a continuously advancing crack front and eventual gross failure. The role of moisture or other materials adsorbed on the crack surface is to lower the energy required to create vacancies at the crack tip, thereby decreasing the apparent activation energy for crack growth. A modified Griffith equation is derived which contains the original Griffith formulation for the critical fracture stress, but which also predicts the time to failure for values of stress below the critical fracture stress.

The theory is demonstrated for an industrial glass with good agreement with experiment. The effect of a limited rate of transport of adsorbed materials on rates of crack growth is discussed and demonstrated on the basis of experimental results for a polycrystalline alumina. The theory also properly describes all the general phenomena associated with short-time and long-term strength testing. The theory is considered applicable to brittle solids in non-corrosive environments.


Activation Energy Fatigue Life Crack Surface Elastic Energy Surface Diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shand, E. B., “Stress Behavior of Brittle Ceramics,” Bull. Am. Ceram. Soc., 38 (1959), 653–60.Google Scholar
  2. 2.
    Baker, T. C. and Preston, F. W., “Fatigue of Glass under Static Loads,” J. Appl. Phys., 17 (1946), 170–78.CrossRefGoogle Scholar
  3. 3.
    Glathart, J. L. and Preston, F. W., “The Fatigue Modulus of Glass,” J. Appl. Phys., 17 (1946), 189–95.CrossRefGoogle Scholar
  4. 4.
    Mould, R. E. and Southwick, R. D., “Strength and Static Fatigue of Abraded Glass under Controlled Ambient Conditions,” Part I, J. Am. Ceram. Soc., 42 (1959), 542;CrossRefGoogle Scholar
  5. Mould, R. E. and Southwick, R. D., “Strength and Static Fatigue of Abraded Glass under Controlled Ambient Conditions,” Part II, ibid, 42 (1959), 582.Google Scholar
  6. 5.
    Charles, R. J., “Static Fatigue of Glass, II,” J. Appl. Phys., 29 (1958), 1549–60.CrossRefGoogle Scholar
  7. Charles, R. J., “The Strength of Silicate Glasses and Some Crystalline Oxides,” Chap. 12 in Fracture, B. L. Averback et al., eds., John Wiley and Sons, Inc. (1959).Google Scholar
  8. 7.
    Gurney, C. and Pearson, S., “Fatigue of Mineral Glass Under Static and Cyclic Loading,” Proc. Roy. S.c. (London), 192A (1948), 537–44.CrossRefGoogle Scholar
  9. 8.
    Pearson, S., “Delayed Fracture of Sintered Alumina,” Proc. Phys. S.c. (London), 69 (1956), 1293–96.CrossRefGoogle Scholar
  10. 9.
    Williams, L. S., “Stress Endurance of Sintered Alumina,” Trans. Brit. Ceram. Soc., 55 (1956), 287–312.Google Scholar
  11. 10.
    Charles, R. J. and Shaw, R. R., “Delayed Failure of Polycrystalline and Single-Crystal Alumina,” General Electric Research Laboratory Report 62-RL-3081 M (1962).Google Scholar
  12. 11.
    Mould, R. E., Glastech. Ber.: V. Intern. Glass Congress, Sonderband, 32K, III /18 (1959).Google Scholar
  13. 12.
    Kingery, W. D., “A Review of the Stress-Strain-Time-Temperature Behavior of Ceramics,” pp. 19–34 in Symposium on Stress-Strain-Time-Temperature Relationships in Materials, ASTM Special Publication No. 325 (1962).CrossRefGoogle Scholar
  14. 13.
    Petch, N. J., “The Lowering of Fracture-Stress due to Surface Adsorption,” Phil. Mag., 81 (1956), 331–37.CrossRefGoogle Scholar
  15. 14.
    Schoenig, R. L., “On the Strength of Glass in Water Vapor,” J. Appl. Phys., 31 (1960), 1779.Google Scholar
  16. 15.
    Hammond, M. L. and Ravitz, S. F., “Influence of Environment on Brittle Fracture of Silica,” J. Am. Ceram. Soc., 46 (1963), 329–32.CrossRefGoogle Scholar
  17. 16.
    Griffith, A. A., “Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. (London), A221 (1920), 163–98.Google Scholar
