Advertisement

Ultrafine-Grain Ceramics from Melt Phase

  • J. Hurt
  • D. J. Viechnicki
Part of the Sagamore Army Materials Research Conference Proceedings book series (SAMC, volume 15)

Abstract

An ultrafine dispersion of two or more oxide phases can be produced by controlled cooling of a melt. The mechanism by which this dispersion is formed can vary, depending upon whether glass formation is possible in the system. In the case where a glass does not form in the system, coupled growth of oxide eutectics is possible. Planar or rod-like eutectic microstructures result. Conditions for producing such microstructures in selected oxide systems will be discussed. In the case where a glass does form in the system, formation of a crystalline phase may be possible. The formation of crystalline phases may occur by one mechanism or a combination of several mechanisms; metastable liquid-liquid separation, unstable liquid-liquid separation, metastable formation of a crystalline phase, stable formation of a crystalline phase. The particle size and shape of the resulting crystalline phase is dependent upon the mechanism. The effect of the mechanism of formation on the microstructure will be discussed.

Keywords

Quench Rate Spinodal Decomposition Original Magnification Mold Surface Eutectic Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Janef Thermochemical Tables, The Dow Chemical Co., Midland, Michigan (March 31, 1964 ).Google Scholar
  2. 2.
    Kirshenbaum, A. D. and Cahill, J. A., “Density of Liquid Aluminum Oxide,” J. Inorg. and Nucl. Chem., 14 (1960), 283.CrossRefGoogle Scholar
  3. 3.
    Jackson, K. A. and Hunt, J. D., “Lamellar and Rod Eutectic Growth,” Trans. Met. Soc. AIME, 236 (1966), 1129.Google Scholar
  4. 4.
    Chalmers, B., Principles of Solidification, John Wiley and Sons, Inc., New York (1964), 207.Google Scholar
  5. 5.
    Ubbelohde, A. R., Melting and Crystal Structure, Clarendon Press, Oxford, England (1965), 171.Google Scholar
  6. 6.
    Alcock, C. B. and Peleg, M., “Vaporization Kinetics of Ceramic Oxides at Temperatures around 2000°C,” Trans. Brit. Ceram. Soc., 66 (1967), 217.Google Scholar
  7. 7.
    Yanagida, H. and Kroger, F. A., “Condensed Phases in the System Al2O3–A1,” Bull. Am. Ceram. Soc., 47 (1968), 366.Google Scholar
  8. 8.
    Carlson, O. N., McMullen, W. D. and Gibson, E. D., U.S. Atomic Energy Commission, IS-351 (1961), 26. See also: Carlson, O. N. and McMullen, W. D., U.S. Atomic Energy Commission IS-193 (1960), 40.Google Scholar
  9. 9.
    Wachtman, J. B. Jr. and Lam. D. G. Jr., “Young’s Modulus of Various Refractory Materials as a Function of Temperature,” J. Am. Ceram. Soc., 42 (1959), 254. See also: Wachtman, J. B. Jr., Tefft, W. E., Lam, D. G. Jr. and Apstein, C. S., “Exponential Temperature Dependence of Young’s Modulus for Several Oxides,” Phys. Rev., 122 (1961), 1754.Google Scholar
  10. 10.
    Spencer, E. G., Denton, R. T., Bateman, T. B., Snow, W. B. and Van Uitert, L. G., “Microwave Elastic Properties of Nonmagnetic Garnets,” J. Appl. Phys., 34 (1963), 3059.CrossRefGoogle Scholar
  11. 11.
    Ohlberg, S. M., Golob, H. R. and Strickler, D. W., Symposium on Nucleation and Crystallization in Glasses and Melts, Margie K. Reser, ed., The American Ceramic Society, (1962), 55.Google Scholar
  12. 12.
    Rindone, G. E., “Further Studies of the Crystallization of a Lithium Silicate Glass,” J. Am. Ceram. Soc., 45 (1962), 7.CrossRefGoogle Scholar
  13. 13.
    Charles, R. J., “Some Structural and Electrical Properties of Lithium Silicate Glasses,” J. Am. Ceram. Soc., 46 (1963), 235.CrossRefGoogle Scholar
  14. 14.
