Advertisement

Voltage transients in neuronal dendritic trees

  • John Rinzel
Part of the Faseb Monographs book series (FASEBM, volume 5)

Abstract

An analytical method is outlined for calculating the passive voltage transient at each point in an extensively branched neuron model for arbitrary current injection at a single branch. The method is based on a convolution formula that employs the transient response function, the voltage response to an instantaneous pulse of current. For branching that satisfies Rail’s equivalent cylinder constraint, the response function is determined explicitly. Voltage transients, for a brief current injected at a branch terminal, are evaluated at several locations to illustrate the attenuation and delay characteristics of passive spread. A comparison with the same transient input applied to the soma shows that the ratio of voltage peaks at two different input sites is, in general, not equal to the ratio of the input resistances. Also for a branch terminal input, the fraction of input charge dissipated by various branches in the neuron model is illustrated. These fractions are independent of the input time course. For transient synaptic conductance change at a single branch terminal, a numerical example demonstrates the nonlinear effect of reduced synaptic driving potential. The branch terminal synaptic input is compared with the same synaptic conductance input applied to the soma on the basis of excitatory postsynaptic potential amplitude at the soma and charge delivered to the soma.—Rinzel, J. Voltage transients in neuronal dendritic trees. Federation Proc. 34: 1350–1356, 1975.

Keywords

Neuron Model Synaptic Input Branch Terminal Dendritic Tree Dendritic Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnwell, G. M., and B. J. Cerimele. Kybernetik 10: 144, 1972.CrossRefGoogle Scholar
  2. 2.
    Barrett, J. N.Federation Proc. 34: 1398, 1975.Google Scholar
  3. 3.
    Barrett, J. N., and W. E. Crill. J. Physiol. London 293: 325, 1974.Google Scholar
  4. 4.
    Burke, R. E.J. Neurophysiol. 30: 1114, 1967.Google Scholar
  5. 5.
    Dodge, F. A., and J. W. Cooley. IBM J. Res. Develop. 17: 219, 1973.CrossRefGoogle Scholar
  6. 6.
    Iansek, R., and S. J. Redman. J. Physiol. London 234: 613, 1973.Google Scholar
  7. 7.
    Iansek, R., and S. J. Redman. J.Physiol. London 234: 665, 1973.Google Scholar
  8. 8.
    Jack, J. J. B., S. Miller, R. Porter and S. J. Redman, J. Physiol. London 215: 353, 1971.Google Scholar
  9. 9.
    Jack, J. J. B., and S. J. Redman. J. Physiol. London 215: 283, 1971.Google Scholar
  10. 10.
    Jack, J. J. B., and S. J. Redman. J. Physiol. London 215: 321, 1971.Google Scholar
  11. 11.
    Katz, B., and R. Miledi. J. Physiol. London 168: 389, 1963.Google Scholar
  12. 12.
    Katz, B., and S. Thesleff. J. Physiol. London 137: 267, 1957.Google Scholar
  13. 13.
    Kuno, M.Physiol. Rev. 51: 657, 1971.Google Scholar
  14. 14.
    Kuno, M., and J. T. Miyahara. J. Physiol. London 201: 465, 1969.Google Scholar
  15. 15.
    Kuno, M., and J. T. Miyahara. J. Physiol. London 201: 479, 1969.Google Scholar
  16. 16.
    Lux, H. D., P. Schubert and G. W. Kreutzberg. In: Excitatory Synaptic Mechanisms, edited by P. Anderson and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970, p. 189.Google Scholar
  17. 17.
    Macgregor, R.J. Biophys. J. 8: 305, 1968.CrossRefGoogle Scholar
  18. 18.
    Norman, R. S.Biophys. J. 12: 25, 1972.ADSCrossRefGoogle Scholar
  19. 19.
    Pottala, E. W., T. R. Colburn and D. R. Humphrey. IEEE Trans. Bio-Med. Eng. BME-20: 132, 1973.CrossRefGoogle Scholar
  20. 20.
    Rall, W.Exptl. Neurol. 1: 491, 1959.CrossRefGoogle Scholar
  21. 21.
    Rall, W.Exptl. Neurol. 2: 503, 1960.CrossRefGoogle Scholar
  22. 22.
    Rall, W.Ann. N.Y. Acad Sci. 96: 1071, 1962.ADSCrossRefGoogle Scholar
  23. 23.
    Rall, W. In: Neural Theory and Modeling, edited by R. F. Reiss. Stanford, CA: Stanford Univ. Press, 1964, p. 73.Google Scholar
  24. 24.
    Rall, W.J. Neurophysiol. 30: 1138, 1967.Google Scholar
  25. 25.
    Rall, W.Biophys. J. 9: 1483, 1969.ADSCrossRefGoogle Scholar
  26. 26.
    Rall, W. In: Excitatory Synaptic Mechanisms, edited by P. Anderson and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970, p. 175.Google Scholar
  27. 27.
    Rall, W., and J. Rinzel. Biophys. J. 13: 648, 1973.ADSCrossRefGoogle Scholar
  28. 28.
    Redman, S. J.J. Physiol. London 234: 637, 1973.Google Scholar
  29. 29.
    Rinzel, J., and W. Rall. Biophys. J. 14: 759, 1974.ADSCrossRefGoogle Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • John Rinzel
    • 1
  1. 1.Laboratory of Applied Studies, Division of Computer Research and TechnologyNational Institutes of HealthBethesdaUSA

Personalised recommendations