  18. 17.
    Wolf, K. L., “Physik und Chemie der Grenzflaechen,” Vol. I, Springer-Verlag (1957).Google Scholar
  19. 18.
    Cox, S. M. Jr., “A Kinetic Approach to the Theory of the Strength of Glass,” J. Soc. Glass Technology, 32 (1948), 127–46.Google Scholar
  20. 19.
    Taylor, N. W., “Mechanism of Fracture of Glass and Similar Solids,” J. Appl. Phys., 18 (1947), 943–55.CrossRefGoogle Scholar
  21. 20.
    Hodgdon, F. B., Stuart, D. A. and Bjorklund, F. E., “Application of Rate Process to Glass. I. Breaking Strength,” J. Appl. Phys. (1950), 1156–59.Google Scholar
  22. 21.
    Poncelet, E. F., Fracturing of Metals, Am. Soc. Metals. (1951), 201.Google Scholar
  23. 22.
    Stuart, D. A. and Anderson, O. L., “Dependence of Ultimate Strength of Glass under Constant Load on Temperature, Ambient-Atmosphere and Time,” J. Am. Ceram. Soc., 36 (1953), 416–24.CrossRefGoogle Scholar
  24. 23.
    Zhurkov, S. N., “Kinetic Concepts of the Strength of Solids,” Inter. J. Frac. Mech., 1 (1965), 311.Google Scholar
  25. 24.
    Elliot, H. A., “Stress Rupture in Glass,” J. Appl. Phys., 29 (1958), 224–25.CrossRefGoogle Scholar
  26. 25.
    Gurney, C., “Delayed Fracture in Glass,” Proc. Phys. Soc., 59B (1947), 169–84.CrossRefGoogle Scholar
  27. 26.
    Charles, R. J. and Hillig, W. B., “The Kinetics of Glass Failure by Stress Corrosion,” Symposium on the Mechanical Strength of Glass and Ways of Improving It, Union Scientifique Continentale du Verre (1961).Google Scholar
  28. 27.
    Hillig, W. B. and Charles, R. J., “Surfaces, Stress-Dependent Surface Reactions, and Strength,” Chap. 17 in High-Strength Materials, John Wiley and Sons, Inc. (1965).Google Scholar
  29. 28.
    Hillig, W. B., “The Factors Affecting the Strength of Bulk Fused Silica,” Symposium on the Mechanical Strength of Glass and Ways of Improving It, Union Scientifique Continentale du Verre (1961).Google Scholar
  30. 29.
    Wiederhorn, S. M., “Fracture Surface Energy of Soda-Lime Glass,” Chap. 27 in Materials Science Research, Vol. III, Plenum Press, New York (1966).Google Scholar
  31. 30.
    Wiederhorn, S. M., “The Influence of Water Vapor on Crack Propagation in Soda-Lime Glass,” to be published.Google Scholar
  32. 31.
    Shand, E. B., “Strength of Glass-The Griffith Method Revised,” J. Am. Ceram. Soc., 48 (1965), 43–49.CrossRefGoogle Scholar
  33. Anderson, O. L., “The Griffith Criterion for Glass Fracture,” Chap. 17 in Fracture, Averbach et al., eds., John Wiley and Sons, Inc. (1959).Google Scholar
  34. 33.
    Ernsberger, F. M., Advances in Glass Technology, Plenum Press, New York (1962), 511–24.Google Scholar
  35. 34.
    Ernsberger, F. M., Progress in Ceramic Science, Vol. III, J. E. Burke, ed., Pergamon Press, New York (1963), 57–75.Google Scholar
  36. 35.
    Philips, C. J., “Strength and Weakness of Brittle Materials,” Am. Scientist, 53 (1965), 20–51.Google Scholar
  37. 36.
    Barenblatt, G. I., “The Mathematical Theory of Equilibrium Cracks,” Advances in Applied Mechanics, Vol. 7, Academic Press, New York (1962), 55–129.Google Scholar
  38. 37.
    Cook, J. and Gordon, J. E., “A Mechanism for the Control of Crack Propagation in All-Brittle Systems,” Proc. Roy. Soc., 282 (1964), 508–20.CrossRefGoogle Scholar
  39. 38.
    Gurney, C., “The Effective Stress Concentration at the End of a Crack in Materials Atomic Constitution,” Phil. Mag., 39 (1948), 71–76.Google Scholar
  40. 39.
    Timoshenko, S. and Goodier, J. N., Theory of Elasticity, 2nd ed., McGraw-Hill, New York (1951), 161.Google Scholar
  41. 40.
    Shewmon, P. G., Diffusion in Solids, McGraw-Hill, New York (1963).Google Scholar
  42. 41.