    Sastry B. S. R. and Hummel, F. A., “Studies in Lithium Oxide Systems: III. Liquid Immiscibility in the System Li2O-B2O3-SiO2,” J. Am. Ceram. Soc., 42 (1959), 81.CrossRefGoogle Scholar
  15. 15.
    Roy, R., “Metastable Liquid Immiscibility and Subsolidus Nucleation,” J. Am. Ceram. Soc., 43 (1960), 670.CrossRefGoogle Scholar
  16. 16.
    Greig, J. W., “Immiscibility of Silicate Melts, ” Am. J. Sci., 13 (1927), 1, 133.Google Scholar
  17. 17.
    Kracek, F. C., “The Cristobalite Liquidus in the Alkali Oxide-Silica Systems and the Heat of Fusion of Cristobalite,” J. Am. Chem. Soc., 52 (1930), 1436.CrossRefGoogle Scholar
  18. 18.
    Eitel, W., Silicate Melt Equilibria, par. 68, Rutgers University Press, New Brunswick, New Jersey (1951).Google Scholar
  19. 19.
    Ohlberg, S. M., Hammel, J. J. and Golob. H. R., “Phenomenology of Noncrystalline Microphase Separation in Glass,” J. Am. Ceram. Soc., 48 (1965), 178.CrossRefGoogle Scholar
  20. 20.
    Rockett, T. J., Foster, W. R. and Ferguson, R. G. Jr., “Metastable Liquid Immiscibility in the System Silica-Sodium Tetraborate,” J. Am. Ceram. Soc., 48 (1965), 329.CrossRefGoogle Scholar
  21. 21.
    Hammel, J. J., paper No. 36, proceedings of VII International Congress on Glass, Brussels, 1965, Vol. I, Institut National de Verre, Charleroi, and Federation de L’Industrie du Verre, Brussels, Belgium, 1966.Google Scholar
  22. 22.
    Charles, R. J., “Metastable Liquid Immiscibility in Alkali Metal Oxide-Silica Systems,” J. Am. Ceram. Soc., 49 (1966), 55.CrossRefGoogle Scholar
  23. 23.
    Cahn, J. W. and Charles, R. J., “The Initial Stages of Phase Separation in Glasses,” Phys. and Chem. of Glasses, 6 (1965), 181.Google Scholar
  24. 24.
    Cahn, J. W., “Spinodal Decomposition,” Trans. AIME (1968), 166.Google Scholar
  25. 25.
    Hillig, W. B., Symposium on Nucleation and Crystallization in Glasses and Melts, Margie K. Reser, ed., The American Ceramic Society (1962), 77.Google Scholar
  26. 26.
    Cahn, J. W. and Hilliard, J. E., “Free Energy of a Nonuniform System. III. Nucleation in a Two-Component Incompressible Fluid,” J. Chem. Phys. 31 (1959), 688.CrossRefGoogle Scholar
  27. 27.
    Hammel, J. J., “Direct Measurements of Homogeneous Nucleation Rates in a Glass-Forming System,” J. Chem. Phys., 46 (1967), 2234.CrossRefGoogle Scholar
  28. 28.
    Cahn, J. W., “Phase Separation by Spinodal Decomposition in Isotropic Systems,” J. Chem. Phys., 42 (1965), 93.CrossRefGoogle Scholar
  29. 29.
    Houston, E. L., Cahn, J. W. and Hilliard, J. E., “Spinodal Decomposition During Continuous Cooling,” Acta Met., 14 (1966), 1053.CrossRefGoogle Scholar
  30. 30.
    Seward, T. P. III, Uhlmann, D. R. and Turnbull, D., Division of Engineering and Applied Physics, Harvard University, Cambridge, Mass. (January 1968), Technical Report No. 15, Office of Naval Research Contract NOOO 14–27-A-0298–0009, NR-032–485.Google Scholar
  31. 31.
    Cahn, J. W., “The Later Stages of Spinodal Decomposition and the Beginnings of Particle Coarsening,” Acta Met., 14 (1966), 1685.CrossRefGoogle Scholar
  32. 32.
    Filipovich, V. N., The Strucutre of Glass, Vol. 3, Consultants Bureau, New York, (1964), 11.Google Scholar
  33. 33.
    Cahn, J. W., Acta Met. 10 (1962), 907.CrossRefGoogle Scholar
  34. 34.
    Ainslie, N. G., Morelock, C. R. and Turnbull, D., Symposium on Nucleation and Crystallization in Glasses and Melts, Margie K. Reser, ed., The American Ceramic Society (1962), 97.Google Scholar
  35. 35.
    Stookey, S. D., British Patent No. 829 (1960), 447.Google Scholar

Copyright information

© Syracuse University Press Syracuse, New York 1970

Authors and Affiliations

  • J. Hurt
    • 1
  • D. J. Viechnicki
    • 1
  1. 1.Army Materials and Mechanics Research CenterWatertownUSA

Personalised recommendations