    Glasstone, S., Laidler, K. J. and Eyring, H., “The Theory of Rate Processes,” 1st ed., McGraw-Hill, New York (1941).Google Scholar
  43. 42.
    Swalin, R. A., Thermodynamics of Solids, John Wiley and Sons, Inc., New York (1962).Google Scholar
  44. 43.
    Gjostein, N. A., “Surface Self-Diffusion,” Chap. 4 in Metal Surfaces, Structure Energetics and Kinetics, Amer. Soc. for Metals (1963).Google Scholar
  45. 44.
    Holscher, A. A. and Sachtler, W. M. H., “Chemisorption and Surface Corrosion in the Tungsten + Carbon Monoxide System, as Studied by Field Emission and Field Ion Microscopy,” Disc. Faraday Soc., 41 (1966), 29–42.CrossRefGoogle Scholar
  46. 45.
    Burton, W. K., Cabrera, N. and Frank, F. C., “The Growth of Crystals and the Equilibrium Structure of their Surfaces,” Phil. Trans. Roy. Soc., (London), 243A (1951), 299–358.Google Scholar
  47. 46.
    Gjostein, N. A., “Adsorption and Surface Energy (I): The Effect of Adsoprtion on the J-Plot,” Acta Met. 11 (1963), 957–67.CrossRefGoogle Scholar
  48. 47.
    Boyd, G. E. and Livingstone, H. K., “Adsorption and Energy Changes at Crystalline Solid Surfaces,” J. Am. Chem. Soc., 64 (1942), 2383–88.CrossRefGoogle Scholar
  49. 48.
    Sedlacek, R., to be published.Google Scholar
  50. 49.
    Wiederhorn, S. M., “Effect of Water Vapor on Crack Propagation in Sapphire,” presented at the 69th Annual Meeting of the American Ceramic Society (April 30-May 4, 1967). Paper 29-B-67.Google Scholar
  51. 50.
    Nye, J. F., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press (1957).Google Scholar
  52. 51.
    Wachtman, J. B., Tefft, W. E., Lam, D. G. and Stinchfield, R. P., “Elastic Constants of Synthetic Single Crystals of Corundum at Room Temperature,” J. of Res., NBS, 64 (1960), 213–28.CrossRefGoogle Scholar
  53. 52.
    Hasselman, D. P. H., “Single Crystal Elastic Anisotropy and the Mechanical Behavior of Polycrystalline Ceramics,” presented at the Intern. Symposium on Anisotropy in Single-Crystal Refractory Compounds (June 13–15, 1967 ), Dayton, Ohio, in print.Google Scholar
  54. 53.
    Abbott, B. W., Cornish, R. H. and Weil, N. A., “Techniques for Studying Strain Rate Effects in Brittle Materials,” J. Appl. Polymer Soc., 8 (1964), 151–67.CrossRefGoogle Scholar
  55. 54.
    Folweiler, R. C., “Creep Behavior of Pore-Free Polycrystalline Aluminum Oxide,” J. Appl. Phys., 32 (1961), 773–78.CrossRefGoogle Scholar
  56. 55.
    Paladino, A. E. and Kingery, W. D., “Aluminum-Ion Diffusion in Aluminum Oxide,” J. Chem. Phys., 37 (1962), 957–62.CrossRefGoogle Scholar
  57. 56.
    Rossi, R. C. and Fulrath, R. M., “Final Stage Densification in Vacuum Hotpressing of Alumina,” J. Am. Ceram. Soc., (1965), 558–64.Google Scholar
  58. 57.
    Hoffmann, R. E. and Turnbull, D., “Lattice and Grain Boundary Self-Diffusion in Silver,” J. Appl. Phys., 22 (1951), 634–39.CrossRefGoogle Scholar
  59. 58.
    Nickerson, R. A. and Parker, E. R., “Surface Diffusion of Radioactive Silver on Silver,” Trans. Am. Soc. Met., 42 (1950), 376–86.Google Scholar
  60. 59.
    Mueller, E. W., “Oberflaechewanderung von Wolfram auf dem eigenen Kristallgitter,” Z. Physik, 126 (1949), 1039–49.Google Scholar
  61. 60.
    Ehrlich, G. and Hudda, F. G., “Atomic View of Surface Self-Diffusion: Tungsten on Tungsten,” J. Chem. Phys. 44, (1966), 1039–49.CrossRefGoogle Scholar
  62. 61.
    Williams, E. L. and Heckman, R. W., “Sodium Diffusion in Soda-Lime-Aluminosilicate Glasses,” Phys. Chem. of Glasses, 5 (1964), 166–71.Google Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1970

Authors and Affiliations

  • D. P. H. Hasselman
    • 1
  1. 1.Allied Chemical CorporationMorristownUSA

Personalised recommendations